summaryrefslogtreecommitdiff
path: root/deps/icu-small/source/common/ucnvsel.cpp
blob: 07b55022c346e8f7dd3121b4fa5b57424f596e80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
*   Copyright (C) 2008-2011, International Business Machines
*   Corporation, Google and others.  All Rights Reserved.
*
*******************************************************************************
*/
// Author : eldawy@google.com (Mohamed Eldawy)
// ucnvsel.cpp
//
// Purpose: To generate a list of encodings capable of handling
// a given Unicode text
//
// Started 09-April-2008

/**
 * \file
 *
 * This is an implementation of an encoding selector.
 * The goal is, given a unicode string, find the encodings
 * this string can be mapped to. To make processing faster
 * a trie is built when you call ucnvsel_open() that
 * stores all encodings a codepoint can map to
 */

#include "unicode/ucnvsel.h"

#if !UCONFIG_NO_CONVERSION

#include <string.h>

#include "unicode/uchar.h"
#include "unicode/uniset.h"
#include "unicode/ucnv.h"
#include "unicode/ustring.h"
#include "unicode/uchriter.h"
#include "utrie2.h"
#include "propsvec.h"
#include "uassert.h"
#include "ucmndata.h"
#include "udataswp.h"
#include "uenumimp.h"
#include "cmemory.h"
#include "cstring.h"

U_NAMESPACE_USE

struct UConverterSelector {
  UTrie2 *trie;              // 16 bit trie containing offsets into pv
  uint32_t* pv;              // table of bits!
  int32_t pvCount;
  char** encodings;          // which encodings did user ask to use?
  int32_t encodingsCount;
  int32_t encodingStrLength;
  uint8_t* swapped;
  UBool ownPv, ownEncodingStrings;
};

static void generateSelectorData(UConverterSelector* result,
                                 UPropsVectors *upvec,
                                 const USet* excludedCodePoints,
                                 const UConverterUnicodeSet whichSet,
                                 UErrorCode* status) {
  if (U_FAILURE(*status)) {
    return;
  }

  int32_t columns = (result->encodingsCount+31)/32;

  // set errorValue to all-ones
  for (int32_t col = 0; col < columns; col++) {
    upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
                   col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), status);
  }

  for (int32_t i = 0; i < result->encodingsCount; ++i) {
    uint32_t mask;
    uint32_t column;
    int32_t item_count;
    int32_t j;
    UConverter* test_converter = ucnv_open(result->encodings[i], status);
    if (U_FAILURE(*status)) {
      return;
    }
    USet* unicode_point_set;
    unicode_point_set = uset_open(1, 0);  // empty set

    ucnv_getUnicodeSet(test_converter, unicode_point_set,
                       whichSet, status);
    if (U_FAILURE(*status)) {
      ucnv_close(test_converter);
      return;
    }

    column = i / 32;
    mask = 1 << (i%32);
    // now iterate over intervals on set i!
    item_count = uset_getItemCount(unicode_point_set);

    for (j = 0; j < item_count; ++j) {
      UChar32 start_char;
      UChar32 end_char;
      UErrorCode smallStatus = U_ZERO_ERROR;
      uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
                   &smallStatus);
      if (U_FAILURE(smallStatus)) {
        // this will be reached for the converters that fill the set with
        // strings. Those should be ignored by our system
      } else {
        upvec_setValue(upvec, start_char, end_char, column, static_cast<uint32_t>(~0), mask,
                       status);
      }
    }
    ucnv_close(test_converter);
    uset_close(unicode_point_set);
    if (U_FAILURE(*status)) {
      return;
    }
  }

  // handle excluded encodings! Simply set their values to all 1's in the upvec
  if (excludedCodePoints) {
    int32_t item_count = uset_getItemCount(excludedCodePoints);
    for (int32_t j = 0; j < item_count; ++j) {
      UChar32 start_char;
      UChar32 end_char;

      uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
                   status);
      for (int32_t col = 0; col < columns; col++) {
        upvec_setValue(upvec, start_char, end_char, col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0),
                      status);
      }
    }
  }

  // alright. Now, let's put things in the same exact form you'd get when you
  // unserialize things.
  result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
  result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
  result->pvCount *= columns;  // number of uint32_t = rows * columns
  result->ownPv = TRUE;
}

/* open a selector. If converterListSize is 0, build for all converters.
   If excludedCodePoints is NULL, don't exclude any codepoints */
U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
             const USet* excludedCodePoints,
             const UConverterUnicodeSet whichSet, UErrorCode* status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return NULL;
  }
  // ensure args make sense!
  if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
    *status = U_ILLEGAL_ARGUMENT_ERROR;
    return NULL;
  }

