#ifndef SRC_UTIL_INL_H_ #define SRC_UTIL_INL_H_ #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #include "util.h" #include #if defined(_MSC_VER) #include #define BSWAP_2(x) _byteswap_ushort(x) #define BSWAP_4(x) _byteswap_ulong(x) #define BSWAP_8(x) _byteswap_uint64(x) #else #define BSWAP_2(x) ((x) << 8) | ((x) >> 8) #define BSWAP_4(x) \ (((x) & 0xFF) << 24) | \ (((x) & 0xFF00) << 8) | \ (((x) >> 8) & 0xFF00) | \ (((x) >> 24) & 0xFF) #define BSWAP_8(x) \ (((x) & 0xFF00000000000000ull) >> 56) | \ (((x) & 0x00FF000000000000ull) >> 40) | \ (((x) & 0x0000FF0000000000ull) >> 24) | \ (((x) & 0x000000FF00000000ull) >> 8) | \ (((x) & 0x00000000FF000000ull) << 8) | \ (((x) & 0x0000000000FF0000ull) << 24) | \ (((x) & 0x000000000000FF00ull) << 40) | \ (((x) & 0x00000000000000FFull) << 56) #endif namespace node { template ListNode::ListNode() : prev_(this), next_(this) {} template ListNode::~ListNode() { Remove(); } template void ListNode::Remove() { prev_->next_ = next_; next_->prev_ = prev_; prev_ = this; next_ = this; } template bool ListNode::IsEmpty() const { return prev_ == this; } template (T::*M)> ListHead::Iterator::Iterator(ListNode* node) : node_(node) {} template (T::*M)> T* ListHead::Iterator::operator*() const { return ContainerOf(M, node_); } template (T::*M)> const typename ListHead::Iterator& ListHead::Iterator::operator++() { node_ = node_->next_; return *this; } template (T::*M)> bool ListHead::Iterator::operator!=(const Iterator& that) const { return node_ != that.node_; } template (T::*M)> ListHead::~ListHead() { while (IsEmpty() == false) head_.next_->Remove(); } template (T::*M)> void ListHead::MoveBack(ListHead* that) { if (IsEmpty()) return; ListNode* to = &that->head_; head_.next_->prev_ = to->prev_; to->prev_->next_ = head_.next_; head_.prev_->next_ = to; to->prev_ = head_.prev_; head_.prev_ = &head_; head_.next_ = &head_; } template (T::*M)> void ListHead::PushBack(T* element) { ListNode* that = &(element->*M); head_.prev_->next_ = that; that->prev_ = head_.prev_; that->next_ = &head_; head_.prev_ = that; } template (T::*M)> void ListHead::PushFront(T* element) { ListNode* that = &(element->*M); head_.next_->prev_ = that; that->prev_ = &head_; that->next_ = head_.next_; head_.next_ = that; } template (T::*M)> bool ListHead::IsEmpty() const { return head_.IsEmpty(); } template (T::*M)> T* ListHead::PopFront() { if (IsEmpty()) return nullptr; ListNode* node = head_.next_; node->Remove(); return ContainerOf(M, node); } template (T::*M)> typename ListHead::Iterator ListHead::begin() const { return Iterator(head_.next_); } template (T::*M)> typename ListHead::Iterator ListHead::end() const { return Iterator(const_cast*>(&head_)); } template ContainerOfHelper::ContainerOfHelper(Inner Outer::*field, Inner* pointer) : pointer_(reinterpret_cast( reinterpret_cast(pointer) - reinterpret_cast(&(static_cast(0)->*field)))) { } template template ContainerOfHelper::operator TypeName*() const { return static_cast(pointer_); } template inline ContainerOfHelper ContainerOf(Inner Outer::*field, Inner* pointer) { return ContainerOfHelper(field, pointer); } template inline v8::Local PersistentToLocal( v8::Isolate* isolate, const v8::Persistent& persistent) { if (persistent.IsWeak()) { return WeakPersistentToLocal(isolate, persistent); } else { return StrongPersistentToLocal(persistent); } } template inline v8::Local StrongPersistentToLocal( const v8::Persistent& persistent) { return *reinterpret_cast*>( const_cast*>(&persistent)); } template inline v8::Local WeakPersistentToLocal( v8::Isolate* isolate, const v8::Persistent& persistent) { return v8::Local::New(isolate, persistent); } inline v8::Local OneByteString(v8::Isolate* isolate, const char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local OneByteString(v8::Isolate* isolate, const signed char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local OneByteString(v8::Isolate* isolate, const unsigned char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } template void Wrap(v8::Local object, TypeName* pointer) { CHECK_EQ(false, object.IsEmpty()); CHECK_GT(object->InternalFieldCount(), 