// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef SRC_STRING_SEARCH_H_ #define SRC_STRING_SEARCH_H_ #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #include "util.h" #include #include namespace node { namespace stringsearch { template class Vector { public: Vector(T* data, size_t length, bool isForward) : start_(data), length_(length), is_forward_(isForward) { CHECK(length > 0 && data != nullptr); } // Returns the start of the memory range. // For vector v this is NOT necessarily &v[0], see forward(). const T* start() const { return start_; } // Returns the length of the vector, in characters. size_t length() const { return length_; } // Returns true if the Vector is front-to-back, false if back-to-front. // In the latter case, v[0] corresponds to the *end* of the memory range. size_t forward() const { return is_forward_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](size_t index) const { DCHECK_LT(index, length_); return start_[is_forward_ ? index : (length_ - index - 1)]; } private: T* start_; size_t length_; bool is_forward_; }; //--------------------------------------------------------------------- // String Search object. //--------------------------------------------------------------------- // Class holding constants and methods that apply to all string search variants, // independently of subject and pattern char size. class StringSearchBase { protected: // Cap on the maximal shift in the Boyer-Moore implementation. By setting a // limit, we can fix the size of tables. For a needle longer than this limit, // search will not be optimal, since we only build tables for a suffix // of the string, but it is a safe approximation. static const int kBMMaxShift = 250; // Reduce alphabet to this size. // One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size // proportional to the input alphabet. We reduce the alphabet size by // equating input characters modulo a smaller alphabet size. This gives // a potentially less efficient searching, but is a safe approximation. // For needles using only characters in the same Unicode 256-code point page, // there is no search speed degradation. static const int kLatin1AlphabetSize = 256; static const int kUC16AlphabetSize = 256; // Bad-char shift table stored in the state. It's length is the alphabet size. // For patterns below this length, the skip length of Boyer-Moore is too short // to compensate for the algorithmic overhead compared to simple brute force. static const int kBMMinPatternLength = 8; // Store for the BoyerMoore(Horspool) bad char shift table. int bad_char_shift_table_[kUC16AlphabetSize]; // Store for the BoyerMoore good suffix shift table. int good_suffix_shift_table_[kBMMaxShift + 1]; // Table used temporarily while building the BoyerMoore good suffix // shift table. int suffix_table_[kBMMaxShift + 1]; }; template class StringSearch : private StringSearchBase { public: typedef stringsearch::Vector Vector; explicit StringSearch(Vector pattern) : pattern_(pattern), start_(0) { if (pattern.length() >= kBMMaxShift) { start_ = pattern.length() - kBMMaxShift; } size_t pattern_length = pattern_.length(); CHECK_GT(pattern_length, 0); if (pattern_length < kBMMinPatternLength) { if (pattern_length == 1) { strategy_ = &StringSearch::SingleCharSearch; return; } strategy_ = &StringSearch::LinearSearch; return; } strategy_ = &StringSearch::InitialSearch; } size_t Search(Vector subject, size_t index) { return (this->*strategy_)(subject, index); } static inline int AlphabetSize() { if (sizeof(Char) == 1) { // Latin1 needle. return kLatin1AlphabetSize; } else { // UC16 needle. return kUC16AlphabetSize; } static_assert(sizeof(Char) == sizeof(uint8_t) || sizeof(Char) == sizeof(uint16_t), "sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)"); } private: typedef size_t (StringSearch::*SearchFunction)(Vector, size_t); size_t SingleCharSearch(Vector subject, size_t start_index); size_t LinearSearch(Vector subject, size_t start_index); size_t InitialSearch(Vector subject, size_t start_index); size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index); size_t BoyerMooreSearch(Vector subject, size_t start_index); void PopulateBoyerMooreHorspoolTable(); void PopulateBoyerMooreTable(); static inline int CharOccurrence(int* bad_char_occurrence, Char char_code) { if (sizeof(Char) == 1) { return bad_char_occurrence[static_cast(char_code)]; } // Both pattern and subject are UC16. Reduce character to equivalence class. int equiv_class = char_code % kUC16AlphabetSize; return bad_char_occurrence[equiv_class]; } // The pattern to search for. Vector pattern_; // Pointer to implementation of the search. SearchFunction strategy_; // Cache value of Max(0, pattern_length() - kBMMaxShift) size_t start_; }; template inline T AlignDown(T value, U alignment) { return reinterpret_cast( (reinterpret_cast(value) & ~(alignment - 1))); } inline uint8_t GetHighestValueByte(uint16_t character) { return std::max(static_cast(character & 0xFF), static_cast(character >> 8)); } inline uint8_t GetHighestValueByte(uint8_t character) { return character; } // Searches for a byte value in a memory buffer, back to front. // Uses memrchr(3) on systems which support it, for speed. // Falls back to a vanilla for loop on non-GNU systems such as Windows. inline const void* MemrchrFill(const void* haystack, uint8_t needle, size_t haystack_len) { #ifdef _GNU_SOURCE return memrchr(haystack, needle, haystack_len); #else const uint8_t* haystack8 = static_cast(haystack); for (size_t i = haystack_len - 1; i != static_cast(-1); i--) { if (haystack8[i] == needle) { return haystack8 + i; } } return nullptr; #endif } // Finds the first occurrence of *two-byte* character pattern[0] in the string // `subject`. Does not check that the whole pattern matches. template inline size_t FindFirstCharacter(Vector pattern, Vector subject, size_t index) { const Char pattern_first_char = pattern[0]; const size_t max_n = (subject.length() - pattern.length() + 1); // For speed, search for the more `rare` of the two bytes in pattern[0] // using memchr / memrchr (which are much faster than a simple for loop). const uint8_t search_byte = GetHighestValueByte(pattern_first_char); size_t pos = index; do { const size_t bytes_to_search = (max_n - pos) * sizeof(Char); const void* void_pos; if (subject.forward()) { // Assert that bytes_to_search won't overflow CHECK_LE(pos, max_n); CHECK_LE(max_n - pos, SIZE_MAX / sizeof(Char)); void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search); } else { CHECK_LE(pos, subject.length()); CHECK_LE(subject.length() - pos, SIZE_MAX / sizeof(Char)); void_pos = MemrchrFill(subject.start() + pattern.length() - 1, search_byte, bytes_to_search); } const Char* char_pos = static_cast(void_pos); if (char_pos == nullptr) return subject.length(); // Then, for each match, verify that the full two bytes match pattern[0]. char_pos = AlignDown(char_pos, sizeof(Char)); size_t raw_pos = static_cast(char_pos - subject.start()); pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1); if (subject[pos] == pattern_first_char) { // Match found, hooray. return pos; } // Search byte matched, but the other byte of pattern[0] didn't. Keep going. } while (++pos < max_n); return subject.length(); } // Finds the first occurrence of the byte pattern[0] in string `subject`. // Does not verify that the whole pattern matches. template <> inline size_t FindFirstCharacter(Vector pattern, Vector subject, size_t index) { const uint8_t pattern_first_char = pattern[0]; const size_t subj_len = subject.length(); const size_t max_n = (subject.length() - pattern.length() + 1); const void* pos; if (subject.forward()) { pos = memchr(subject.start() + index, pattern_first_char, max_n - index); } else { pos = MemrchrFill(subject.start() + pattern.length() - 1, pattern_first_char, max_n - index); } const uint8_t* char_pos = static_cast(pos); if (char_pos == nullptr) { return subj_len; } size_t raw_pos = static_cast(char_pos - subject.start()); return subject.forward() ? raw_pos : (subj_len - raw_pos - 1); } //--------------------------------------------------------------------- // Single Character Pattern Search Strategy //--------------------------------------------------------------------- template size_t StringSearch::SingleCharSearch( Vector subject, size_t index) { CHECK_EQ(1, pattern_.length()); return FindFirstCharacter(pattern_, subject, index); } //--------------------------------------------------------------------- // Linear Search Strategy //--------------------------------------------------------------------- // Simple linear search for short patterns. Never bails out. template size_t StringSearch::LinearSearch( Vector subject, size_t index) { CHECK_GT(pattern_.length(), 1); const size_t n = subject.length() - pattern_.length(); for (size_t i = index; i <= n; i++) { i = FindFirstCharacter(pattern_, subject, i); if (i == subject.length()) return subject.length(); CHECK_LE(i, n); bool matches = true; for (size_t j = 1; j < pattern_.length(); j++) { if (pattern_[j] != subject[i + j]) { matches = false; break; } } if (matches) { return i; } } return subject.length(); } //--------------------------------------------------------------------- // Boyer-Moore string search //--------------------------------------------------------------------- template size_t StringSearch::BoyerMooreSearch( Vector subject, size_t start_index) { const size_t subject_length = subject.length(); const size_t pattern_length = pattern_.length(); // Only preprocess at most kBMMaxShift last characters of pattern. size_t start = start_; int* bad_char_occurrence = bad_char_shift_table_; int* good_suffix_shift = good_suffix_shift_table_ - start_; Char last_char = pattern_[pattern_length - 1]; size_t index = start_index; // Continue search from i. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int c; while (last_char != (c = subject[index + j])) { int shift = j - CharOccurrence(bad_char_occurrence, c); index += shift; if (index > subject_length - pattern_length) { return subject.length(); } } while (pattern_[j] == (c = subject[index + j])) { if (j == 0) { return index; } j--; } if (j < start) { // we have matched more than our tables allow us to be smart about. // Fall back on BMH shift. index += pattern_length - 1 - CharOccurrence(bad_char_occurrence, last_char); } else { int gs_shift = good_suffix_shift[j + 1]; int bc_occ = CharOccurrence(bad_char_occurrence, c); int shift = j - bc_occ; if (gs_shift > shift) { shift = gs_shift; } index += shift; } } return subject.length(); } template void StringSearch::PopulateBoyerMooreTable() { const size_t pattern_length = pattern_.length(); // Only look at the last kBMMaxShift characters of pattern (from start_ // to pattern_length). const size_t start = start_; const size_t length = pattern_length - start; // Biased tables so that we can use pattern indices as table indices, // even if we only cover the part of the pattern from offset start. int* shift_table = good_suffix_shift_table_ - start_; int* suffix_table = suffix_table_ - start_; // Initialize table. for (size_t i = start; i < pattern_length; i++) { shift_table[i] = length; } shift_table[pattern_length] = 1; suffix_table[pattern_length] = pattern_length + 1; if (pattern_length <= start) { return; } // Find suffixes. Char last_char = pattern_[pattern_length - 1]; size_t suffix = pattern_length + 1; { size_t i = pattern_length; while (i > start) { Char c = pattern_[i - 1]; while (suffix <= pattern_length && c != pattern_[suffix - 1]) { if (static_cast(shift_table[suffix]) == length) { shift_table[suffix] = suffix - i; } suffix = suffix_table[suffix]; } suffix_table[--i] = --suffix; if (suffix == pattern_length) { // No suffix to extend, so we check against last_char only. while ((i > start) && (pattern_[i - 1] != last_char)) { if (static_cast(shift_table[pattern_length]) == length) { shift_table[pattern_length] = pattern_length - i; } suffix_table[--i] = pattern_length; } if (i > start) { suffix_table[--i] = --suffix; } } } } // Build shift table using suffixes. if (suffix < pattern_length) { for (size_t i = start; i <= pattern_length; i++) { if (static_cast(shift_table[i]) == length) { shift_table[i] = suffix - start; } if (i == suffix) { suffix = suffix_table[suffix]; } } } } //--------------------------------------------------------------------- // Boyer-Moore-Horspool string search. //--------------------------------------------------------------------- template size_t StringSearch::BoyerMooreHorspoolSearch( Vector subject, size_t start_index) { const size_t subject_length = subject.length(); const size_t pattern_length = pattern_.length(); int* char_occurrences = bad_char_shift_table_; int64_t badness = -pattern_length; // How bad we are doing without a good-suffix table. Char last_char = pattern_[pattern_length - 1]; int last_char_shift = pattern_length - 1 - CharOccurrence(char_occurrences, last_char); // Perform search size_t index = start_index; // No matches found prior to this index. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int subject_char; while (last_char != (subject_char = subject[index + j])) { int bc_occ = CharOccurrence(char_occurrences, subject_char); int shift = j - bc_occ; index += shift; badness += 1 - shift; // at most zero, so badness cannot increase. if (index > subject_length - pattern_length) { return subject_length; } } j--; while (pattern_[j] == (subject[index + j])) { if (j == 0) { return index; } j--; } index += last_char_shift; // Badness increases by the number of characters we have // checked, and decreases by the number of characters we // can skip by shifting. It's a measure of how we are doing // compared to reading each character exactly once. badness += (pattern_length - j) - last_char_shift; if (badness > 0) { PopulateBoyerMooreTable(); strategy_ = &StringSearch::BoyerMooreSearch; return BoyerMooreSearch(subject, index); } } return subject.length(); } template void StringSearch::PopulateBoyerMooreHorspoolTable() { const size_t pattern_length = pattern_.length(); int* bad_char_occurrence = bad_char_shift_table_; // Only preprocess at most kBMMaxShift last characters of pattern. const size_t start = start_; // Run forwards to populate bad_char_table, so that *last* instance // of character equivalence class is the one registered. // Notice: Doesn't include the last character. const size_t table_size = AlphabetSize(); if (start == 0) { // All patterns less than kBMMaxShift in length. memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence)); } else { for (size_t i = 0; i < table_size; i++) { bad_char_occurrence[i] = start - 1; } } for (size_t i = start; i < pattern_length - 1; i++) { Char c = pattern_[i]; int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize(); bad_char_occurrence[bucket] = i; } } //--------------------------------------------------------------------- // Linear string search with bailout to BMH. //--------------------------------------------------------------------- // Simple linear search for short patterns, which bails out if the string // isn't found very early in the subject. Upgrades to BoyerMooreHorspool. template size_t StringSearch::InitialSearch( Vector subject, size_t index) { const size_t pattern_length = pattern_.length(); // Badness is a count of how much work we have done. When we have // done enough work we decide it's probably worth switching to a better // algorithm. int64_t badness = -10 - (pattern_length << 2); // We know our pattern is at least 2 characters, we cache the first so // the common case of the first character not matching is faster. for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) { badness++; if (badness <= 0) { i = FindFirstCharacter(pattern_, subject, i); if (i == subject.length()) return subject.length(); CHECK_LE(i, n); size_t j = 1; do { if (pattern_[j] != subject[i + j]) { break; } j++; } while (j < pattern_length); if (j == pattern_length) { return i; } badness += j; } else { PopulateBoyerMooreHorspoolTable(); strategy_ = &StringSearch::BoyerMooreHorspoolSearch; return BoyerMooreHorspoolSearch(subject, i); } } return subject.length(); } // Perform a single stand-alone search. // If searching multiple times for the same pattern, a search // object should be constructed once and the Search function then called // for each search. template size_t SearchString(Vector subject, Vector pattern, size_t start_index) { StringSearch search(pattern); return search.Search(subject, start_index); } } // namespace stringsearch } // namespace node namespace node { template size_t SearchString(const Char* haystack, size_t haystack_length, const Char* needle, size_t needle_length, size_t start_index, bool is_forward) { if (haystack_length < needle_length) return haystack_length; // To do a reverse search (lastIndexOf instead of indexOf) without redundant // code, create two vectors that are reversed views into the input strings. // For example, v_needle[0] would return the *last* character of the needle. // So we're searching for the first instance of rev(needle) in rev(haystack) stringsearch::Vector v_needle(needle, needle_length, is_forward); stringsearch::Vector v_haystack( haystack, haystack_length, is_forward); size_t diff = haystack_length - needle_length; size_t relative_start_index; if (is_forward) { relative_start_index = start_index; } else if (diff < start_index) { relative_start_index = 0; } else { relative_start_index = diff - start_index; } size_t pos = node::stringsearch::SearchString( v_haystack, v_needle, relative_start_index); if (pos == haystack_length) { // not found return pos; } return is_forward ? pos : (haystack_length - needle_length - pos); } template size_t SearchString(const char* haystack, size_t haystack_length, const char (&needle)[N]) { return SearchString( reinterpret_cast(haystack), haystack_length, reinterpret_cast(needle), N - 1, 0, true); } } // namespace node #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #endif // SRC_STRING_SEARCH_H_