Cashless to E-Cash

Bachelor’s Thesis

Course of study
Author

Advisor
Co-advisor
Expert

Bachelor of Science in Computer Science
Joel Roman Haberli

Prof. Dr. Benjamin Fehrensen

Prof. Dr. Christian Grothoff

Dr. Alain Hiltgen, UBS

Version 1.0 of May 20, 2024

Technic and Computer Science
Institute for Cybersecurity and Engineering ICE

Abstract

In order to withdraw digital cash in GNU Taler, the Taler Exchange needs guar-
antees to legally secure the transaction. Withdrawing digital cash using Taler
physically establishes direct trust, since cash can be used in order to withdraw
digital cash and the transaction is completed. If you want to withdraw digital
cash using cashless systems like credit cards, the Taler Exchange has no proof
that the payment has succeeded. In order to fill this cap, this thesis proposes a
framework allowing cashless withdrawals using GNU Taler. A reference imple-
mentation is created which establishes a trust relationship between the terminal
manufacturer Wallee and the Taler Exchange through a newly created component
called C2EC. This enables a trust relationship between the Taler Exchange and the
terminal operator which allows withdrawing Taler without using cash. The li-
ability for the transaction is on the side of the terminal operator and therefore
establishes the guarantees for the Taler Exchange.

Contents

Abstract
1 Introduction
11 Motivation v v v v e e
1.2 Perspectives v v v v i i e e e e e e e e e e e
1.21 Taler Exchange (C2EC)
1.2.2 Terminal Application
123 TalerWallet
13 Goal
131 C2EC L oo e e e e
1.3.2 Wallee POS Terminal
2 Overview
21 Components. ittt
2.2 PrOCESS . v v v v i e e e e e e e e e e e e e e e e e e e
221 TheTerminal eneenn..
222 TheC2EC i i i i i e e e e e e e e
223 TheWallet i e
3 Architecture
31 C2EC . . . oo e e e e e e e e e e
311 C2ECPerspective v v v v v i i
3.1.2 Withdrawal-Operation state transitions
3.1.3 Authentication,
314 TheC2ECRESTfulAPI
3.1.5 Taler Wirewatch Gateway API
31,6 C2ECEntities e,
3.2 Payto wallee-transaction extension
3.21 PaytorefundusingWallee
32.2 Extensibility oo oo
33 TalerWallet it
3.3.1 Taler Wallet Perspective
34 Wallee oo e
341 Wallee Perspective
342 WalleeTerminal
34.3 WalleeBackendand API

W WPNDNNDNDNNRPR

O 00 N U1 u1 Ul

Contents

4 Implementation

41 C2EC . . . o oo e e e e e e e e e e e e e e
411 Endpoints e
41.2 AbortionHandling
413 Processes e e e e
414 Providers e
42 WalleePOSTerminal
421 Withdrawalflow
422 SCrEeNS . . . v v v i v i i e e e e e e e
423 AbortionHandling
43 Database e e
431 Schema
432 TriZEETS . v v v v v e e e e e e e e e e e e e e e e
44 Wallet e
45 Security i e e
4.5.1 Withdrawal Operation Identifier (WOPID)
4.5.2 DatabaseSecurity 0oL
4.5.3 Authenticating at the Wallee ReSTAPI.
454 APTaccess v it e e
4.5.5 Registering Providers and Terminals
4.5.6 Deactivating Terminals
46 C2ECCLI. 0 e e
4.6.1 AddingaWalleeprovider
4.6.2 Addingaterminal
4.6.3 Deactivatingtheterminal
4.64 Settingupthe Simulation
47 TeStiNg . . v v v v v i e e e e e e e e e e e e e e e
48 Deploymentt e e e e e
481 Preparation
482 Setup. e e e e
483 Deploy . . . o v o
484 Migrationandreleases
5 Results
51 DiSCUSSION .« « v v v v v e
52 Results L e
53 FutureWork e
Bibliography

List of Figures

List of Tables

23
23
23
25
32
33
36
36
36
38
41
42
44
46
46
46
46
47
48
48
49
49
50
50
50
50
50
51
51
52
52
52

53
53

53
53

57

59

61

Contents

Listings 63

Glossary 65

vii

1 Introduction

1.1 Motivation

Which payment systems do you use in your daily live and why? Probably one you
know it is universally accepted, reliable, secure and the payment goes through
more or less instantly.

The universal acceptance was identified as one of the most important aspects
in a report which was published on behalf of the ECB (European Central Bank)
in march 2022 as result of a focus group concerning the acceptance of a digital
euro [1] as new payment system. The universal acceptance was even identified as
the most important property amongst the general public and tech-savvy people
in the report [2].

In a world, where everything is connected and everything is accessible from ev-
erywhere (one might think), it is therefore very important to make it as easy as
possible to on-board people on a product. This is also the case for Taler. For a
wide acceptance of the payment system Taler, it is important that various ways
exist to withdraw digital cash in Taler.

This is where this thesis hooks in. Currenlty it is possible to withdraw digital cash
using Taler at a Bank which runs a Taler Exchange and integrates the respective
API. At time of this writing only one Bank is in the process of running a Taler
Exchange. Atthe Berner Fachhochschule an Exchange is operated and digital cash
can be withdrawn at the secretariat using cash.

To make the access to digital cash using Taler easier and allow faster spreading
of the payment system Taler, a framework for cashless withdrawal of digital cash
is proposed and implemented in order to open new doors for the integration and
adoption of the Taler payment system within the society.

To make the withdrawals using a credit card possible, various loose ends must be
put together within the Taler ecosystem and the terminal provider.

Therefore a new component C2EC shall help, establishing a trustworthy relation-
ship, which makes it possible for the Exchange to issue digital cash to a customer.
Therefore the Exchange is not putting his trust on cash received but rather on the
promise of a trusted third party (a terminal provider) to put the received digital
cash in a location, controlled by the Exchange eventually (e.g. a bank account
owned by the Exchange).

1 Introduction

This enables a broader group of people to leverage Taler for their payments.
Which eventually leads to a wider adoption of the payment system Taler.

1.2 Perspectives

During the initial analysis of the task, three areas of work were discovered. One
is the Taler Exchange, one the Application for the terminal and the (Taler) Wallet.
This led to different views on the system by two different players within it. To
allow a more concise view on the system and to support the readers and imple-
menter, two perspectives shall be kept in mind. They have different views on the
process but need to interact with each other seamlessly.

1.2.12 Taler Exchange (C2EC)

The perspective of the Taler Exchange includes all processes within C2EC compo-
nent and the interaction with the terminal application, terminal backend and the
wallet of the user. The Taler Exchange wants to allow withdrawal of digital digital
cash only to users who pay the equivalent value to the Exchange. The Exchange
wants to stay out of any legal implications at all costs.

1.2.2 Terminal Application

The perspective of the terminal application includes all processes within the ap-
plication which interacts with the user, their Wallet and credit card allowing the
withdrawal of digital cash. The terminal application wants to conveniently allow
the withdrawal of digital cash and charge fees to cover its costs and risks.

1.2.3 Taler Wallet

The Wallet holds the digital cash owned by the customer. The Wallet wants to
eventually gather the digital cash from the Taler Exchange. The owner of the Wal-
let must therefore present their credit card at a Terminal of the terminal provider
and pay the Exchange as well accept the fees of the provider.

1.3 Goal

The goal of this thesis is to propose a framework for cashless withdrawals and
implement the process which allows withdrawing Taler using a credit card at a
terminal of the terminal provider Wallee.

1.3 Goal

1.3.12 C2EC

Therefore a new component, named C2EC, will be implemented as part of the
Taler Exchange. C2EC will mediate between the Taler Exchange and the terminal
provider. This includes checking that the transaction of the debitor reaches the
account of the Exchange and therefore the digital currency can be withdrawn by
the user, using its Wallet.

1.3.2 Wallee POS Terminal

The Wallee payment terminal, also called Point of Sales (POS) terminal, inter-
faces with payment cards (Credit Cards, Debit Cards) to make electronic fund
transfers, i.e. a fund transfer to a given GNU Taler Exchange. For our purpose, we
will extend the functionality of the terminal to initiate the corresponding counter
payment from the exchange to the GNU Taler wallet of the payee.

2 Overview

2.1 Components

Provider

a 6) Attestation @ \ALER
ﬂ @ Register I//J Withdraw (7))

4 Inmallze Authorization
=
Authorization Result 6.
| [:4
w
-,
&
@ Scan QR Code |

3) Present & Authorize

Figure 2.1: Involved components and devices

The component diagram shows the components involved by the withdrawal us-
ing the terminal. Besides the credit card owned by the user, two systems are
involved and within each system two components are required to fulfill the task.
The Taler ecosystem which represents the Taler Wallet and the Taler Exchange
(C2EC s a part of the Exchange) involved in the withdrawal process. In the Termi-
nal system, the terminal and the backend system of the terminal manufacturer
are leveraged in the process.

2.2 Process

The figure 2.2 shows a high level overview of the components involved and how
they interact. In an initial step (before the process is effectively started as de-
picted), the customer or owner of the terminal selects the Exchange, which shall
be used for the withdrawal. The process is then started. The numbers in the di-
agrams are picked up by the description of the steps what is done between the
different components:

2 Overview

10.

I

Figure 2.2: Diagram of included components and their interactions

. Wallee Terminal requests to be notified when parameters are selected by

C2EC.
The Wallet scans the QR code at the Terminal.
The Wallet registers a reserve public key and the WOPID.

The Bank-Integration API of C2EC notifies the Terminal, that the parame-
ters were selected.

The POS initiates a payment to the account of the GNU Taler Exchange.
For the payment the POS terminal requests a payment card and a PIN for
authorizing the payment.

The Terminal triggers the payment at the Wallee Backend.
The Terminal receives the result of the payment.

a) successful

b) unsuccessful

The Terminal sends the payment notification to the Bank Integration API
of C2EC.

The C2EC component approves the payment by requesting the transaction
of the Wallee Backend.

C2EC updates the database by either setting the status of the withdrawal
operation to confirmed or abort (depending on the response of the Wallee
Backend).

2.2 Process

11. Now decoupled from each other the Exchange-Wirewatch asks the Wire
Gateway API of C2EC for a list of transactions and the Bank-Integration API
sends a confirmed or abort message to the wallet.

12. The Wallet asks the Exchange to be notified, when a reserve with the reserve
public key becomes available.

13. The Exchange can send the digital cash back to the Wallet.

Figure 2.3: Process of a withdrawal using a credit card

The diagram in figure 2.3 shows the high level flow to withdraw digital cash using
the credit card terminal and Taler. It shows when the components of figure 2.2
interact with each other. It shows the implementation of the flow. Terminal,
Wallet and Exchange are linked leveraging a WOPID initially generated by the
terminal and presented to the Exchange by the withdrawing Wallet accompanied
by a reserve public key.

The process requires the Terminal, the Wallet, the C2EC component and the Ex-
change which interact with each other. In this section the highlevel process as
showed in figure 2.3 is explained.

2.2.1 The Terminal

The Terminal initiates the withdrawal leveraging an application which works as
follows:

1. At startup of the application, the terminal loads the C2EC configuration

2. When a user wishes to do a withdrawal, the owner of the terminal opens
the application and initiates a new withdrawal. A withdrawal is basically a
funds transfer to the IBAN account of the Exchange.

a) Terminal sets up a withdrawal by aksing C2EC to setup a WOPID

2 Overview

b) The application starts long polling at the C2EC and awaits the selection
of the reserve parameters mapped to the WOPID. The parameters are
sent by the Wallet to C2EC.

c) WOPID is packed into a QR code (with Exchange and amount entered
by the terminal owner)

d) Terminal calculates fees and shows summary and the Terms of Service
(ToS) of Taler.

e) The user accepts the offer, agrees with the ToS
f) QR code is displayed
The user now scans the QR Code using his Wallet.

The application receives the notification of the C2EC, that the parameters
for the withdrawal were selected.

The Terminal executes the payment (after user presented their credit card,
using the Terminal Backend).

The terminal initiate the fund transfer to the Exchange. The customer has to
authorize the payment by presenting his payment card and authorizing the
transaction with his PIN. The terminal processes the payment over the an
available connector configured on the Wallee Backend. Possible connectors
are Master Card, VISA, TWINT, Maestro, Post Finance, and others [3].

a) It presents the result to the user.

b) It tells the C2EC, that the payment was successful.

