// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SRC_UTIL_INL_H_ #define SRC_UTIL_INL_H_ #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #include #include #include "util.h" // These are defined by or on some systems. // To avoid warnings, undefine them before redefining them. #ifdef BSWAP_2 # undef BSWAP_2 #endif #ifdef BSWAP_4 # undef BSWAP_4 #endif #ifdef BSWAP_8 # undef BSWAP_8 #endif #if defined(_MSC_VER) #include #define BSWAP_2(x) _byteswap_ushort(x) #define BSWAP_4(x) _byteswap_ulong(x) #define BSWAP_8(x) _byteswap_uint64(x) #else #define BSWAP_2(x) ((x) << 8) | ((x) >> 8) #define BSWAP_4(x) \ (((x) & 0xFF) << 24) | \ (((x) & 0xFF00) << 8) | \ (((x) >> 8) & 0xFF00) | \ (((x) >> 24) & 0xFF) #define BSWAP_8(x) \ (((x) & 0xFF00000000000000ull) >> 56) | \ (((x) & 0x00FF000000000000ull) >> 40) | \ (((x) & 0x0000FF0000000000ull) >> 24) | \ (((x) & 0x000000FF00000000ull) >> 8) | \ (((x) & 0x00000000FF000000ull) << 8) | \ (((x) & 0x0000000000FF0000ull) << 24) | \ (((x) & 0x000000000000FF00ull) << 40) | \ (((x) & 0x00000000000000FFull) << 56) #endif namespace node { template ListNode::ListNode() : prev_(this), next_(this) {} template ListNode::~ListNode() { Remove(); } template void ListNode::Remove() { prev_->next_ = next_; next_->prev_ = prev_; prev_ = this; next_ = this; } template bool ListNode::IsEmpty() const { return prev_ == this; } template (T::*M)> ListHead::Iterator::Iterator(ListNode* node) : node_(node) {} template (T::*M)> T* ListHead::Iterator::operator*() const { return ContainerOf(M, node_); } template (T::*M)> const typename ListHead::Iterator& ListHead::Iterator::operator++() { node_ = node_->next_; return *this; } template (T::*M)> bool ListHead::Iterator::operator!=(const Iterator& that) const { return node_ != that.node_; } template (T::*M)> ListHead::~ListHead() { while (IsEmpty() == false) head_.next_->Remove(); } template (T::*M)> void ListHead::PushBack(T* element) { ListNode* that = &(element->*M); head_.prev_->next_ = that; that->prev_ = head_.prev_; that->next_ = &head_; head_.prev_ = that; } template (T::*M)> void ListHead::PushFront(T* element) { ListNode* that = &(element->*M); head_.next_->prev_ = that; that->prev_ = &head_; that->next_ = head_.next_; head_.next_ = that; } template (T::*M)> bool ListHead::IsEmpty() const { return head_.IsEmpty(); } template (T::*M)> T* ListHead::PopFront() { if (IsEmpty()) return nullptr; ListNode* node = head_.next_; node->Remove(); return ContainerOf(M, node); } template (T::*M)> typename ListHead::Iterator ListHead::begin() const { return Iterator(head_.next_); } template (T::*M)> typename ListHead::Iterator ListHead::end() const { return Iterator(const_cast*>(&head_)); } template constexpr uintptr_t OffsetOf(Inner Outer::*field) { return reinterpret_cast(&(static_cast(nullptr)->*field)); } template ContainerOfHelper::ContainerOfHelper(Inner Outer::*field, Inner* pointer) : pointer_( reinterpret_cast( reinterpret_cast(pointer) - OffsetOf(field))) {} template template ContainerOfHelper::operator TypeName*() const { return static_cast(pointer_); } template constexpr ContainerOfHelper ContainerOf(Inner Outer::*field, Inner* pointer) { return ContainerOfHelper(field, pointer); } inline v8::Local OneByteString(v8::Isolate* isolate, const char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local OneByteString(v8::Isolate* isolate, const signed char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local OneByteString(v8::Isolate* isolate, const unsigned char* data, int length) { return v8::String::NewFromOneByte( isolate, data, v8::NewStringType::kNormal, length) .ToLocalChecked(); } void SwapBytes16(char* data, size_t nbytes) { CHECK_EQ(nbytes % 2, 0); #if defined(_MSC_VER) int align = reinterpret_cast(data) % sizeof(uint16_t); if (align == 0) { // MSVC has no strict aliasing, and is able to highly optimize this case. uint16_t* data16 = reinterpret_cast(data); size_t