  // allocate a new converter
  LocalUConverterSelectorPointer newSelector(
    (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
  if (newSelector.isNull()) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return NULL;
  }
  uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));

  if (converterListSize == 0) {
    converterList = NULL;
    converterListSize = ucnv_countAvailable();
  }
  newSelector->encodings =
    (char**)uprv_malloc(converterListSize * sizeof(char*));
  if (!newSelector->encodings) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return NULL;
  }
  newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()

  // make a backup copy of the list of converters
  int32_t totalSize = 0;
  int32_t i;
  for (i = 0; i < converterListSize; i++) {
    totalSize +=
      (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
  }
  // 4-align the totalSize to 4-align the size of the serialized form
  int32_t encodingStrPadding = totalSize & 3;
  if (encodingStrPadding != 0) {
    encodingStrPadding = 4 - encodingStrPadding;
  }
  newSelector->encodingStrLength = totalSize += encodingStrPadding;
  char* allStrings = (char*) uprv_malloc(totalSize);
  if (!allStrings) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return NULL;
  }

  for (i = 0; i < converterListSize; i++) {
    newSelector->encodings[i] = allStrings;
    uprv_strcpy(newSelector->encodings[i],
                converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
    allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
  }
  while (encodingStrPadding > 0) {
    *allStrings++ = 0;
    --encodingStrPadding;
  }

  newSelector->ownEncodingStrings = TRUE;
  newSelector->encodingsCount = converterListSize;
  UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
  generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
  upvec_close(upvec);

  if (U_FAILURE(*status)) {
    return NULL;
  }

  return newSelector.orphan();
}

/* close opened selector */
U_CAPI void U_EXPORT2
ucnvsel_close(UConverterSelector *sel) {
  if (!sel) {
    return;
  }
  if (sel->ownEncodingStrings) {
    uprv_free(sel->encodings[0]);
  }
  uprv_free(sel->encodings);
  if (sel->ownPv) {
    uprv_free(sel->pv);
  }
  utrie2_close(sel->trie);
  uprv_free(sel->swapped);
  uprv_free(sel);
}

static const UDataInfo dataInfo = {
  sizeof(UDataInfo),
  0,

  U_IS_BIG_ENDIAN,
  U_CHARSET_FAMILY,
  U_SIZEOF_UCHAR,
  0,

  { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
  { 1, 0, 0, 0 },               /* formatVersion */
  { 0, 0, 0, 0 }                /* dataVersion */
};

enum {
  UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
  UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
  UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
  UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
  UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
  UCNVSEL_INDEX_COUNT = 16
};

/*
 * Serialized form of a UConverterSelector, formatVersion 1:
 *
 * The serialized form begins with a standard ICU DataHeader with a UDataInfo
 * as the template above.
 * This is followed by:
 *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
 *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
 *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
 *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
 */

/* serialize a selector */
U_CAPI int32_t U_EXPORT2
ucnvsel_serialize(const UConverterSelector* sel,
                  void* buffer, int32_t bufferCapacity, UErrorCode* status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return 0;
  }
  // ensure args make sense!
  uint8_t *p = (uint8_t *)buffer;
  if (bufferCapacity < 0 ||
      (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
  ) {
    *status = U_ILLEGAL_ARGUMENT_ERROR;
    return 0;
  }
  // add up the size of the serialized form
  int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
  if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
    return 0;
  }
  *status = U_ZERO_ERROR;

  DataHeader header;
  uprv_memset(&header, 0, sizeof(header));
  header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
  header.dataHeader.magic1 = 0xda;
  header.dataHeader.magic2 = 0x27;
  uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));

  int32_t indexes[UCNVSEL_INDEX_COUNT] = {
    serializedTrieSize,
    sel->pvCount,
    sel->encodingsCount,
    sel->encodingStrLength
  };

  int32_t totalSize =
    header.dataHeader.headerSize +
    (int32_t)sizeof(indexes) +
    serializedTrieSize +
    sel->pvCount * 4 +
    sel->encodingStrLength;
  indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
  if (totalSize > bufferCapacity) {
    *status = U_BUFFER_OVERFLOW_ERROR;
    return totalSize;
  }
  // ok, save!
  int32_t length = header.dataHeader.headerSize;
  uprv_memcpy(p, &header, sizeof(header));
  uprv_memset(p + sizeof(header), 0, length - sizeof(header));
  p += length;