2.2.2 The C2EC

The C2EC component manages the withdrawal using a third party provider (e.g.
Wallee) and seeks guarantees in order to create a reserve containing digital cash
which can be withdrawn by the Wallet.

1.

C2EC retrieves setup request for withdrawal which will lead to generation
of the WOPID.

C2EC retrieves a long polling request for a WOPID (from the Terminal).
C2EC retrieves a request including a WOPID and a reserve public key.

C2EC validates the request and adds the key to the mapping. This estab-
lishes the WOPID to reserve public key mapping.

C2EC ends the long polling from the terminal.

C2EC receives confirmation request of the terminal.

2.2 Process

7. C2EC verifies the notification by asking the provider backend for confirma-
tion.

8. C2EC responds to an incoming transaction request of the Taler Wirewatch
of the Exchange with the reserve public key of the withdrawal (which will
eventually create a withdrawable reserve).

2.2.3 The Wallet

The Wallet must attest its presence to the terminal by registering a WOPID and
belonging reserve public key which will hold the digital cash that can eventually
be withdrawn by the Wallet.

1. The Wallet scans the QR Code (WOPID, Exchange information and amount)
on the Terminal

2. It creates a reserve key pair
3. The Wallet sends the reserve public key and the scanned WOPID to the C2EC

4. The Wallet can withdraw digital cash from the created reserve.

3 Architecture

3.1 C2EC

The C2EC (cashless2ecash) component is the central coordination component in
the cashless withdrawal of digital cash using Taler. It initializes the parameters
and mediates between the different stakeholders of a withdrawal, which finally
allows the customer to withdraw digital cash from a reserve owned by the Ex-
change. Therefore C2EC provides API which can be integrated and used by the
Terminal, Wallet and the Exchange.

The API of the C2EC (cashless2ecash) component handles the flow from the cre-
ation of a C2EC mapping to the creation of the reserve. For the integration into
the Taler ecosystem, C2EC must implement the Taler Wirewatch Gateway API [4]
and the Taler Bank Integration API [5].

The exact specification can be found in the official Taler docs repository as part
of the core specifications of the bank integration [5] and wire gateway [4]

3.1.12 C2EC Perspective

From the perspective of C2EC, the system looks as follows:
Is requested by the Taler Wallet to register a new wopid to reserve public key
mapping.
Is notified by the Terminal (e.g. a Wallee terminal) about a payment.

Attests a payment by requesting the payment proof at the Provider Backend
(e.g. Wallee backend)

Supplies the Taler Wire Gateway API that the respective Taler Exchange can
retrieve fresh transactions and create reserves which are then created and
can be withdrawn by the Taler Wallet.

3.1.2 Withdrawal-Operation state transitions

Basically C2EC mediates between the stakeholders of a withdrawal in order to
maintain the correct state of the withdrawal. Therefore it decides when a with-
drawal’s status can be transitioned. The diagram in figure 3.1 shows the transi-

3 Architecture

tions of states in which a withdrawal operation can be and which events will trig-
ger a transition. The term attestation in this context means, that the backend of
the provider was asked and the transaction was successfully processed (or not).
So if a transaction was successfully processed by the provider, the final state is
the success case confirmed, where the Exchange will create a reserve and allow
the withdrawal. If the attestation fails, thus the provider could not process the
transaction successfully, the failure case aborted, is reached as final state.

C2ECWithdrawalRegistration

Y

Selected

Attestation successful b Attestation not successful

Confirmed Aborted

Figure 3.1: Withdrawal Operation state transition diagram

3.1.3 Authentication

Terminals and the Exchange Wire Watch which authenticate against the C2EC
API using Basic-Auth [6] must provide their respective access token. Therefore,
they provide a Authorization: Basic $ACCESS_TOKEN header, where $ACCESS_TOKEN
is a basic-auth value configured by the operator of the exchange consisting of the

3.1 C2EC

terminal username and password. The header value must begin with the prefix
specified in RFC 7617 [6]: Basic.

3.1.4 The C2EC RESTful API

All components involved in the withdrawal process must interact with the C2EC
component. Therefore this section describes the various APl implemented in the
C2EC component. The description contains a short list of the consumers of the
respective API. Consumer in this context does not necessarily mean that data is
consumed but rather that the consumer uses the API to either gather data or send
reqeusts or data to C2EC.

Terminals API

That terminal can initiate and serve withdrawals in Taler, the Terminals API [7]
is implemented, which mirrors all actions of a terminal at the C2EC component.

Config
Method: GET
Endpoint: /config

Description: Return the protocol version and configuration information
about the C2EC API.

Response: HTTP status code 200 OK. The exchange responds with a TerminalsConfig
object.

Consumers: Terminals who want to use the API and therefore want to load
the config of the instance.

Withdrawals
Method: POST
Endpoint: /withdrawals
Description: Register a withdrawal operation at C2EC.

Response: HTTP status code 200 OK. The WOPID generated by C2EC. On
any other status code, terminate the withdrawal.

Consumers: Terminals who want to initiate a withdrawal operation.
Status of the withdrawal operation

Method: GET

Endpoint: /withdrawals/$WOPID

3 Architecture

Description: Query information about a withdrawal operation, identified
by the WOPID.

Response: HTTP status code 200 OK and body containing a BankWithdrawalOperationStatus
object or 404 Not found.

Consumers: The API is used by the Terminal and Taler Wallet to retrieve
information about the current state of the withdrawal operation. The API
allows long-polling and can therefore be used by the consumer to be up-
dated if the status of the withdrawal operation changes.

Check transaction
Method: POST
Endpoint: /withdrawals/$WOPID/check

Description: Notifies C2EC about an executed payment for a specific with-
drawal.

Request: The request body contains a WithdrawalConfirmationRequest
object.

Response: HTTP status code 204 No content, 400 Bad request, 404 Not found,
or 500 Internal Server error.

Consumers: The API is used by the Terminal to notify the C2EC component
that a payment was made and to give the C2EC component information
about the payment itself (e.g. the provider specific transaction identifier
or optional fees).

Fees

An important aspect of the withdrawal flow using third party providers are the
fees. When the withdrawal operation is not supplied by some exchanges as stan-
dard service, the provider possibly wants to charge fees to the customer in order
to make a profit. The provider might decide to delegate those fees to the customer
and therefore fees can be sent to the C2EC component through the check API spec-
ified above. It’s also possible that the service of withdrawing cash through a third
party is causing costs to the merchant, which it does not want to cover on their
own and therefore charge a fee to cover their costs. For example cashback is
causing a lot of fees to the merchants supporting it.

Die Handler zahlen jedoch fiir den Cashback-Service bereits Gebiihren
an die Banken. Aktuell sind es laut EHI im Schnitt 0,14 Prozent, ins-
gesamt waren das 2023 rund 17,2 Millionen Euro. [8, Crefeld, ZEIT]

Terminal abortion

Method: DELETE

3.1 C2EC

Endpoint: /withdrawals/$WOPID/abort
Description: Aborts the withdrawal specified by the WOPID.

Request: The request body contains a WithdrawalConfirmationRequest
object.

Response: HTTP status code 204 No content, 400 Bad request, 404 Not found,
or 500 Internal Server error.

Consumers: The API is used by the Terminal to notify the C2EC component
that a payment was made and to give the C2EC component information
about the payment itself (e.g. the provider specific transaction identifier
or optional fees).

Taler Bank Integration API

Withdrawals by the Wallet with a C2EC are based on withdrawal operations which
register a reserve public key at the C2EC component. The provider must first cre-
ate a unique identifier for the withdrawal operation (the WOPID) to interact with
the withdrawal operation (as described in sous-sous-section 3.1.4) and eventually
withdraw digital cash using the Wallet. The withdrawal operation API is an im-
plementation of the Bank Integration API [5].

Config
Method: GET
Endpoint: /config

Description: Return the protocol version and configuration information
about the C2EC API.

Response: HTTP status code 200 OK. The exchange responds with a C2ECConfig
object.

Consumers: Wallets who want to use the API and therefore want to load the
config of the instance.

3.1.5 Taler Wirewatch Gateway API

The Taler Wirewatch Gateway [4] must be implemented in order to capture in-
coming transactions and allow the withdrawal of digital cash. The specification
of the Taler Wirewatch Gateway can be found in the official Taler documenta-
tion [4].

The wirewatch gateway helps the Exchange communicate with the C2EC com-
ponent using a the API. It helps the Exchange to fetch guarantees, that a certain

3 Architecture

transaction went through and that the reserve can be created and withdrawn.
This will help C2EC to capture the transaction of the Terminal Backend to the Ex-
change’s account and therefore allow the withdrawal by the customer. Therefore
the wirewatch gateway API is implemented as part of C2EC. When the wirewatch
gateway can get the proof, that a transaction was successfully processed, the ex-
change will create a reserve with the corresponding reserve public key.

For C2EC not all endpoints of the Wire Gateway API are needed. Therefore the
endoints which are not needed will be implemented but always return http status
code 400 with explanatory error details as specified by the specification.

Config
Method: GET
Endpoint: /config

Description: Returns a WireConfig object with configuration information
about the Wirewatch Gateway API of the C2EC component.

Response: HTTP status code 200 OK and the wirewatch gateway configura-
tion

Consumers: Components who want to use the API and therefore want to
load the config of the instance.

Transfer
Method: POST
Endpoint: /transfer

Description: Allows the Exchange to make a transaction. This APIis used in
case of a refund. The transfer will therefore be pointed towards a provider
specific payto-address (payto://wallee-transaction in case of Wallee).

Request: The request contains a TransferRequest object.

Response: HTTP status code 200 OK. The exchange responds with a TransferResponse
object.

Consumers: The Exchange Wirewatch who wants to transfer money using
C2EC.

History of incoming transactions
Method: GET
Endpoint: /history/incoming

Description: Returns a list of transactions which were recently created
in the C2EC component. In case of C2EC, this are withdrawal operations
which are confirmed and a reserve can therefore be created by the exchange.

3.1 C2EC

Response: HTTP status code 200 OK. The exchange responds with a C2ECConfig
object.

Consumers: The Exchange Wirewatch who will create the reserve which
then can be withdrawn by the Taler Wallet.

History of outgoing transactions
Method: GET
Endpoint: /history/outgoing

Description: Returns a list of transfers which were executed by the C2EC
component.

Response: HTTP status code 200 OK and a list of outgoing transfers.

Consumers: The Exchange Wirewatch who will create the reserve which
then can be withdrawn by the Taler Wallet.

3.1.6 C2EC Entities

The entities of the C2EC component must track two different aspects. The first is
the mapping of a nonce (the WOPID) to a reserve public key to enable withdrawals
and the second aspect is the authentication and authorization of terminals allow-
ing withdrawals owned by terminal providers like Wallee.

The detailed explanation and ERD can be found in section 4.3.

Terminal Provider

Entity displayed in figure 4.11 describing providers of C2EC compliant terminals.
The name of the provider is important, because it decides which flow shall be
taken in order to attest the payment. For example will the name Wallee signal
the terminal provider to trigger the attestation flow of Wallee once the payment
notification for the withdrawal reaches C2EC.

Terminal

Entity displayed in figure 4.12 contains information about terminals of providers.
This includes the provider they belong to and an access-token, which is generated
by the operator of the C2EC component. It allows authenticating the terminal. A
terminal belongs to one terminal provider.

3 Architecture

Withdrawal

Entity displayed in figure 4.13 represents the withdrawal processes initiated by
terminals. This table therefore contains information about the withdrawal like
the amount, which terminal the withdrawal was initiated from and which reserve
public key is used to create a reserve in the Exchange.

Relationships

The structure of the three entities forms a tree which is rooted at the terminal
provider. Each provider can have many terminals and each terminal can have
many withdrawals. The reverse does not apply. A withdrawal does always belong
to exactly one terminal and a terminal is always linked to exactly one provider.
These relations are installed by using foreign keys, which link the sub-entities
(Terminal and Withdrawal) to their corresponding owners (Provider and Termi-
nal). A provider owns its terminals and a terminal owns its Withdrawals.

Figure 3.2: Relationships of the entities.