len16 = nbytes / sizeof(*data16); for (size_t i = 0; i < len16; i++) { data16[i] = BSWAP_2(data16[i]); } return; } #endif uint16_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_2(temp); memcpy(&data[i], &temp, sizeof(temp)); } } void SwapBytes32(char* data, size_t nbytes) { CHECK_EQ(nbytes % 4, 0); #if defined(_MSC_VER) int align = reinterpret_cast(data) % sizeof(uint32_t); // MSVC has no strict aliasing, and is able to highly optimize this case. if (align == 0) { uint32_t* data32 = reinterpret_cast(data); size_t len32 = nbytes / sizeof(*data32); for (size_t i = 0; i < len32; i++) { data32[i] = BSWAP_4(data32[i]); } return; } #endif uint32_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_4(temp); memcpy(&data[i], &temp, sizeof(temp)); } } void SwapBytes64(char* data, size_t nbytes) { CHECK_EQ(nbytes % 8, 0); #if defined(_MSC_VER) int align = reinterpret_cast(data) % sizeof(uint64_t); if (align == 0) { // MSVC has no strict aliasing, and is able to highly optimize this case. uint64_t* data64 = reinterpret_cast(data); size_t len64 = nbytes / sizeof(*data64); for (size_t i = 0; i < len64; i++) { data64[i] = BSWAP_8(data64[i]); } return; } #endif uint64_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_8(temp); memcpy(&data[i], &temp, sizeof(temp)); } } char ToLower(char c) { return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c; } std::string ToLower(const std::string& in) { std::string out(in.size(), 0); for (size_t i = 0; i < in.size(); ++i) out[i] = ToLower(in[i]); return out; } char ToUpper(char c) { return c >= 'a' && c <= 'z' ? (c - 'a') + 'A' : c; } std::string ToUpper(const std::string& in) { std::string out(in.size(), 0); for (size_t i = 0; i < in.size(); ++i) out[i] = ToUpper(in[i]); return out; } bool StringEqualNoCase(const char* a, const char* b) { do { if (*a == '\0') return *b == '\0'; if (*b == '\0') return *a == '\0'; } while (ToLower(*a++) == ToLower(*b++)); return false; } bool StringEqualNoCaseN(const char* a, const char* b, size_t length) { for (size_t i = 0; i < length; i++) { if (ToLower(a[i]) != ToLower(b[i])) return false; if (a[i] == '\0') return true; } return true; } template inline T MultiplyWithOverflowCheck(T a, T b) { auto ret = a * b; if (a != 0) CHECK_EQ(b, ret / a); return ret; } // These should be used in our code as opposed to the native // versions as they abstract out some platform and or // compiler version specific functionality. // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in // that the standard allows them to either return a unique pointer or a // nullptr for zero-sized allocation requests. Normalize by always using // a nullptr. template T* UncheckedRealloc(T* pointer, size_t n) { size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n); if (full_size == 0) { free(pointer); return nullptr; } void* allocated = realloc(pointer, full_size); if (UNLIKELY(allocated == nullptr)) { // Tell V8 that memory is low and retry. LowMemoryNotification(); allocated = realloc(pointer, full_size); } return static_cast(allocated); } // As per spec realloc behaves like malloc if passed nullptr. template inline T* UncheckedMalloc(size_t n) { if (n == 0) n = 1; return UncheckedRealloc(nullptr, n); } template inline T* UncheckedCalloc(size_t n) { if (n == 0) n = 1; MultiplyWithOverflowCheck(sizeof(T), n); return static_cast(calloc(n, sizeof(T))); } template inline T* Realloc(T* pointer, size_t n) { T* ret = UncheckedRealloc(pointer, n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } template inline T* Malloc(size_t n) { T* ret = UncheckedMalloc(n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } template inline T* Calloc(size_t n) { T* ret = UncheckedCalloc(n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } // Shortcuts for char*. inline char* Malloc(size_t n) { return Malloc(n); } inline char* Calloc(size_t n) { return