  length = (int32_t)sizeof(indexes);
  uprv_memcpy(p, indexes, length);
  p += length;

  utrie2_serialize(sel->trie, p, serializedTrieSize, status);
  p += serializedTrieSize;

  length = sel->pvCount * 4;
  uprv_memcpy(p, sel->pv, length);
  p += length;

  uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
  p += sel->encodingStrLength;

  return totalSize;
}

/**
 * swap a selector into the desired Endianness and Asciiness of
 * the system. Just as FYI, selectors are always saved in the format
 * of the system that created them. They are only converted if used
 * on another system. In other words, selectors created on different
 * system can be different even if the params are identical (endianness
 * and Asciiness differences only)
 *
 * @param ds pointer to data swapper containing swapping info
 * @param inData pointer to incoming data
 * @param length length of inData in bytes
 * @param outData pointer to output data. Capacity should
 *                be at least equal to capacity of inData
 * @param status an in/out ICU UErrorCode
 * @return 0 on failure, number of bytes swapped on success
 *         number of bytes swapped can be smaller than length
 */
static int32_t
ucnvsel_swap(const UDataSwapper *ds,
             const void *inData, int32_t length,
             void *outData, UErrorCode *status) {
  /* udata_swapDataHeader checks the arguments */
  int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
  if(U_FAILURE(*status)) {
    return 0;
  }

  /* check data format and format version */
  const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
  if(!(
    pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
    pInfo->dataFormat[1] == 0x53 &&
    pInfo->dataFormat[2] == 0x65 &&
    pInfo->dataFormat[3] == 0x6c
  )) {
    udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
                     pInfo->dataFormat[0], pInfo->dataFormat[1],
                     pInfo->dataFormat[2], pInfo->dataFormat[3]);
    *status = U_INVALID_FORMAT_ERROR;
    return 0;
  }
  if(pInfo->formatVersion[0] != 1) {
    udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
                     pInfo->formatVersion[0]);
    *status = U_UNSUPPORTED_ERROR;
    return 0;
  }

  if(length >= 0) {
    length -= headerSize;
    if(length < 16*4) {
      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
                       length);
      *status = U_INDEX_OUTOFBOUNDS_ERROR;
      return 0;
    }
  }

  const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
  uint8_t *outBytes = (uint8_t *)outData + headerSize;

  /* read the indexes */
  const int32_t *inIndexes = (const int32_t *)inBytes;
  int32_t indexes[16];
  int32_t i;
  for(i = 0; i < 16; ++i) {
    indexes[i] = udata_readInt32(ds, inIndexes[i]);
  }

  /* get the total length of the data */
  int32_t size = indexes[UCNVSEL_INDEX_SIZE];
  if(length >= 0) {
    if(length < size) {
      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
                       length);
      *status = U_INDEX_OUTOFBOUNDS_ERROR;
      return 0;
    }

    /* copy the data for inaccessible bytes */
    if(inBytes != outBytes) {
      uprv_memcpy(outBytes, inBytes, size);
    }

    int32_t offset = 0, count;

    /* swap the int32_t indexes[] */
    count = UCNVSEL_INDEX_COUNT*4;
    ds->swapArray32(ds, inBytes, count, outBytes, status);
    offset += count;

    /* swap the UTrie2 */
    count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
    utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
    offset += count;

    /* swap the uint32_t pv[] */
    count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
    ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
    offset += count;

    /* swap the encoding names */
    count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
    offset += count;