3.2 Payto wallee-transaction extension

RFC 8905 [9] specifies a URI scheme (complying with RFC 3986 [10]), which al-
lows to address a creditor with theoretically any protocol that can be used to pay
someone (such as IBAN, BIC etc.) in a standardized way. Therefore it introduces
a registry which holds the specific official values of the standard. The registry is
supervised by the GANA (GNUnet Assigned Numbers Authority) [11].

In case a refund becomes necessary, which might occur if a credit card transac-
tion does not succeed, a new target type called wallee-transaction is registered. It
takes a transaction identifier as target identifier which identifies the transaction
for which a refund process shall be triggered. The idea is that the handler of the
payto URI is able to deduct the transaction from the payto-uri and trigger the
refund process.

3.3 Taler Wallet

3.2.12 Payto refund using Wallee

Wallee allows to trigger refunds using the Refund Service of the Wallee backend.
The service allows to trigger a refund given a transaction identifier. Therefore
the C2EC component can trigger the refund using the refund service if needed.
The payto-uri retrieved as debit account by the wire gateway API, is leveraged to
delegate the refund process to the Wallee Backend using the Refund Service and
parsing the transaction identifier of the payto-uri.

3.2.2 Extensibility

The flow is extensible and other providers like Wallee might be added. They must
therefore register their own refund payto-uri (if needed) with the GANA and then
the refund process can be implemented likewise.

3.3 Taler Wallet

The Taler Wallet is responsible to create a reserve key pair which will allow him
the withdrawal using the Exchange using the reserve public key of the key pair.

The reserve public key is created by the Taler Wallet and sent to C2EC to establish
the mapping between the wopid and the reserve public key. The reserve public
key is used to eventually create a reserve at the exchange which contains the dig-
ital cash. The Taler Wallet can then withdraw the digital cash from this reserve
using the withdrawal process of the wallet [12]. The process for the case of C2EC
is slightly different from the present processes because the requests to the Bank-
Integration API contain different properties than the currently supported. This
means the Taler Wallet must be extended in order to allow the withdrawal using
C2EC.

3.3.1 Taler Wallet Perspective
From the perspective of the Wallet, the system looks as follows:

Uses the QR Code displayed on the Wallee Terminal to identify nonce and
read exchange information.

Uses the Bank-Integration API of C2EC to register the reserve public key and
retrieve information about the confirmation of the withdrawal.

Uses the Exchange to withdraw the digital cash.

3 Architecture

3.4 Wallee

Wallee offers level 1 PCI-DSS [13] compliant payment processes to its customers
[14] and allows an easy integration of its process into various kinds of merchant
systems (e.g. websites, terminals, etc).

3.4.12 Wallee Perspective
From the perspective of Wallee, the system looks as follows:

Uses the Bank-Integration API of C2EC to get notified about parameter se-
lection and inform C2EC about the payment.

Needs the credit card of the customer in order to execute the payment.

Uses the Wallee Backend to execute the payment using the supplied Android
Till SDK sous-sous-section 3.4.2

3.4.2 Wallee Terminal

Wallee Terminals are based on android and run a modified, certified android
version as operating system. Thus they can be used for payments and establish
strong authentication in a trusted way.

Withdrawal Operation Identifier

The Withdrawal-OPeration-IDentifier (WOPID) is leveraged by all components
to establish the connection to an entry in the withdrawal table (figure 4.13) of
C2EC. The WOPID is therefore crucial and every participant of the withdrawal
must eventually gain knowledge about the value of the WOPID in order to pro-
cess the withdrawal. The WOPID is created by the Terminal and advertised to
the Exchange by requesting notification, when the reserve public key belonging
to the WOPID was received and the mapping could be created. The Wallet gains
the WOPID value when scanning the QR code at the Terminal and then sends the
WOPID (and the other parameters) to the Exchange.

Creation of the WOPID

The creation of the WOPID is a crucial step in the process. The WOPID must be
cryptographically sound. Therefore a cryptographically secure PRNG must be
leveraged. Otherwise a WOPID might be guessed by an attacker. This would open
the door for attacks as described in sous-section 4.5.1.

3.4 Wallee

Wallee Till API

Wallee supplies the Wallee Android Till SDK [15] which allows the implementa-
tion of custom application for their android based terminals. The API facilitates
the integration with the Wallee backend and using it to create payments.

3.4.3 Wallee Backend and API

Terminals of Wallee are used to communicate with the customer at the shop
of the merchant. The payment and processing of the transaction is run on the
Wallee Backend. The Wallee Backend is used by C2EC to attest a payment, when
a C2ECPaymentNotification message reaches C2EC. The Wallee Backend is also
used in order to do refunds, in case something goes wrong during the payment.
Therefore the API of Wallee Backend is used to collect this information or process
a refund. Wallee structures its API using Services. For C2EC this means that the
Transaction Service [16] and Refund Service [17] must be implemented.

Transaction Service

The Transaction Service is used by C2EC to attest a transaction was successfully
processed and the reserve can be created by the Exchange. Therefore the GET
/api/transaction/read API of the Transaction Service is used. If the returned
transaction is in state fulfill, the transaction can be stored as completion_proof for
the withdrawal as specified in the withdrawal table figure 4.13 and the withdrawal
status can be transitioned to confirmed. This will tell the Exchange to create the
reserve which can eventually be withdrawn by the wallet.

Refund Service

The Refund Service is used by C2EC in case of a refund. Therefore the C2EC gets
notified by the Exchange that the transaction shall be refunded. To trigger the
refund process at the Wallee backend, the POST /api/refund/refund is used.

Wallee Transaction State

In order to decide if a transaction was successful, the states of a transaction within
Wallee must be mapped to the world of Taler. This means that a reserve shall
only be created, if the transaction is in a state which allows Taler not having any
liabilities regarding the transaction and that Wallee could process the payment
successfully. The documentation states that only in the transaction state fulfill,
the delivery of the goods (in case of withdrawal this means, that the reserve can

3 Architecture

be created) shall be started [18]. For the withdrawal this means, that the only in-
teresting state for fulfillment is the fulfill state. Every other state means, that the
transaction was not successful and the reserve shall not be created.

4 Implementation

The implementation is documented per component (C2EC, Terminal, Database).
This means that each feature is documented from the perspective of the respec-
tive component in another section. Remarkable interactions with other compo-
nents are linked with and shall support the reader to jump between the different
components explanations interacting with each other. The reader is therefore ad-
vised to read the document on a digital device for easier reading. Also diagrams
might be hard to see when reading the documentation from a hard copy.

4.2 C2EC

This section treats the implementation of the C2EC component. C2EC is the core

of the withdrawal using a third party. Besides different API for different client
types such as the Terminal, Wallet or the Exchange, it must also deal with back-
ground tasks as described in sous-section 4.1.3. The component also implements
aframework to extend the application to accept withdrawals through other providers
than Wallee. In sous-section 4.1.4 the requirements for the integration of other
providers is explained and shown at the example of Wallee.

4.1.12 Endpoints

The diagram in figure 4.1 shows the perspective of the C2EC component in the
withdrawal flow. The numbers in brackets represent can be mapped to the dia-
gram in figure 2.3 of the process description in the architecture chapter at sec-
tion 2.2. The requests represented in figure 4.1 only show the requests of the
succesful path. In case of an error in the process, various other endpoints are
implemented as described per client type in sous-section 4.1.1

The implementation of the terminals API can be found in sous-sous-section 4.1.2,
the bank integration API is documented in sous-sous-section 4.1.2 and the wire
gateway API implementation is documented in sous-sous-section 4.1.2

Decoupling steps using Events

The concept of publishers and subscribers is used heavily in the implementation.
It allows decoupling different steps of the process and allows different steps to

4 Implementation

CIEC

wallet ‘Ta\er‘rermina\s AP\l ‘Ta\erﬁamk—\ntegration AP\l ‘Ta\erwirsﬁatswayAP\l |Ta\erwirewatch (Exchange)
. . - ; . -
| 1 | |
] 0) !
i ! !

1 (0) POST pithdrawals
1 Withdrawal Request 1D
1 (1) GET jwithdrawals/[Wo

| Withdrawal Operation Status

i
| (3) POST pwit} | tion/[WOPID]

|_ Withdrawal Dperation Pgrameter Registration
i

i (8) GET /ww(‘hdrawa\s/[wo ID]/chec!

l< response(no content o sut s) |
! storyiincoming !

story Data >

! ! g
! ! ! !
| | i |

Wallet ‘Ta\erTermina\S AP\l ‘Ta\erﬁamk—\ntegraﬂon AP\l ‘Ta\erWireGatewayAp\' |Ta\erwirewatch (Exchamge)l

Figure 4.1: C2EC and its interactions with various components

be handled and executed in their own processes. Publishers can also be called
notifiers or similar, while the subscriber can also be called listener or similar.

The communication of publishers and subscribers happends through channels.
A publisher will publish to a certain channel when a defined state is reached. The
subscriber who is subscribed or listens to this channel will capture the message
sent through the channel by the publisher and start processing it.

The publish-subscribe scheme enables loose coupling and therefore helps to im-
prove the performance of individual processes, because they cannot be hindered
by others.

To decouple different steps in the withdrawal process an event based architecture
isimplemented. This means that every write action to the database will represent
an operation which will trigger an event. The applications processes are listening
to those events. The consumer of the API can wait to be notified by the API, by
registering to those events via a long polling request at the API. This long-polling
will then wait until the listener receives the event and return the received event
to the consumer.

Following a short list of events and from whom they are triggered and who listens
to them:

Registration of the withdrawal operation parameters.
- Registered by: Wallet
- Listened by: Terminal
Payment confirmation request sent to the Bank-Integration API of C2EC.
- Registered by: Terminal
- Listened by: Attestor

Payment attestation success will send a withdrawal operation status update
event.

4.1 C2EC

- Registered by: Attestor

- Listened by: Consumers (via Bank-Integration-API)
Payment attestation failure will trigger a retry event.

- Registered by: Attestor

- Listened by: Retrier
Transfers which represent refunds in C2EC.

- Registered by: Exchange (through the wire gateway API)

- Listened by: Transfer

4.1.2 Abortion Handling

A withdrawal might be aborted through the terminal or the wallet. These cases
are implemented through the respective abort endpoint in the bank-integration
API figure 4.1.2 and terminals API figure 4.1.2. If in doubt whether to abort the
withdrawal or not, it should be aborted. In case of abortion and failure cases,
the security of the money is weighted higher than the user-experience. If the
user must restart the withdrawal in case of a failure in the process, it is less se-
vere than opening possible security holes by somehow processing the withdrawal
anyway. On the other hand the system must be as stable as possible to make this
error cases very rare. If they occur too often, the customer might not use the
technology and therefore would make it worthless.

The withdrawal can only be aborted, when it is not yet confirmed by the attesta-
tion process (described in sous-sous-section 4.1.3).

4 Implementation

Terminal API
This section describes the Implementation of the Terminal API [7].
The C2EC terminal API implements following endpoints:

GET /config

POST /withdrawals

GET /withdrawals/[WOPID]

GET /withdrawals/[WOPID]/check

The C2EC component does not implement the /quotas/* endpoints, since those
are not relevant for the withdrawal using a payment terminal.

Terminal Taler Terminals API

| GET fconfig |

\ _ Configuration Data |
€

| (0) POST jwithdrawals

Withdrawal Request ID

(1) GET jwithdrawals/[WOPID]

Withdrawal Operation Status

Terminal Taler Terminals API

Figure 4.2: Terminals APl endpoints

Configuration (/config)

This endpoint returns the configuration for the respective terminal. To support
multi-provider setup, the respective provider is read from the basic-auth creden-
tials sous-section 4.5.4. This means that the configuration response will be dif-
ferent when requesting the endpoint using a terminal from provider A than re-
questing from a terminal of provider B.

Setting up a withdrawal (/withdrawals)

The setup of a withdrawal generates the WOPID which is a cryptographically sound
32-Byte nonce and will be encoded using the base 32 crockford encoding [19]. The

4.1 C2EC

cryptographical strength is crucial, because otherwise risks as described in sous-
section 4.5.1 can materialise themself.

Terminals are advised to always set the amount field of the request, if they can
define a fixed amount. This will force the Wallet to withdraw this exact amount
and cannot be overwritten by it. The suggested amount field should only be used
when the terminal cannot know how much money will be withdrawn (such as an
ATM).