0); object->SetAlignedPointerInInternalField(0, pointer); } void ClearWrap(v8::Local object) { Wrap(object, nullptr); } template TypeName* Unwrap(v8::Local object) { CHECK_EQ(false, object.IsEmpty()); CHECK_GT(object->InternalFieldCount(), 0); void* pointer = object->GetAlignedPointerFromInternalField(0); return static_cast(pointer); } void SwapBytes16(char* data, size_t nbytes) { CHECK_EQ(nbytes % 2, 0); #if defined(_MSC_VER) int align = reinterpret_cast(data) % sizeof(uint16_t); if (align == 0) { // MSVC has no strict aliasing, and is able to highly optimize this case. uint16_t* data16 = reinterpret_cast(data); size_t len16 = nbytes / sizeof(*data16); for (size_t i = 0; i < len16; i++) { data16[i] = BSWAP_2(data16[i]); } return; } #endif uint16_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_2(temp); memcpy(&data[i], &temp, sizeof(temp)); } } void SwapBytes32(char* data, size_t nbytes) { CHECK_EQ(nbytes % 4, 0); #if defined(_MSC_VER) int align = reinterpret_cast(data) % sizeof(uint32_t); // MSVC has no strict aliasing, and is able to highly optimize this case. if (align == 0) { uint32_t* data32 = reinterpret_cast(data); size_t len32 = nbytes / sizeof(*data32); for (size_t i = 0; i < len32; i++) { data32[i] = BSWAP_4(data32[i]); } return; } #endif uint32_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_4(temp); memcpy(&data[i], &temp, sizeof(temp)); } } void SwapBytes64(char* data, size_t nbytes) { CHECK_EQ(nbytes % 8, 0); #if defined(_MSC_VER) int align = reinterpret_cast(data) % sizeof(uint64_t); if (align == 0) { // MSVC has no strict aliasing, and is able to highly optimize this case. uint64_t* data64 = reinterpret_cast(data); size_t len64 = nbytes / sizeof(*data64); for (size_t i = 0; i < len64; i++) { data64[i] = BSWAP_8(data64[i]); } return; } #endif uint64_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_8(temp); memcpy(&data[i], &temp, sizeof(temp)); } } char ToLower(char c) { return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c; } bool StringEqualNoCase(const char* a, const char* b) { do { if (*a == '\0') return *b == '\0'; if (*b == '\0') return *a == '\0'; } while (ToLower(*a++) == ToLower(*b++)); return false; } bool StringEqualNoCaseN(const char* a, const char* b, size_t length) { for (size_t i = 0; i < length; i++) { if (ToLower(a[i]) != ToLower(b[i])) return false; if (a[i] == '\0') return true; } return true; } inline size_t MultiplyWithOverflowCheck(size_t a, size_t b) { size_t ret = a * b; if (a != 0) CHECK_EQ(b, ret / a); return ret; } // These should be used in our code as opposed to the native // versions as they abstract out some platform and or // compiler version specific functionality. // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in // that the standard allows them to either return a unique pointer or a // nullptr for zero-sized allocation requests. Normalize by always using // a nullptr. template T* UncheckedRealloc(T* pointer, size_t n) { size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n); if (full_size == 0) { free(pointer); return nullptr; } void* allocated = realloc(pointer, full_size); if (UNLIKELY(allocated == nullptr)) { // Tell V8 that memory is low and retry. LowMemoryNotification(); allocated = realloc(pointer, full_size); } return static_cast(allocated); } // As per spec realloc behaves like malloc if passed nullptr. template T* UncheckedMalloc(size_t n) { if (n == 0) n = 1; return UncheckedRealloc(nullptr, n); } template T* UncheckedCalloc(size_t n) { if (n == 0) n = 1; MultiplyWithOverflowCheck(sizeof(T), n); return static_cast(calloc(n, sizeof(T))); } template T* Realloc(T* pointer, size_t n) { T* ret = UncheckedRealloc(pointer, n); if (n > 0) CHECK_NE(ret, nullptr); return ret; } template T* Malloc(size_t n) { T* ret = UncheckedMalloc(n); if (n > 0) CHECK_NE(ret, nullptr); return ret; } template T* Calloc(size_t n) { T* ret = UncheckedCalloc(n); if (n > 0) CHECK_NE(ret, nullptr); return ret; } } // namespace node #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #endif // SRC_UTIL_INL_H_