    U_ASSERT(offset == size);
  }

  return headerSize + size;
}

/* unserialize a selector */
U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return NULL;
  }
  // ensure args make sense!
  const uint8_t *p = (const uint8_t *)buffer;
  if (length <= 0 ||
      (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
  ) {
    *status = U_ILLEGAL_ARGUMENT_ERROR;
    return NULL;
  }
  // header
  if (length < 32) {
    // not even enough space for a minimal header
    *status = U_INDEX_OUTOFBOUNDS_ERROR;
    return NULL;
  }
  const DataHeader *pHeader = (const DataHeader *)p;
  if (!(
    pHeader->dataHeader.magic1==0xda &&
    pHeader->dataHeader.magic2==0x27 &&
    pHeader->info.dataFormat[0] == 0x43 &&
    pHeader->info.dataFormat[1] == 0x53 &&
    pHeader->info.dataFormat[2] == 0x65 &&
    pHeader->info.dataFormat[3] == 0x6c
  )) {
    /* header not valid or dataFormat not recognized */
    *status = U_INVALID_FORMAT_ERROR;
    return NULL;
  }
  if (pHeader->info.formatVersion[0] != 1) {
    *status = U_UNSUPPORTED_ERROR;
    return NULL;
  }
  uint8_t* swapped = NULL;
  if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
      pHeader->info.charsetFamily != U_CHARSET_FAMILY
  ) {
    // swap the data
    UDataSwapper *ds =
      udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
    int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
    if (U_FAILURE(*status)) {
      udata_closeSwapper(ds);
      return NULL;
    }
    if (length < totalSize) {
      udata_closeSwapper(ds);
      *status = U_INDEX_OUTOFBOUNDS_ERROR;
      return NULL;
    }
    swapped = (uint8_t*)uprv_malloc(totalSize);
    if (swapped == NULL) {
      udata_closeSwapper(ds);
      *status = U_MEMORY_ALLOCATION_ERROR;
      return NULL;
    }
    ucnvsel_swap(ds, p, length, swapped, status);
    udata_closeSwapper(ds);
    if (U_FAILURE(*status)) {
      uprv_free(swapped);
      return NULL;
    }
    p = swapped;
    pHeader = (const DataHeader *)p;
  }
  if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
    // not even enough space for the header and the indexes
    uprv_free(swapped);
    *status = U_INDEX_OUTOFBOUNDS_ERROR;
    return NULL;
  }
  p += pHeader->dataHeader.headerSize;
  length -= pHeader->dataHeader.headerSize;
  // indexes
  const int32_t *indexes = (const int32_t *)p;
  if (length < indexes[UCNVSEL_INDEX_SIZE]) {
    uprv_free(swapped);
    *status = U_INDEX_OUTOFBOUNDS_ERROR;
    return NULL;
  }
  p += UCNVSEL_INDEX_COUNT * 4;
  // create and populate the selector object
  UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
  char **encodings =
    (char **)uprv_malloc(
      indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
  if (sel == NULL || encodings == NULL) {
    uprv_free(swapped);
    uprv_free(sel);
    uprv_free(encodings);
    *status = U_MEMORY_ALLOCATION_ERROR;
    return NULL;
  }
  uprv_memset(sel, 0, sizeof(UConverterSelector));
  sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
  sel->encodings = encodings;
  sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
  sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
  sel->swapped = swapped;
  // trie
  sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
                                        p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
                                        status);
  p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
  if (U_FAILURE(*status)) {
    ucnvsel_close(sel);
    return NULL;
  }
  // bit vectors
  sel->pv = (uint32_t *)p;
  p += sel->pvCount * 4;
  // encoding names
  char* s = (char*)p;
  for (int32_t i = 0; i < sel->encodingsCount; ++i) {
    sel->encodings[i] = s;
    s += uprv_strlen(s) + 1;
  }
  p += sel->encodingStrLength;

  return sel;
}

// a bunch of functions for the enumeration thingie! Nothing fancy here. Just
// iterate over the selected encodings
struct Enumerator {
  int16_t* index;
  int16_t length;
  int16_t cur;
  const UConverterSelector* sel;
};

U_CDECL_BEGIN

static void U_CALLCONV
ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
  uprv_free(((Enumerator*)(enumerator->context))->index);
  uprv_free(enumerator->context);
  uprv_free(enumerator);
}


static int32_t U_CALLCONV
ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return 0;
  }
  return ((Enumerator*)(enumerator->context))->length;
}


static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
                                                 int32_t* resultLength,
                                                 UErrorCode* status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return NULL;
  }

  int16_t cur = ((Enumerator*)(enumerator->context))->cur;
  const UConverterSelector* sel;
  const char* result;
  if (cur >= ((Enumerator*)(enumerator->context))->length) {
    return NULL;
  }
  sel = ((Enumerator*)(enumerator->context))->sel;
  result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
  ((Enumerator*)(enumerator->context))->cur++;
  if (resultLength) {
    *resultLength = (int32_t)uprv_strlen(result);
  }
  return result;
}

static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
                                           UErrorCode* status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return ;
  }
  ((Enumerator*)(enumerator->context))->cur = 0;
}

U_CDECL_END


static const UEnumeration defaultEncodings = {
  NULL,
    NULL,
    ucnvsel_close_selector_iterator,
    ucnvsel_count_encodings,
    uenum_unextDefault,
    ucnvsel_next_encoding,
    ucnvsel_reset_iterator
};