Status of withdrawal (/withdrawals/[WOPID])

When the terminal setup the withdrawal successful and received the WOPID, the
terminal wants to wait before effectively authorizing the transaction until the
Wallet has registered the parameters for the withdrawal. This endpoint allows
this and supports long-polling such that the terminal may directly ask for the sta-
tus after setting up the withdrawal. The endpoint is an exact replication of the
Bank-Integration API status endpoint as described in figure 4.1.2

Trigger Attestation (/withdrawals/[WOPID]/check)

Once the terminal authorized the transaction at the providers backend and re-
ceived the notification, that the transaction was processed at the providers back-
end, the terminal can trigger the attestation of the transaction by calling this end-
point. This is also the point where the terminal can know the fees of the provider
(if any) and send them to the C2EC component.

Trigger Attestation (/withdrawals/[WOPID]/abort)

As long as the withdrawal was not authorized, it can be aborted by the terminal
through this API. If the withdrawal was already authorized, the abortion will not
work and the refund process might be needed to gain back the authorized money.

Taler Integration (/taler-integration/*)

Under the /taler-integration/ sub-path the Bank-Integration APIis reachable. End-
points under this subpath are used by the Wallet to register parameters of a with-
drawal and ask for the status of a withdrawal operation. The endpoints of the
Bank-Integration API are described in sous-sous-section 4.1.2

Taler Integration (/taler-wire-gateway/*)

The sub-path /taler-wire-gateway/ defines the location of the wire-gateway API
used by the Taler Wirewatch component of the Exchange. It is used by the ex-
change to allow creation of withdrawable reserves. Therefore the wire gateway
API was implemented as described in section sous-sous-section 4.1.2

4 Implementation

Bank-Integration API
The Bank Integration API was implemented according to the specification [5].
Namely this are the following endpoints:

GET /config

GET /withdrawal-operation/[WOPID]

POST /withdrawal-operation/[WOPID]

POST /withdrawal-operation/[WOPID]/abort

Taler Bank-Integration API Wallet

:J GET Jjconfig |

i Configuration Data

el A >
I{ GET jwithdrawal-operation/[WOPID] |
| Withdrawal Operation Status >!
:__{ (3) POST jwithdrawal-operation/[WOPID] X
i_wi_t_hdrawa_'_F?_P_e_rfét_@?ri_F’_Tc!r.arr?_e_t?_r_ﬁ?s!i_s_t_rat_??r‘__ |
E_' POST jwithdrawal-operation/[WOPID]/abort E
| Abort Withdrawal Operation ,5
Taler Bank-Integration AP Wallet

Figure 4.3: Bank-Integration APl endpoints

Configuration (/config)

The configuration of the Bank-Integration endpoint is important for Wallets to
check their compatibility and readiness. Also the currency specification can be
retrieved by this endpoint, which allows the

Status of withdrawal (/withdrawal-operation/[WOPID])

The /withdrawal-operation/[WOPID] endpoint returns the status of withdrawal op-
eration. The endpoint enables long-polling through request parameters. This
allows clients (the Wallet) to ask the Bank about a status before the status was
reached. C2EC will then simply keep the connection open and either send a re-
spond when a status change was registered or when the long-poll time exceeds.

Registering withdrawal parameters (/withdrawal-operation/[WOPID])

This endpoint is used by the Wallet to register the reserve public key generated
by the Wallet, which will eventually hold the digital cash at the Exchange. This

4.1 C2EC

reserve public key is unique and the API will return a conflict response if a with-
drawal with the reserve public key specified in the request already exists. This is
also the case if a mapping for the given WOPID was already created.

Aborting a withdrawal (/withdrawal-operation/[WOPID]/abort)

This endpoint simply allows the abortion of the withdrawal. This will change the
status of the withdrawal to the aborted state.

4 Implementation

Wire-Gateway API

The Wire-Gateway API [4] delivers the transaction history to the exchange which
will create reserves for the specific public keys and therefore allow the customers
to finally withdraw the digital cash using their wallet. Additionally it allows the
Exchange to trigger transfers and keep track of executed transfers.

Following endpoints are implemented by the wire gateway API implementation:
GET /config
GET /history/incoming
POST /transfer

GET /history/outgoing

Taler Wire-Gateway API Taler Wirewatch (Exchange)
I I

:_' GET fconfig |

e

| Configuration
[}

(11) GET /historyjincoming

GET /historyfoutgoing

| Outgoing History Data . >

Taler Wire-Gateway AP Taler Wirewatch (Exchange)

Figure 4.4: Wire-Gateway API endpoints

Configuration (/config)

The wire gateway configuration is used by the Exchange wirewatch component
to check the compatibility of the component. This includes the check of the sup-
ported currency and the version.

Incoming transactions (/history/incoming)

The C2EC component needs to return incoming transactions by providers through
the /history/incoming endpoint. This will eventually create the reserve at the Ex-

change and therefore allow the customer to withdraw the digital cash using their

Wallet. The

4.1 C2EC

Transfers (/transfer)

The specification [4] requires the implementor of the API to keep track of incom-
ing transfer requests. In order to guarantee the idempotence of the API, the im-
plementation keeps track of all transfers in the database table transfers. It stores
the transfer data in the database. If a request with the same UID is sent to the
transfer-API, first it is checked that the incoming request is exactly the same as
the previous one by comparing the request to the values stored in the database.
Only if the values are the same, the transfer request is processed further. Other-
wise the API responds with a conflict response.

Outgoing transactions (/history/outgoing)

The /history/outgoing endpoint works in the same fashion as the /history/incoming
endpoint. But it will not return a list of confirmed withdrawals, but rather the list
of successfully executed transfers registered using the /transfer endpoint.

4 Implementation

4.1.3 Processes

This section describes the different processes running in the background transi-
tioning the state of a withdrawal. These transitions are triggered by the because
of requests received by one of the components through the respective API.

Attestation

The attestation of a transaction is crucial, since this is the action which allows the
exchange to create a reserve and can proof to the provider and customer, that the
transaction was successful and therefore can put the liability for the money on
the provider. The attestation process is implemented using a provider client in-
terface and a provider transaction interface. This allows the process to be the
same for each individual provider and new providers can be added easily by pro-
viding a specific implementation of the interfaces.

Attestation Retrier

If the attestation fails, but the transaction is not in the refund state as specified
by the provider’s transaction, the problem could simply be that the service was
not available or the transaction was not yet processed by the provider’s backend.
In order to not need to abort the transaction directly and give the system some
robustness, a retry mechanism was implemented which allows retrying the at-
testation step. This retry mechanism is run in a separate process started through
the main process.

The retry will only be executed, when the transaction attestation failed because
the transaction was not in the abort state or if for some reason the transaction
information could not have been retrieved.

Transfer Retrier

The Exchange may send a transfer request to the C2EC component, due to the
closing of a reserve or an issue. This will trigger a refund process at the providers
backend. This refund process may fail and therefore like in the attestation case to
increase the robustness of the system, a retry mechanism is implemented, which
will retry the transfer before ultimatively failing the transfer.

Randomizing delays due to self synchronization

4.1 C2EC

4.1.4 Providers

This section treats the integration of providers into the system by explaining the
generic structures and showing how they were implemented for Wallee. It is also
explained, what must be done in order to integrate other third parties into the
system therefore showing the extensibility of the system.

Provider Client

The provider client interface is called by the attestation process depending on the
notification received by the database upon receiving a payment notification of the
provider’s terminal. The specific provider clients are registered at the startup of
the component and the attestation process will delegate the information gather-
ing to the specific client, based on the notification received by the database.

The provider client interface defines three functions:

1. SetupClient: The setup function is called by the startup of the application
and used to initialize the client. Here it makes sense to check that every-
thing needed for the specific client is in place and that properties like access
credentials are available.

2. GetTransaction: This function is used by the attestation process to retrieve
the transaction of the provider system. It takes the transaction identifier
supplied with the withdrawal confirmation request and loads the informa-
tion about the transaction. Based on this information the decision to con-
firm or abort the transaction is done.

3. Refund: Since the transaction of the money itself is done by the provider,
also refunds will be unwind by the provider. This functions mean is to trig-
ger this refund transaction at the provider.

Provider Transaction

Since the attestation process is implemented to support any provider, also the
transaction received by the provider clients GetTransaction function is abstracted
using an interface. This interface must be implemented by any provider transac-
tion which belongs to a specific provider client.

The provider client interface defines following functions:

1. AllowWithdrawal: This function shall return true, when the transaction re-
ceived by the provider enters a positive final state. This means that the
provider accepted the transaction and could process it. This means that
the Exchange can create the reserve and allow the customer the withdrawal
of the digital cash.

4 Implementation

2. AbortWithdrawal: It doesn’t mean that if a transaction does not allow to
do the withdrawal, that the transaction shall be cancelled immediately. It
could also be that the transaction was not yet processed by the provider. In
this case we need means to check if the provider transaction is in an abort
state if it is not ready for withdrawal, before aborting it. AbortWithdrawal
shall therefore answer the question if the provider transaction is in a nega-
tive final state, which means the transaction is to be aborted.

3. Bytes: This function shall return a byte level representation of the trans-
action which will be used as proof of the transaction and stored in the ex-
changes database.

Wallee Client

The Wallee client is the first implementation of the provider client interface and
allows the attestation of transactions using the Wallee backend system. The back-
end of Wallee provides a ReST-API to their customers, which allows them to re-
quest information about payments, refunds and so on. To access the API, the
consumer must authenticate themself to Wallee by using their own authentica-
tion token as explained in sous-section 4.5.3.

As indicated by the provider client interface, two services of the Wallee backend
are leveraged:

Transaction service: The transaction service aims to provide information
about a transaction registered using a Wallee terminal.

Refund service: The refund service allows to trigger a refund for a given
transaction using the transaction identifier. The refund will then be exe-
cuted by the Wallee backend, back to the Customer.

To integrate Wallee as provider into C2EC, the provider client interface as de-
scribed in sous-sous-section 4.1.4 was implemented. The transaction received by
Wallee’s transaction service implement the provider transaction interface as de-
scribed in sous-sous-section 4.1.4.

Simulation Client

Additionally to the Wallee Client a Simulation Client was implemented which can
be used for testing. It allows end-to-end tests of the C2EC component by stubbing
the actions performed against a provider and returning accurate results.

4.1 C2EC

Adding a new provider

To add a new provider, the client- and transaction-interfaces must be implemented
as described in sous-sous-section 4.1.4 and sous-sous-section 4.1.4. The SetupClient
function of the client interface must make sure to register itself to the global map
of registered providers. Additionally, to the newly added provider implementa-
tion, the provider must also be registered in the database (section 4.6 describes
how to achieve this). When the client adds itself to the registered providers clients,
the application will load the provider client at startup of C2EC. If C2EC fails to find
the specified provider in the database, it won't start. This behaviour makes sure,
that only needed providers are running and that if a new provider was added, it is
effectively registered and configured correctly (the setup function of the provider
interface is responsible to check the provider specific configuration and do readi-
ness or liveness checks if needed). If the new added provider requires a new
payto target type, a new entry is to be created with the GANA in order to prevent
conflicts in the future.

4 Implementation

4.2 Wallee POS Terminal

4.2.12 Withdrawal flow

The process (figure 4.5) starts by first selecting the exchange and loading the con-
figuration of the respective terminals-api. When this is successful, we will switch
to the amount screen. Otherwise the withdrawal will be terminated.

On the amount screen the terminal operator enters the amount to withdraw and
clicks on the "withdraw" button. If the operator clicks on the abort button, the
withdrawal is terminated. When the user clicks the "withdraw" button, the ter-
minal sets up the withdrawal at the exchanges terminals api and retrieves the
wopid. When this step is unsuccessful, the withdrawal operation is aborted and
terminated. Otherwise the terminal navigates to the register parameters screen.

In the register parameters screen, a QR code is displayed, which must be scanned
by the withdrawer using their wallet app. The Terminal starts a long polling the
terminals api to be notified, when the withdrawal operation is in state 'selected’
which means, the wallet has successfully registered its withdrawal parameters.
In this case the terminal application changes to the authorize payment screen in
which the withdrawing person must authorize the transaction using their credit
card. In any other case, the withdrawal operation is aborted and terminated.
When the terminals backend sends the response of authorization, it sends the
terminals api the check notification which tells the terminals api, that it can ver-
ify the payment at the providers backend now.