Calloc(n); } inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc(n); } inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc(n); } // This is a helper in the .cc file so including util-inl.h doesn't include more // headers than we really need to. void ThrowErrStringTooLong(v8::Isolate* isolate); v8::MaybeLocal ToV8Value(v8::Local context, const std::string& str, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); if (UNLIKELY(str.size() >= static_cast(v8::String::kMaxLength))) { // V8 only has a TODO comment about adding an exception when the maximum // string size is exceeded. ThrowErrStringTooLong(isolate); return v8::MaybeLocal(); } return v8::String::NewFromUtf8( isolate, str.data(), v8::NewStringType::kNormal, str.size()) .FromMaybe(v8::Local()); } template v8::MaybeLocal ToV8Value(v8::Local context, const std::vector& vec, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::EscapableHandleScope handle_scope(isolate); MaybeStackBuffer, 128> arr(vec.size()); arr.SetLength(vec.size()); for (size_t i = 0; i < vec.size(); ++i) { if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i])) return v8::MaybeLocal(); } return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length())); } template v8::MaybeLocal ToV8Value(v8::Local context, const std::unordered_map& map, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::EscapableHandleScope handle_scope(isolate); v8::Local ret = v8::Map::New(isolate); for (const auto& item : map) { v8::Local first, second; if (!ToV8Value(context, item.first, isolate).ToLocal(&first) || !ToV8Value(context, item.second, isolate).ToLocal(&second) || ret->Set(context, first, second).IsEmpty()) { return v8::MaybeLocal(); } } return handle_scope.Escape(ret); } template v8::MaybeLocal ToV8Value(v8::Local context, const T& number, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); using Limits = std::numeric_limits; // Choose Uint32, Int32, or Double depending on range checks. // These checks should all collapse at compile time. if (static_cast(Limits::max()) <= std::numeric_limits::max() && static_cast(Limits::min()) >= std::numeric_limits::min() && Limits::is_exact) { return v8::Integer::NewFromUnsigned(isolate, static_cast(number)); } if (static_cast(Limits::max()) <= std::numeric_limits::max() && static_cast(Limits::min()) >= std::numeric_limits::min() && Limits::is_exact) { return v8::Integer::New(isolate, static_cast(number)); } return v8::Number::New(isolate, static_cast(number)); } SlicedArguments::SlicedArguments( const v8::FunctionCallbackInfo& args, size_t start) { const size_t length = static_cast(args.Length()); if (start >= length) return; const size_t size = length - start; AllocateSufficientStorage(size); for (size_t i = 0; i < size; ++i) (*this)[i] = args[i + start]; } template ArrayBufferViewContents::ArrayBufferViewContents( v8::Local value) { CHECK(value->IsArrayBufferView()); Read(value.As()); } template ArrayBufferViewContents::ArrayBufferViewContents( v8::Local value) { CHECK(value->IsArrayBufferView()); Read(value.As()); } template ArrayBufferViewContents::ArrayBufferViewContents( v8::Local abv) { Read(abv); } template void ArrayBufferViewContents::Read(v8::Local abv) { static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment"); length_ = abv->ByteLength(); if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) { data_ = static_cast(abv->Buffer()->GetBackingStore()->Data()) + abv->ByteOffset(); } else { abv->CopyContents(stack_storage_, sizeof(stack_storage_)); data_ = stack_storage_; } } // ECMA262 20.1.2.5 inline bool IsSafeJsInt(v8::Local v) { if (!v->IsNumber()) return false; double v_d = v.As()->Value(); if (std::isnan(v_d)) return false; if (std::isinf(v_d)) return false; if (std::trunc(v_d) != v_d) return false; // not int if (std::abs(v_d) <= static_cast(kMaxSafeJsInteger)) return true; return false; } } // namespace node #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #endif // SRC_UTIL_INL_H_