// internal fn to intersect two sets of masks
// returns whether the mask has reduced to all zeros
static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
  int32_t i;
  uint32_t oredDest = 0;
  for (i = 0 ; i < len ; ++i) {
    oredDest |= (dest[i] &= source1[i]);
  }
  return oredDest == 0;
}

// internal fn to count how many 1's are there in a mask
// algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
static int16_t countOnes(uint32_t* mask, int32_t len) {
  int32_t i, totalOnes = 0;
  for (i = 0 ; i < len ; ++i) {
    uint32_t ent = mask[i];
    for (; ent; totalOnes++)
    {
      ent &= ent - 1; // clear the least significant bit set
    }
  }
  return static_cast<int16_t>(totalOnes);
}


/* internal function! */
static UEnumeration *selectForMask(const UConverterSelector* sel,
                                   uint32_t *theMask, UErrorCode *status) {
  LocalMemory<uint32_t> mask(theMask);
  // this is the context we will use. Store a table of indices to which
  // encodings are legit.
  LocalMemory<Enumerator> result(static_cast<Enumerator *>(uprv_malloc(sizeof(Enumerator))));
  if (result.isNull()) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return nullptr;
  }
  result->index = nullptr;  // this will be allocated later!
  result->length = result->cur = 0;
  result->sel = sel;

  LocalMemory<UEnumeration> en(static_cast<UEnumeration *>(uprv_malloc(sizeof(UEnumeration))));
  if (en.isNull()) {
    // TODO(markus): Combine Enumerator and UEnumeration into one struct.
    *status = U_MEMORY_ALLOCATION_ERROR;
    return nullptr;
  }
  memcpy(en.getAlias(), &defaultEncodings, sizeof(UEnumeration));

  int32_t columns = (sel->encodingsCount+31)/32;
  int16_t numOnes = countOnes(mask.getAlias(), columns);
  // now, we know the exact space we need for index
  if (numOnes > 0) {
    result->index = static_cast<int16_t*>(uprv_malloc(numOnes * sizeof(int16_t)));
    if (result->index == nullptr) {
      *status = U_MEMORY_ALLOCATION_ERROR;
      return nullptr;
    }
    int32_t i, j;
    int16_t k = 0;
    for (j = 0 ; j < columns; j++) {
      uint32_t v = mask[j];
      for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
        if ((v & 1) != 0) {
          result->index[result->length++] = k;
        }
        v >>= 1;
      }
    }
  } //otherwise, index will remain NULL (and will never be touched by
    //the enumerator code anyway)
  en->context = result.orphan();
  return en.orphan();
}

/* check a string against the selector - UTF16 version */
U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForString(const UConverterSelector* sel,
                        const UChar *s, int32_t length, UErrorCode *status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return NULL;
  }
  // ensure args make sense!
  if (sel == NULL || (s == NULL && length != 0)) {
    *status = U_ILLEGAL_ARGUMENT_ERROR;
    return NULL;
  }

  int32_t columns = (sel->encodingsCount+31)/32;
  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
  if (mask == NULL) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return NULL;
  }
  uprv_memset(mask, ~0, columns *4);

  if(s!=NULL) {
    const UChar *limit;
    if (length >= 0) {
      limit = s + length;
    } else {
      limit = NULL;
    }

    while (limit == NULL ? *s != 0 : s != limit) {
      UChar32 c;
      uint16_t pvIndex;
      UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
        break;
      }
    }
  }
  return selectForMask(sel, mask, status);
}

/* check a string against the selector - UTF8 version */
U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForUTF8(const UConverterSelector* sel,
                      const char *s, int32_t length, UErrorCode *status) {
  // check if already failed
  if (U_FAILURE(*status)) {
    return NULL;
  }
  // ensure args make sense!
  if (sel == NULL || (s == NULL && length != 0)) {
    *status = U_ILLEGAL_ARGUMENT_ERROR;
    return NULL;
  }

  int32_t columns = (sel->encodingsCount+31)/32;
  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
  if (mask == NULL) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return NULL;
  }
  uprv_memset(mask, ~0, columns *4);

  if (length < 0) {
    length = (int32_t)uprv_strlen(s);
  }

  if(s!=NULL) {
    const char *limit = s + length;

    while (s != limit) {
      uint16_t pvIndex;
      UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
        break;
      }
    }
  }
  return selectForMask(sel, mask, status);
}

#endif  // !UCONFIG_NO_CONVERSION