If this request is successful, the terminals shows a summary of the transaction
and a button to leave the withdrawal activity. The wallet of the user should even-
tually be able to withdraw the amount authorized from the exchange.

Figure 4.5: The flow of the terminal app

4.2.2 Screens

The Application is implemented using jetpack compose [20] and each of the screens
described in sous-section 4.2.1is implemented as composable screen. This allows

4.2 Wallee POS Terminal

to handle the entire withdrawal flow in one single activity and therefore makes
state handling easier, because the state of the withdrawal can be bound to the
activity and also will be removed when the activity finishes or is terminated due
to an error. It also prevents illegal states and that different withdrawals interfere
each other. The state is maintained in a view model as described by androids
documentation [21]. The withdrawal activity handles the lifecycle of the view
model instance and initializes the routing of the screens using androids naviga-
tion controller as documented [22]. The navigation integration of android allows
the declarative definition of the in-app routing and is defined at the creation of
the withdrawal activity.

Choose Exchange Screen

On the screen figure 4.6 the user chooses the exchange to withdraw from. This al-
lows the terminal to support withdrawals from various exchanges and therefore
enhances the flexibility. When the user selected the exchange, the configuration
of the exchange is loaded. This will define the currency of the withdrawal and
tell the terminal where to reach the Terminals API of the C2EC server.

Choose the exchange to withdraw from

KUDOS Exchange (BFH)

CHF Exchange (PostFinance)

EUR Exchange (UBS)

Figure 4.6: Terminal: Select the exchange to withdraw from

Amount Screen

The amount screen in figure 4.7 is used to ask the user what amount they would
like to withdraw. When the amount was entered and the withdraw-button was
clicked, the terminal sets up the withdrawal using the Terminal API. The Ter-
minals API will send the WOPID to the terminal, which allows the terminal to
generate the taler withdraw URI according to [23].

4 Implementation

Withdrawal amount

15.0

Figure 4.7: Terminal: Enter the desired amount to withdraw

Parameter Registration Screen

This screen in figure 4.8 displays a QR code which contains the taler withdraw URI
of the withdrawal. This allows the customer to scan it using their Taler Wallet
app and register the parameters for the withdrawal (namely the reserve public
key). The withdrawal can be aborted on the screen. This step is important to
make sure, that the customer has a working Taler Wallet installed and allows
them to accept the terms of service for the respective exchange, if they did not
yet registered the exchange on their wallet.

Authorization Screen

The authorization screen will use Wallee’s Android Till SDK [15] to authorize the
amount at the Wallee backend. The response handler of the SDK will delegate
the response to the implementation of the terminal, which allows triggering the
attestation of the payment by C2EC using the Terminals API. When the authoriza-
tion process is not started and the transaction therefore is created at the backend
system of Wallee, the screen figure 4.9 will be displayed. This signals the user,
that the payment authorization must still be done and is about to be started. The
user can abort the transaction at this point.

When the transaction was processed successfully, the summary of the transac-
tion will be displayed on this screen as can be seen in figure 4.10.

4.2.3 Abortion Handling

During the flow various steps can fail or lead to the abortion of the withdrawal.
Therefore these edge cases must be considered and handled the right way. Gen-
erally we can split the abortion handling on the terminal side into two different
phases. The implementation of the Wallee POS Terminal therefore follows a strict

4.2 Wallee POS Terminal

Scan the QR Code with your Taler Wallet to
register the withdrawal parameters

Figure 4.8: Terminal: Register withdrawal parameters

abort on failure strategy. This means that if anything goes wrong the withdrawal
is aborted and must be started again. Generally the abortion handling strategy
is to abort the withdrawal when in doubt and values security (of the money) over
user-experience.

Abortion before authorization

The first phase are abortions before the payment is authorized. In this case the
withdrawal operation can be aborted using the abort operation described in sous-
sous-section 4.1.2. Every problem which cannot be recovered or not further pro-
cessed must therefore lead to the abortion of the withdrawal.

4 Implementation

Authorizing transaction...

Figure 4.9: Terminal: Waiting to start the authorization of the android till SDK

Abortion after authorization

When the transaction was authorized, the process is a little bit more complex.
The customer has two possibilities. The first one is automatically covered with
the given implementation, while the second is not guaranteed and needs manual
interaction of the customer with the Taler Exchange operator.

Wait for automatic refund due to closing of the reserve The Taler Exchange con-
figures a duration for which a reserve is kept open (and therefore can be with-
drawn). When the configured duration exceeds the reserve is closed autmatically
and the money transferred back to the customer. In the case of Wallee payments,
this is realized through a refund request at the provider backend upon receiving a
transfer request at the wire-gateway API sous-sous-section 4.1.2 of the C2EC com-
ponent.

Manual request to refund money Depending on the operator of the Taler Ex-
change it might be possible to somehow manually trigger a refund and get back
the money spent for the withdrawal.

4.3 Database

Amount authorized

Summary

Withdrawable Amount: 75.50 CHF
Fees: 0.30 CHF
Withdrawal Operation ID (QR Code):

Figure 4.10: Terminal: Payment authorized

4.3 Database

The Database is implemented using Postgresql. This database is also used by
other Taler components and therefore is a good fit.

Besides the standard SQL features to insert, update and select data, Postgres also
comes with handy features like LISTEN and NOTIFY.

This allows the implementation of neat pub/sub models allowing better perfor-
mance, separation of concerns and loose coupling.

4 Implementation

4.3.12 Schema

For the C2EC component the schema c2ec is created. It holds tables to store
the entities described in sous-section 3.1.6. Additionally it contains the table for
transfers which is used to capture refunds requested by the Exchange.

Terminal Provider

The terminal provider table holds information about the provider. It contains
the information, which payto target type is used to make transactions by the
provider. This information isneeded in the refund case where the Exchange sends
atransfer request. It also holds information about the attestation endpoint. Namely
the base url and the credentials to authenticate the attestation process against
the API of the providers backend. When adding the provider using the cli, the
credentials are formatted in the correct way and also encrypted.

terminal [table]
provider [table] terminal_id
provider_id int8[19] O] provider_id
name text[2147483647]
payto_target_type text[2147483647] <1 | | 1>
backend_base_url text[2147483647]
backend_credentials text[2147483647]
<0 1>

Generated by SchemaSpy

Figure 4.11: Terminal Provider Table

Terminal

Each Terminal must register before withdrawals are possible using the termi-
nal. Therefore this table holds the information needed for withdrawals. A termi-
nal can be deactivated by setting the active field accordingly. The terminals are
authenticated using an access token generated during the registration process.
Like adding the provider through the cli also the terminal access tokens will be
encrypted using a PBKDF (namely argon2). The terminal is linked through the
provider_id as foreign key to its provider. The description field can hold any in-
formation about the terminal which might be useful to the operator and help
identify the device (location, device identifier, etc.). The operator will be asked
for the respective values, when using the cli for the registration of the terminal.

4.3 Database

withdrawal [table]
withdrawal_row_id
request_uid
terminal [table] wopid
terminal_id int8[19] ——O« terminal_id
access_token |text[2147483647]
active bool[1] =1 I \
provider [table] description text[2147483647]
provider_id ——od | provider_id int8[19]
name <1 1>

payto_target_type

| I 1>

Generated by SchemaSpy

Figure 4.12: Terminal Table

Withdrawal

The withdrawal table is the heart of the application as it captures the informa-
tion and state for each withdrawal. besides the obvious fields like amount, wopid,
reserve_pub_key or terminal_fees (which all are directly related to one of the API
calls described in sous-sous-section 4.1.2 or sous-sous-section 4.1.2), the table
also holds the terminal_id which identifies the terminal which initiated the with-
drawal. The registration_ts indicates, when the parameters of a withdrawal were
registered. The field is mainly thought for manual problem analysis and has no
direct functional impact. The withdrawal_status holds the current state of the
withdrawal and is transitioned as described in sous-section 3.1.2. The request_uid
is a unqiue identifier supplied by the terminal setting up a withdrawal. It is used
to support idempotence of the API.

withdrawal [table]
withdrawal_row_id int8[19]
request_uid text[2147483647]
wopid bytea[2147483647]
reserve_pub_key bytea[2147483647]
registration_ts int8[19]
amount "c2ec"."taler_amount_currency”[2147483647]
suggested_amount "c2ec"."taler_amount _currency”[2147483647]
terminal_fees "c2ec"."taler_amount_currency”[2147483647]
terminal [table] withdrawal_status “c2ec"."withdrawal_operation _status"[21474836471
terminal_id ——-o0+ terminal_id int8[19]
provider_id provider_transaction_id text[2147483647]
- last_retry _ts int8[19]
<1 | | 1> retry_counter int4[10]
completion_proof bytea[2147483647]1
<1 0>

Generated by SchemaSpy

Figure 4.13: Withdrawal Table

4 Implementation

Transfers

The transfer table is maintained through the transfer endpoint as described in
sous-sous-section 4.1.2. A transfer in case of C2EC is constrained with a refund
activity. The besides the fields indicated by the Wire Gateway API request_uid,
row_id, amount, exchange_base_url, wtid, credit_account and transfer_ts which are
all used to store information about the transfer, the fields transfer_status and re-
tries are stored which allow retry behavior and help to make the system more
robust. The credit_account is the refund payto URI which allows the refund pro-
cess to be provider specific through a custom payto target type.

transfer [table]
request_uid bytea[2147483647]
row_id int8[19]
amount "c2ec"."taler_amount_currency"[2147483647]

exchange_base_url text[2147483647]

wtid text[2147483647]
credit_account text[2147483647]
transfer_ts int8[19]
transfer_status int2[5]
retries int2[5]
<0 0>

Generated by SchemaSpy

Figure 4.14: Transfer Table

Relationships

The relationships of the tables are created as described in sous-sous-section 3.1.6.
A withdrawal belongs to a terminal and a terminal belongs to a provider. These
relationships are implemented using foreign keys. The are specified to be non-
null and therefore make sure, the chain of provider, terminal and withdrawal is
always complete. The transfer table is unattached and lives by himself.

4.3.2 Triggers

Triggers are used to decouple the different sub processes in the withdrawal flow
from one another.

The trigger runs a Postgres function which will execute a NOTIFY statement us-
ing Postgres built-in function pg_notify. Listeners in the application will capture
those notifications and process them.

4.3 Database

withdrawal [table]

withdrawal_row_id

request_uid

wopid

reserve pub key

registration_ts

amount

suggested_amount

terminal_fees

terminal [table] withdrawal_status
terminal_id ——o0+<¢ | terminal_id
access_token provider_transaction_id
active last_retry_ts
provider [table] description retry_counter
provider id ——o0«| | provider id completion_proof
name <1 | [1> <1 | |

payto_target_type

backend_base_url

backend_credentials
‘ | 1>

Generated by SchemaSpy

Figure 4.15: Relationships of the entities.

Withdrawal Status Trigger

The withdrawal status trigger emits the status of a withdrawal when the status
is changed or the withdrawal is generated (inserted). The notification is sent
through a channel which is named after the withdrawal using the WOPID in base64
encoded format. This allows a listener to specifically be notified about one spe-
cific withdrawal. This feature is used by the long poll feature of the status re-
geuests described in sous-sous-section 4.1.2 or sous-sous-section 4.1.2. By specif-
ically listening to the withdrawal status to be changed for a WOPID the API can
directly return, when a status change is received through the withdrawals chan-
nel.

Payment Trigger

The payment trigger is triggered through the withdrawal confirmation request
of the Terminals API (described in sous-sous-section 4.1.2). It will start the attes-
tation of the transaction at the providers backend, through the provider specific
attestation process.

Attestation Retry Trigger

If the attestation for a withdrawal fails, this trigger is responsible to notify the
retry listener of the application to retry the attestation. Therefore the trigger calls

4 Implementation

the emit_retry_notification function which will notify its listener and the retry will
eventually be executed.

Transfer Trigger

The transfer trigger is responsible triggering the transfer process by the applica-
tion emiting the request_uid of the respective transfer, through the emit_transfer_notification.

4.4 Wallet

4.5 Security

4.5.12 Withdrawal Operation Identifier (WOPID)

The WOPID is the achiles heel of the withdrawal operation and therefore needs
great care when generated. When the WOPID becomes somehow foreseeable, it
opens the door for attackers allowing them to hijack the withdrawal from a re-
mote location. Therefore the WOPID needs to leverage high entropy sources to be
generated. This is achieved by using the crypto random library of Go. The library
is part of the standard library and gains entropy through the entropy sources of
the device running the application (in case of linux it is getrandom(2) which takes
its entropy from /dev/urandom, according to the documentation [24]).

4.5.2 Database Security

The database is very important as it decides wether to allow a withdrawal or not
and it manages terminals and providers which hold sensitive credentials. There-
fore two important aspects need to be considered.

Storing credentials

Even if a database leak occurs, it shall be very hard for the attacker to access
the API using the credentials stored in the database. This is why credentials are
stored using the PBKDF argon?2 [25]. Argon?2isthe winner of the password hashing
competition initiated by the cryptographer Jean-Philippe Aumasson [25]. Itis a
widely adopted best practice approach for hashing passwords. Storing the hash
of the credentials makes stealing credentials very hard and therefore prevents
the abuse of credentials gathered through a database leak. The CLI described in
section 4.6 implements operations which will register providers and terminals
also hashing the credentials using argon?2.

4.5 Security

Access data through correct user

The database user executing a database query must have enough rights to exe-
cute its duties but not more. Therefore different database users are created for
different tasks within the database. The described setup and installation process
in section 4.8 will automatically generate the users and grant them the correct
rights, when the respective variables are specified.

Table 4.12: Database users
Username Component Description
c2ec_admin None This user is possibly never to be used but dur-
ing maintenance of the database itself (adding
database users doing backups adding and grant-
ing users or others)

c2ec_api C2EC This user has all rights it needs to manage a with-
drawal
c2ec_operator | CLI This user shall be used by an operator of the

C2EC component to add providers and termi-
nals. It has no access to withdrawals

4.5.3 Authenticating at the Wallee ReST API

The Wallee API specifies four Wallee specific headers which are used to authen-
ticate against the API. It defines its own authentication standard and flow. The
flow builds on a message authentication code (MAC) which is built on a version,
user identifier, and a timestamp. For the creation of the MAC the hash based
message authentication code (HMAC) SHA-512 is leveraged which takes the so
called application-user-key (which is basically just an access-token, which the user
receives when creating a new API user) as key and the above mentioned proper-
ties plus information about the requested http method and the exactly requested
path (including request parameters) as message [26]. The format of the message
is specified like:

Version|User-Id|Unix-Timestamp|Http-Method|Path
Version: The version of the algorithm
User-1d: The user-id of the requesting user
Unix-Timestamp: A unix timestamp (seconds since 01.01.1970)
Http-Method: one of HEAD, GET, POST, PUT, DELETE, TRACE, CONNECT
Path: The path of the requested URL including the query string (if any)
The resulting string must then be UTF-8 encoded according to RFC-3629 [27].

4 Implementation

Wallee User Access rights

In order for Wallee to successfully authorize the user’s requests, the API user
must have the corret access rights. The C2EC Wallee API user must be able to
access the transaction service for reading transactions and the refund service to
write create refunds at the Wallee backend. Therefore following rigths must be
assigned to the API user:

1. Refund-service
2. Transaction-Service

These rights can be assigned on Wallee’s management interface by creating a
role and assigning the rights to it. The role must then be added to the API user.
The assignment of the roles must be done for the space context (Three different
contexts are available. The relevant context is the space context, since requests
are scoped to a space).

4.5.4 APl access
Terminals API

The terminal API is accessed by terminals and the authentication mechanism
is based on a basic auth scheme as specified by RFC-7617 [6] an specified in the
terminals API specification [7]. Therefore a generated access-token used as pass-
word and a username which is generated registering the terminal using the cli
explained in sous-section 4.5.5 are leveraged. Currently the terminal id and the
provider name of the requesting terminal is included in the username part of the
basic auth scheme.

Bank-Integration API

The Bank-Integration API is accessed by Wallets and specified to be unauthenti-
cated.

Wire-Gateway API

The wire gateway specifies a basic authentication scheme [28] as described in
RFC-7617 [6]. Therefore the C2EC component allows the configuration of a user-
name and password for the exchange. During the request of the exchange at the
wire gateway API, the credentials are checked.

4.5.5 Registering Providers and Terminals

A provider may want to register a new Terminal or maybe even a new provider
shall be registered for the exchange. To make this step easier for the exchange

4.6 C2ECCLI

operators, a simple cli program (command line interface) was implemented (sec-
tion 4.6). The cli will either ask for a password or generate an access token in case
of the terminal registration. The credentials are stored has hashes using a PBKDF
(password based key derivation function) so that even if the database leaks, the
credentials cannot be easily read by an attacker.

4.5.6 Deactivating Terminals

A Terminal can be stolen, hijacked or hacked by malicious actors. Therefore it
must be possible to disable a terminal immediately and no longer allow with-
drawals using this terminal. Therefore the active flag can be set to false for a reg-
istered terminal. The Terminals-API which processes withdrawals and authen-
ticates terminals, checks that the requesting terminal is active and is allowed to
initiate withdrawals. Since the check for the active flag must be done for each
request of a terminal, the check can be centralized and is implemented as part
of the authentication flow. A Wallee terminal can be deactivated using the cli
mentioned in sous-section 4.5.5.

4.6 C2ECCLI

The management of providers and terminals is not part of the thesis but since
writing and issueing SQL statements is cumbersome and error-prone a small cli
was implemented to abstract managment tasks. The cli tool was also shows the
concepts a future implementation of the provider managment can use to inte-
grate with the present features. The cli can be extended with more actions to
allow the management of other providers and its terminals. Also the cli allows to
setup the simulation terminal and provider which can be used for testing. Before
commands can be executed, the user must connect the tool to the database which
can be done throught the db command. With the aim to not introduce security
risks by storing configuration state of the cli, the credentials must be entered af-
ter each startup of the cli. This can be surpassed by specifying postgres specific
environment variables PGHOST, PGPORT, PGUSER and PGPASSWORD but remember
that these environment variables might leak database credentials to others if not
cleaned properly or set for the wrong users shell.

The cli was implemented to be usable and as it was out of scope of the thesis, the
focus was on the functionality and tasks needed for the thesis and to allow an easy
management of the terminals. This included features to manage wallee provider
and terminals and the simulation. Additionally the tool implements commands
to activate and deactivate a terminal, which makes the task much easier than writ-
ing and executing SQL by hand. Also it eliminates mistakes by reducing problems
to bugs in the implementation of the cli.

4 Implementation

4.6.12 Adding a Wallee provider

Adding the Wallee provider is as easy as calling rp (register-provider). It will then
ask for properties like the base url and the credentials of the API user. Since the
payto target type in case of Wallee will always be wallee-transaction, this is hard
coded. The credentials supplied are encrypted using argon2 and stored as hash.
Like this if the database leaks for some reason the credentials are still not easy
to crack, when no standard password was used. Since Wallee generates those
access tokens for their API user, this can be assumed to be the case.

4.6.2 Adding a terminal

Adding a Wallee terminal can be achieved by using the rt (register-terminal) com-
mand. It will ask the user to enter the description of the terminal and will then
generate a 32-byte access token using Go’s crypto random library which must be
supplied to the owner of the terminal through a secure channel with the terminal-
user-id (which is just the name of the operator and the id of the terminal separated
by a dash)

4.6.3 Deactivating the terminal

To deactivate the terminal, the command dt must be issued. It will ask for the
terminal-user-id of the terminal and then deactivate the specified terminal. The
deactivation will be immediately and therefore helps to increase the security by
allowing immediate action, when a terminal is come to be knwon hijacked, stolen
or other fraud is detected specific to the terminal.

4.6.4 Setting up the Simulation

The Simulation provider and terminal allow to simulate transactions and inter-
actions of the terminal with the API of C2EC. Therefore the command sim will
setup the needed provider and terminal including the credentials of the simula-
tion terminal, which must be saved and supplied to the operator through a secure
channel. These credentials allow to test the Terminals API using the simulation
terminal. The simulation client will not be available in productive environments
to reduce the attack surface due to unnecessaty features.

4.7 Testing

Since the program leverages concurrency and operates in a distributed way, it is
difficult to test besides unit testing. Therefore a simulation client and simulation

4.8 Deployment

program was implemented which allows to test the C2EC component while sim-
ulating the different involved parties like the terminal, wallet and the providers
backend system. This setup allows to test and therefore proof the functionality
of the system.

The Simulation can be used for regression testing and therefore can be run before
introducing new features in order to check, that existing functionality will not be
broken.

Besides the automated tests, using the above mentioned simulation, unit tests
were implemented for parsing, formatting and encoding functions. Addition-
ally nanual test were fulfilled to ensure the system behaves correctly and with-
out problems. To test the wire-gateway AP, the taler-exchange-wire-gateway-client
facility was used supplied by GNU Taler to verify the correct functioning of the
API.

4.8 Deployment

4.8.12 Preparation

For the deployment the it is recommended to use a Debian Linux machine. To
prepare the deployment of C2EC following steps must be done:

1. Machine which has bash, go and postgres installed must be prepared.

2. Three different passwords (each must be different and be stored in a secure
location, like a password manager for example)

3. For the setup the username and password of postgresql superuser must be
known.

4, The name for the database must be known and the database must exist at
the target database system.

5. The installation location of C2EC must be created

6. The setup script in the root directory of cashless2cash must be altered with
the values mentioned above.

For the deployment of the Wallee POS Terminal app, the following steps are nec-
essary to prepare the usage of the cashless withdrawals leveraging Wallee:

1. A running deployment of C2EC must be accessible.
2. Wallee must be a registered provider at the C2EC instance.

3. The Terminal must be registered at C2EC.

4 Implementation

4.8.2 Setup

Once the steps from the preparation were succesfully done, the setup-script can
now be run. It will initiate the database and setup the users (as described in sous-
sous-section 4.5.2) with the correct permissions. It will further generate the ex-
ecutables for C2EC, the cli and the simulation inside the specified C2EC_HOME.
The setup script contains sensitive credentials and shall be deleted after using it.
Maybe it can be stored in a save location like a password manager. Like this it
will be still available in the future but will not lie around on the filesystem unen-
crypted.

Setting up Wallee as provider

To allow withdrawals using Wallee as provider, the correct access tokens must be
created at the Wallee backend. Therefore a new application user must be created
and the application user key must be saved to a password manager. Then Wallee
must be registered at C2EC using the cli (described in section 4.6) and the rp com-
mand. There the space-id, user-id of the application user and the application user
key must be provided. The cli will register the provider using these values.

When Wallee was registered as provider, one must register a terminal to allow
access to the Taler Terminals API of C2EC. Therefore also the cli with its ¢t com-
mand can be used. It will generate the terminal user id and the access token.
Both these values should be stored in a save location like the password manager

Setting up the simulation

When the simulation shall be installed the prod-flag in the C2EC configuration
should be disabled, in order to allow the simulation provider to be registered at
startup. This is a security measure, that testing facilities are not reachable in
productive use of the system.

4.8.3 Deploy

When the provider and the terminal was successfully registered, the configura-
tion located inside the C2EC_HOME must be adjusted to the correct values. Once
thisis done, the C2EC process can be started using . /c2ec [PATH-TO-CONFIGFILE].

4.8.4 Migration and releases

When a new version of the system shall be installed, the new executable can be
built by issueing make build. After migrating the database using make migrate
the newly built executable can be started.

5 Results

5.1 Discussion

What is the significance of your results? - the final major section of text in the
paper. The Discussion commonly features a summary of the results that were
obtained in the study, describes how those results address the topic under in-
vestigation and/or the issues that the research was designed to address, and may
expand upon the implications of those findings. Limitations and directions for
future research are also commonly addressed.

5.2 Results

What did you find? - a section which describes the data that was collected and
the results of any statistical tests that were performed. It may also be prefaced
by a description of the analysis procedure that was used. If there were multiple
experiments, then each experiment may require a separate Results section.

5.3 Future Work

- Integrate other providers - Management interface for Terminals and Operators
- Automate registration of Terminals

54

Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used
any sources or aids other than those acknowledged.

All statements taken from other writings, either literally or in essence, have been
marked as such.

I hereby agree that the present work may be reviewed in electronic form using
appropriate software.

[t

J. Haberli

Bibliography

[1]

(2]

(3]
4]

[5]

[6]

(7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

Fabio Panetta. A digital euro that serves the needs of the public: striking the
right balance. https://www.ecb.europa.eu/press/key/date/2022/html/
ecb.sp220330_1"f9fa9a6137.en.html, March 2022.

on behalf of ECB Kantar Public (Verian since November 2023). Study on new
digital payment methods. https://www.ecb.europa.eu/euro/digital_
euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_
report.en.pdf, March 2022.

Wallee. Payment connectors. https://app-wallee.com/connectors.

Taler. Taler wire gateway http api. https://docs.taler.net/core/
api-bank-wire.html.

Taler. Taler bank integration api. https://docs.taler.net/core/
api-bank-integration.html.

Julian Reschke. The 'Basic’ HTTP Authentication Scheme. RFC 7617, Septem-
ber 2015.

Taler. Terminal api. https://docs.taler.net/core/api-terminal.html.

Sven Crefeld. Supermaérkte zahlen immer mehr geld an kunden aus. Zeit, 04
2024.

Florian Dold and Christian Grothoff. The "payto’ URI Scheme for Payments.
RFC 8905, October 2020.

Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, January 2005.

GNUnet Project. The gnunet assigned numbers authority (gana). https:
//gana.gnunet.org/.

Taler. Withdrawal. https://docs.taler.net/taler-wallet.html#
withdrawal.
PCI Security Standards Council. Pci data security standard.

https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/
PCI-DSS-v4_0.pdf.

Wallee. Transaction states. https://app-wallee.com/de-de/doc/payment.

https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp220330_1~f9fa9a6137.en.html
https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp220330_1~f9fa9a6137.en.html
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://app-wallee.com/connectors
https://docs.taler.net/core/api-bank-wire.html
https://docs.taler.net/core/api-bank-wire.html
https://docs.taler.net/core/api-bank-integration.html
https://docs.taler.net/core/api-bank-integration.html
https://docs.taler.net/core/api-terminal.html
https://gana.gnunet.org/
https://gana.gnunet.org/
https://docs.taler.net/taler-wallet.html#withdrawal
https://docs.taler.net/taler-wallet.html#withdrawal
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://app-wallee.com/de-de/doc/payment

Bibliography

[15] Wallee. Android till sdk. https://github.com/wallee-payment/
android-till-sdk.

[16] Wallee. Transaction service. https://app-wallee.com/de-de/doc/api/
web-service#ftransaction-service.

[17] Wallee. Refund service. https://app-wallee.com/de-de/doc/api/
web-service#ftrefund-service.

[18] Wallee. Transaction states. https://app-wallee.com/de-de/doc/payment/
transaction-process.

[19] Douglas Crockford. Base 32. https://www.crockford.com/base32.html.

[20] Developer-Android. Build better apps faster with jetpack compose. https:
//developer.android.com/develop/ui/compose.

[21] Developer-Android. Viewmodel overview. https://developer.android.
com/topic/libraries/architecture/viewmodel.

[22] Developer-Android. Navigation. https://developer.android.com/guide/
navigation.

[23] Christian Grothoff and Florian Dold. The ’taler’ URI scheme for GNU Taler
Wallet interactions. Internet-Draft draft-grothoff-taler-01, Internet Engi-
neering Task Force, November 2022. Work in Progress.

[24] Golang Doc. rand. https://pkg.go.dev/crypto/rand.

[25] Jean-Philippe Aumasson. Password hashing competition. https://www.
password-hashing.net.

[26] Wallee. Authentication. https://app-wallee.com/en-us/doc/api/
web-service#_authentication.

[27] Francois Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629,
November 2003.

[28] Taler. Taler wire gateway http api. https://docs.taler.net/core/
api-bank-wire.html#authentication.

https://github.com/wallee-payment/android-till-sdk
https://github.com/wallee-payment/android-till-sdk
https://app-wallee.com/de-de/doc/api/web-service#transaction-service
https://app-wallee.com/de-de/doc/api/web-service#transaction-service
https://app-wallee.com/de-de/doc/api/web-service#refund-service
https://app-wallee.com/de-de/doc/api/web-service#refund-service
https://app-wallee.com/de-de/doc/payment/transaction-process
https://app-wallee.com/de-de/doc/payment/transaction-process
https://www.crockford.com/base32.html
https://developer.android.com/develop/ui/compose
https://developer.android.com/develop/ui/compose
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/guide/navigation
https://developer.android.com/guide/navigation
https://pkg.go.dev/crypto/rand
https://www.password-hashing.net
https://www.password-hashing.net
https://app-wallee.com/en-us/doc/api/web-service#_authentication
https://app-wallee.com/en-us/doc/api/web-service#_authentication
https://docs.taler.net/core/api-bank-wire.html#authentication
https://docs.taler.net/core/api-bank-wire.html#authentication

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Involved components and devices 5
Diagram of included components and their interactions 6
Process of a withdrawal using a creditcard 7
Withdrawal Operation state transition diagram 12
Relationships of theentities. 18
C2EC and its interactions with various components 24
Terminals APl endpoints 26
Bank-Integration APIendpoints 28
Wire-Gateway APIendpoints 30
The flow of the terminalapp 36
Terminal: Select the exchange to withdraw from 37
Terminal: Enter the desired amount to withdraw 38
Terminal: Register withdrawal parameters 39
Terminal: Waiting to start the authorization of the android till SDK 40
Terminal: Payment authorized, 41
Terminal Provider Table 42
Terminal Table 43
Withdrawal Table 43
Transfer Table L o 44

Relationships of theentities. 45

List of Tables

41 Database USerS . . v v v v v i e e e e e e e e e e e e e e e e

Listings

1 C2EC API specification

Glossary

’

This documentis incomplete. The external file associated with the glossary ‘main
(which should be called thesis.gls) hasn't been created.

Check the contents of the file thesis.glo. If it’s empty, that means you haven't in-
dexed any of your entries in this glossary (using commands like \gls or \glsadd)
so this list can’t be generated. If the file isn’t empty, the document build process
hasn't been completed.

If you don’t want this glossary, add nomain to your package option list when you
load glossaries-extra.sty. For example:

\usepackage [nomain] {glossaries-extra}

Try one of the following:

Add automake to your package option list when youload glossaries-extra.sty.
For example:

\usepackage [automake] {glossaries-extra}
Run the external (Lua) application:
makeglossaries-lite.lua "thesis"
Run the external (Perl) application:
makeglossaries "thesis"

Then rerun ETgX on this document.

This message will be removed once the problem has been fixed.

Appendix A

API

This file is part of GNU TALER.
Copyright (C) 2014-2024 Taler Systems SA

TALER is free software; you can redistribute it and/or modify it
under the

terms of the GNU Affero General Public License as published by
the Free Software

Foundation; either version 2.1, or (at your option) any later
version.

TALER is distributed in the hope that it will be useful, but
WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU Affero General Public License
for more details.

You should have received a copy of the GNU Affero General Public
License along with

TALER; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>

@author Joel Haeberli

The C2EC RESTful API

. note::

xThis API is experimental and not yet implemented

Glossary

This chapter describe the APIs that third party providers need to
integrate to allow

withdrawals through indirect payment channels like credit cards or
ATM.

contents:: Table of Contents

Terminals which authenticate against the C2EC API must provide
their respective

access token. Therefore they provide a ‘‘Authorization: Bearer
$ACCESS_TOKEN® ¢ header,

where ‘$ACCESS_TOKEN‘‘ is a secret authentication token configured
by the exchange and

must begin with the RFC 8959 prefix.

. http:get:: /config

Return the protocol version and configuration information about
the C2EC API.

**Response: **
:http:statuscode: ‘200 OK*:
The exchange responds with a ‘C2ECConfig‘ object. This request

should
virtually always be successful.

Details:
. ts:def:: C2ECConfig
interface C2ECConfig {

// Name of the API.
name: "taler-c2ec";

Glossary

// libtool-style representation of the C2EC protocol
version, see
//
https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versioni
// The format is "current:revision:age".
version: string;

Withdrawals with a C2EC are based on withdrawal operations which
register a withdrawal identifier

(nonce) at the C2EC component. The provider must first create a
unique identifier for the withdrawal

operation (the ‘‘WOPID‘‘) to interact with the withdrawal
operation and eventually withdraw using the wallet.

. http:post:: /withdrawal-operation
Register a ‘WOPID‘ belonging to a reserve public key.
**Request : **
. ts:def:: C2ECWithdrawRegistration

interface C2ECWithdrawRegistration {
// Maps a nonce generated by the provider to a reserve
public key generated by the wallet.
wopid: ShortHashCode;

// Reserve public key generated by the wallet.

// According to TALER_ReservePublicKeyP
(https://docs.taler.net/core/api-common.html#cryptographic-primitives)

reserve_pub_key: EddsaPublicKey;

// Optional amount for the withdrawal.
amount?: Amount;

// Id of the terminal of the provider requesting a
withdrawal by nonce.

// Assigned by the exchange.

terminal_id: SafeUint64;

Glossary

**Response: **

:http:statuscode: ‘204 No content‘:
The withdrawal was successfully registered.
:http:statuscode: ‘400 Bad request‘:
The ‘‘WithdrawRegistration‘‘ request was malformed or
contained invalid parameters.
:http:statuscode: ‘500 Internal Server error‘:
The registration of the withdrawal failed due to server side
issues.

. http:get:: /withdrawal-operation/$WOPID

Query information about a withdrawal operation, identified by
the ‘‘WOPID‘°‘.

**Request : **

:query long_poll_ms:
Optional. If specified, the bank will wait up to
¢‘long_poll_ms‘¢
milliseconds for operationt state to be different from
‘‘old_state‘‘ before sending the HTTP
response. A client must never rely on this behavior, as the
bank may
return a response immediately.
:query old_state:
0Optional. Default to "pending".

**Response: *x*

:http:statuscode: ‘200 0k‘:
The withdrawal was found and is returned in the response body
as ‘‘C2ECWithdrawalStatus‘‘.
:http:statuscode: ‘404 Not found‘:
C2EC does not have a withdrawal registered with the specified
¢‘WOPID* ‘.

*x*Details*x*

. ts:def:: C2ECWithdrawalStatus

Glossary

interface C2ECWithdrawalStatus {

// Current status of the operation

// pending: the operation is pending parameters selection
(exchange and reserve public key)

// selected: the operations has been selected and is
pending confirmation

// aborted: the operation has been aborted

// confirmed: the transfer has been confirmed and
registered by the bank

// Since protocol vi.

status: "pending" | "selected" | "aborted" | "confirmed";

// Amount that will be withdrawn with this operation
// (raw amount without fee considerations).
amount: Amount;

// A refund address as ‘‘payto‘‘ URI. This address shall
be used

// in case a refund must be done. Only not-null if the
status

// is "confirmed" or "aborted"

sender_wire?: string;

// Reserve public key selected by the exchange,
// only non-null if ‘‘status‘‘ is ‘‘selected‘‘ or
‘‘confirmed ‘.

// Since protocol vi.
selected_reserve_pub?: string;

. http:post:: /withdrawal-operation/$WOPID

Notifies C2EC about an executed payment for a specific
withdrawal.

**Request : **
. ts:def:: C2ECPaymentNotification
interface C2ECPaymentNotification {

// Unique identifier of the provider transaction.
provider_transaction_id: string;

Glossary

// Specifies the amount which was payed to the provider
(without fees).

// This amount shall be put into the reserve linked to by
the withdrawal id.

amount: Amount;

// Fees associated with the payment.
fees: Amount;

**Response: *x*

:http:statuscode: ‘204 No content‘:
C2EC received the ¢‘C2ECPaymentNotification‘‘ successfully and
will further process
the withdrawal.
:http:statuscode: ‘400 Bad request‘:
The ¢‘C2ECPaymentNotification‘‘ request was malformed or
contained invalid parameters.
:http:statuscode: ‘404 Not found‘:
C2EC does not have a withdrawal registered with the specified
¢ ‘WOPID‘ ‘.
:http:statuscode: ‘500 Internal Server error‘:
The ¢‘C2ECPaymentNotification‘‘ could not be processed due to
server side issues.

C2EC implements the wire gateway API in order to check for
incoming transactions and

let the exchange get proofs of payments. This will allow the C2EC
componente to add reserves

and therefore allow the withdrawal of the digital cash. C2EC does
not entirely implement all endpoints,

because the it is not needed for the case of C2EC. The endpoints
not implemented are not described

further. They will be available but respond with 400 http error
code.

. http:get:: /config

Glossary

Return the protocol version and configuration information about
the bank.

This specification corresponds to
version **Qxx.

“‘current‘‘ protocol being

**Response: **

:http:statuscode: ‘200 0K*:
The exchange responds with a ‘WireConfig‘ object. This request
should
virtually always be successful.

Details:
. ts:def:: WireConfig

interface WireConfig {
// Name of the API.
name: "taler-wire-gateway";

// libtool-style representation of the Bank protocol
version, see
//
https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versioni
// The format is "current:revision:age".
version: string;

// Currency used by this gateway.
currency: string;

// URN of the implementation (needed to interpret ’revision’
in version).

// @since v0, may become mandatory in the future.

implementation?: string;

. http:post:: /transfer

This API allows the exchange to make a tramsaction, typically to
a merchant. The bank account

of the exchange is not included in the request, but instead
derived from the user name in the

authentication header and/or the request base URL.

Glossary

To make the API idempotent, the client must include a nonce.
Requests with the same nonce
are rejected unless the request is the same.

**Request : **
. ts:def:: TransferRequest

interface TransferRequest {
// Nonce to make the request idempotent. Requests with the
same
// ‘‘request_uid‘‘ that differ in any of the other fields
// are rejected.
request_uid: HashCode;

// Amount to transfer.
amount: Amount;

// Base URL of the exchange. Shall be included by the bank
gateway

// in the appropriate section of the wire transfer details.

exchange_base_url: string;

// Wire transfer identifier chosen by the exchange,

// used by the merchant to identify the Taler order(s)
// associated with this wire transfer.

wtid: ShortHashCode;

// The recipient’s account identifier as a payto URI.
credit_account: string;

**Response: *x*

:http:statuscode: ‘200 0K¢:
The request has been correctly handled, so the funds have been
transferred to
the recipient’s account. The body is a ‘TransferResponse‘.
:http:statuscode: ‘400 Bad request‘:
Request malformed. The bank replies with an ‘ErrorDetail
object.
:http:statuscode: ‘401 Unauthorized‘:
Authentication failed, likely the credentials are wrong.

Glossary

:http:statuscode: ‘404 Not found‘:
The endpoint is wrong or the user name is unknown. The bank
replies with an ‘ErrorDetail‘ object.
:http:statuscode: ‘409 Conflict‘:
A transaction with the same ‘‘request_uid‘‘ but different
transaction details
has been submitted before.

**xDetails: **
. ts:def:: TransferResponse

interface TransferResponse {

// Timestamp that indicates when the wire transfer will be
executed.

// In cases where the wire transfer gateway is unable to
know when

// the wire transfer will be executed, the time at which the
request

// has been received and stored will be returned.

// The purpose of this field is for debugging (humans trying
to find

// the transaction) as well as for taxation (determining
which

// time period a transaction belongs to).

timestamp: Timestamp;

// Opaque ID of the transaction that the bank has made.
row_id: SafeUint64;

. http:get:: /history/incoming
**Request : **

:query start: *Optional.x*
Row identifier to explicitly set the *starting point* of the
query.
:query delta:
The *delta* value that determines the range of the query.
:query long_poll_ms: *Optional.* If this parameter is specified
and the
result of the query would be empty, the bank will wait up to
‘‘long_poll_ms‘*

Glossary

milliseconds for new transactions that match the query to
arrive and only

then send the HTTP response. A client must never rely on this
behavior, as

the bank may return a response immediately or after waiting
only a fraction

of ‘‘long_poll_ms‘‘.

**Response: **
ts:def:: IncomingReserveTransaction

interface IncomingReserveTransaction {
type: "RESERVE";

// Opaque identifier of the returned record.
row_id: SafeUint64;

// Date of the transaction.
date: Timestamp;

// Amount transferred.
amount: Amount;

// Payto URI to identify the sender of funds.
debit_account: string;

// The reserve public key extracted from the transaction

details.
reserve_pub: EddsaPublicKey;

Listing 1: C2EC API specification

Appendix B

Project Management

Gant Chart
Iterative approach

During the project, each week a plan is made which described the tasks for the
week. The plan is made on paper and hanged above my desk so I can see it. I in-
form the thesis advisors during the weekly synch call and change them if needed.
For the prioritisation of work, the project plan in section 5.3 was used. This iter-
ative approach helps to adapt to changing requirements and environment fast.
Since I am working alone on the project, there is no need for more methodologi-
cal overhead or to implement some alibi project organisation. Requirements are
captured as specifications within the Taler documentation repository or in the
architecture section (chapitre 3). As part of the weekly planning I reflect the past
work and therefore can change what I think is necessary. Questions and impedi-
ments are directly addressed through the channel and/or person I think can help
me with it.

Appendix C

Meeting notes

17.01.2024
Participants

Fehrensen Benjamin

Grothoff Christian

Hiberli Joel
Topics

Kickoff

Understanding the Task

Device

Taler
Questions

What am I going to do?

Which components are roughly involved?
Action points

Setup Thesis Document

GNU Taler Copyright Assignment

SSH-Public Key for git

Inspect taler-exchange-wirewatch
Decisions

Implement process ‘cashless2ecash’ as part of Taler-Exchange

Wallet initializes process by scanning QR code like in the ‘cash2ecash’ show-
case

Glossary

- cash2ecash was implented by the guy named "windfisch" on matter-
most

20.02.2024
Participants
Jung Florian
Haberli Joel
Topics
Introduce each other and explain ideas
Discuss nonce2ecash draft
Discuss who wants to do what
Action points
I send Flo a plan of what I'm going to do until when (approximately)

I update the sequence diagram as discussed and send the openapi spec to
Flo for review.

Decisions

We can establish a generic approach for both our cases. Therefore the ab-
straction of Providers will be implemented. The Providers abstract and gen-
eralize some endpoint which can accept digital cash in any form (Credit
Card, Cash, and so on) and give the Exchange the guarantee, that the digi-
tal cash will eventually be transferred to the Exchange.

The verification at the provider from the perspective of the exchange must
be optional (withdrawing at an ATM will not get any better than the amount
the ATM sends to the Excahnge in the payment notification). Therefore an
additional request to the provider will not bring any benefit.

Notes

Flo wants to create a Reserve containing digital cash from the ATM. He then
wants to trigger a peer to peer transaction. And therefore this reserve deals
as guarantee to the Exchange. This flow is possible if the provider is con-
trolled, which in my case is not given (Wallee is a company and I cannot
easily alter their source code to open a reserve)

22.02.2024

Participants

Glossary

Hiltgen Alain

Fehrensen Benjamin

Grothoff Christian

Haberli Joel
Topics

Task description

Deeper understanding of the topic established?

I contacted Florian Jung (alias Windfisch) and we bespoke his work on cash2ecash.
Questions

Repository of Wallee Application will be different than cashless2ecash’> No

Wallee: Master Password? Password received by Ben

Wallee: Which SDK to use? Till-SDK (API to Wallee-Backend)

How do we want to handle different currencies? How about currencies like
Bitcoin? Currency is determined by the currency of the exchange.

06.03.2024
Participants
Fehrensen Benjamin
Grothoff Christian
Haberli Joel
Topics
API Spec nonce2ecash
Database Spec nonce2ecash
Questions
How can I create a reserve from the mapping table?

Taler / Wallee : Which nonce to use? How to generate the nonce? Is there a
preferred kind to generate nonces within taler?

Do we add a maximal limit amount for a withdrawal on the side of the Taler
Exchange?

Action points

Glossary

write API specification in .rst format (see /docs/core/api-*.rst in taler docs
git)
use Bank integration API

write SQL schema and generate UML using schema-spy instead of writing
UML.

13.03.2024
Participants
Fehrensen Benjamin
Grothoff Christian
Haberli Joel
Topics
SQL Schema of nonce2ecash.
Action points
Add rst file to official docs Repository
Add proper versioning to the SQL script.

20.03.2024
Participants
Fehrensen Benjamin
Grothoff Christian
Haberli Joel
Topics
Payto Specification.
Action points

Specify payto-uri scheme in GANA repo

20.03.2024 - 2

Participants

Grothoff Christian

Glossary

Haberli Joel
Topics

Architecture

Payto
Action points

Look at Wire Gateway and Bank Integration API as specification of an API
and not as individual components of Taler. C2EC must implement those
specification in order to integrate into the Taler ecosystem.

27.03.2024
Participants
Fehrensen Benjamin
Grothoff Christian
Haberli Joel
Topics
Discussion of the Architecture documentation
Feedback of Ben and Christian
Action points
Integrate Feedback into documentation

Use official docs repo to specify the API (e.g. Bank-Integration APIand Wire
Gateway API specification)

No meeting next week.

10.04.2024

Participants
Fehrensen Benjamin
Grothoff Christian
Hiberli Joel

Topics

Discussion of the C2EC code.

Glossary

Action points
Use ini-format to parse config
Add support for PGHOST environment variable

Rename config properties to be compliant with other Taler repositories.

serve

bind

unix-path-mode
- etc.

For the attestation there is the additional case that neither confirm nor
abort is an option and instead retries are required.

Remove doubled abstractions (Abstracting attestation is not necessary)

17.04.2024
Participants
Hiltgen Alain
Fehrensen Benjamin
Grothoff Christian
Haberli Joel
Topics
Midterm Meeting with Expert Alain Hitlgen.
Sequence diagram
Action points
Fix Bank-Integration API
Fees must be shown during the payment on the terminal

The Wire Gateway API must implement "/history/outgoing" and return en-
tries of the transfer table.

24.04.2024
Participants

Fehrensen Benjamin

Glossary

Grothoff Christian
Taler App Team
BFH Guests and Students
Haberli Joel
Topics

New Terminals API

Exponential Backoff, Self-Synchronization

Action points
Integrate new API

The Book entry

01.05.2024
Participants
Fehrensen Benjamin
Hiberli Joel
Topics
Wallee Terminal Version
Completion Behavior of the transaction
Action points

Use Version 0.9.20 (not 0.9.12)

08.05.2024
Participants
Fehrensen Benjamin
Haberli Joel
Topics
Submit APK to Wallee
Server is online running C2EC

The Book entry

Glossary

Action points
Supply Wallee and APK (as soon as possible)

Poster

TEMPLATE

Participants
Fehrensen Benjamin
Grothoff Christian
Hiberli Joel

Topics

Questions

Action points

Decisions

	Abstract
	Introduction
	Motivation
	Perspectives
	Taler Exchange (C2EC)
	Terminal Application
	Taler Wallet

	Goal
	C2EC
	Wallee POS Terminal

	Overview
	Components
	Process
	The Terminal
	The C2EC
	The Wallet

	Architecture
	C2EC
	C2EC Perspective
	Withdrawal-Operation state transitions
	Authentication
	The C2EC RESTful API
	Taler Wirewatch Gateway API
	C2EC Entities

	Payto wallee-transaction extension
	Payto refund using Wallee
	Extensibility

	Taler Wallet
	Taler Wallet Perspective

	Wallee
	Wallee Perspective
	Wallee Terminal
	Wallee Backend and API

	Implementation
	C2EC
	Endpoints
	Abortion Handling
	Processes
	Providers

	Wallee POS Terminal
	Withdrawal flow
	Screens
	Abortion Handling

	Database
	Schema
	Triggers

	Wallet
	Security
	Withdrawal Operation Identifier (WOPID)
	Database Security
	Authenticating at the Wallee ReST API
	API access
	Registering Providers and Terminals
	Deactivating Terminals

	C2EC CLI
	Adding a Wallee provider
	Adding a terminal
	Deactivating the terminal
	Setting up the Simulation

	Testing
	Deployment
	Preparation
	Setup
	Deploy
	Migration and releases

	Results
	Discussion
	Results
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Listings
	Glossary

