// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef SRC_STRING_SEARCH_H_ #define SRC_STRING_SEARCH_H_ #include "node.h" #include namespace node { namespace stringsearch { // Returns the maximum of the two parameters. template T Max(T a, T b) { return a < b ? b : a; } static const uint32_t kMaxOneByteCharCodeU = 0xff; static inline size_t NonOneByteStart(const uint16_t* chars, size_t length) { const uint16_t* limit = chars + length; const uint16_t* start = chars; while (chars < limit) { if (*chars > kMaxOneByteCharCodeU) return static_cast(chars - start); ++chars; } return static_cast(chars - start); } static inline bool IsOneByte(const uint16_t* chars, size_t length) { return NonOneByteStart(chars, length) >= length; } template class Vector { public: Vector(T* data, size_t length) : start_(data), length_(length) { ASSERT(length > 0 && data != nullptr); } // Returns the length of the vector. size_t length() const { return length_; } T* start() const { return start_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](size_t index) const { ASSERT(0 <= index && index < length_); return start_[index]; } const T& at(size_t index) const { return operator[](index); } bool operator==(const Vector& other) const { if (length_ != other.length_) return false; if (start_ == other.start_) return true; for (size_t i = 0; i < length_; ++i) { if (start_[i] != other.start_[i]) { return false; } } return true; } private: T* start_; size_t length_; }; //--------------------------------------------------------------------- // String Search object. //--------------------------------------------------------------------- // Class holding constants and methods that apply to all string search variants, // independently of subject and pattern char size. class StringSearchBase { protected: // Cap on the maximal shift in the Boyer-Moore implementation. By setting a // limit, we can fix the size of tables. For a needle longer than this limit, // search will not be optimal, since we only build tables for a suffix // of the string, but it is a safe approximation. static const int kBMMaxShift = 250; // Reduce alphabet to this size. // One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size // proportional to the input alphabet. We reduce the alphabet size by // equating input characters modulo a smaller alphabet size. This gives // a potentially less efficient searching, but is a safe approximation. // For needles using only characters in the same Unicode 256-code point page, // there is no search speed degradation. static const int kLatin1AlphabetSize = 256; static const int kUC16AlphabetSize = 256; // Bad-char shift table stored in the state. It's length is the alphabet size. // For patterns below this length, the skip length of Boyer-Moore is too short // to compensate for the algorithmic overhead compared to simple brute force. static const int kBMMinPatternLength = 8; // Store for the BoyerMoore(Horspool) bad char shift table. static int kBadCharShiftTable[kUC16AlphabetSize]; // Store for the BoyerMoore good suffix shift table. static int kGoodSuffixShiftTable[kBMMaxShift + 1]; // Table used temporarily while building the BoyerMoore good suffix // shift table. static int kSuffixTable[kBMMaxShift + 1]; static inline bool IsOneByteString(Vector string) { return true; } static inline bool IsOneByteString(Vector string) { return IsOneByte(string.start(), string.length()); } }; template class StringSearch : private StringSearchBase { public: explicit StringSearch(Vector pattern) : pattern_(pattern), start_(0) { if (pattern.length() >= kBMMaxShift) { start_ = pattern.length() - kBMMaxShift; } if (sizeof(PatternChar) > sizeof(SubjectChar)) { if (!IsOneByteString(pattern_)) { strategy_ = &FailSearch; return; } } size_t pattern_length = pattern_.length(); CHECK_GT(pattern_length, 0); if (pattern_length < kBMMinPatternLength) { if (pattern_length == 1) { strategy_ = &SingleCharSearch; return; } strategy_ = &LinearSearch; return; } strategy_ = &InitialSearch; } size_t Search(Vector subject, size_t index) { return strategy_(this, subject, index); } static inline int AlphabetSize() { if (sizeof(PatternChar) == 1) { // Latin1 needle. return kLatin1AlphabetSize; } else { // UC16 needle. return kUC16AlphabetSize; } static_assert(sizeof(PatternChar) == sizeof(uint8_t) || sizeof(PatternChar) == sizeof(uint16_t), "sizeof(PatternChar) == sizeof(uint16_t) || sizeof(uint8_t)"); } private: typedef size_t (*SearchFunction)( // NOLINT - it's not a cast! StringSearch*, Vector, size_t); static size_t FailSearch(StringSearch*, Vector subject, size_t) { return subject.length(); } static size_t SingleCharSearch(StringSearch* search, Vector subject, size_t start_index); static size_t LinearSearch(StringSearch* search, Vector subject, size_t start_index); static size_t InitialSearch(StringSearch* search, Vector subject, size_t start_index); static size_t BoyerMooreHorspoolSearch( StringSearch* search, Vector subject, size_t start_index); static size_t BoyerMooreSearch(StringSearch* search, Vector subject, size_t start_index); void PopulateBoyerMooreHorspoolTable(); void PopulateBoyerMooreTable(); static inline bool exceedsOneByte(uint8_t c) { return false; } static inline bool exceedsOneByte(uint16_t c) { return c > kMaxOneByteCharCodeU; } static inline int CharOccurrence(int* bad_char_occurrence, SubjectChar char_code) { if (sizeof(SubjectChar) == 1) { return bad_char_occurrence[static_cast(char_code)]; } if (sizeof(PatternChar) == 1) { if (exceedsOneByte(char_code)) { return -1; } return bad_char_occurrence[static_cast(char_code)]; } // Both pattern and subject are UC16. Reduce character to equivalence class. int equiv_class = char_code % kUC16AlphabetSize; return bad_char_occurrence[equiv_class]; } // Store for the BoyerMoore(Horspool) bad char shift table. // Return a table covering the last kBMMaxShift+1 positions of // pattern. int* bad_char_table() { return kBadCharShiftTable; } // Store for the BoyerMoore good suffix shift table. int* good_suffix_shift_table() { // Return biased pointer that maps the range [start_..pattern_.length() // to the kGoodSuffixShiftTable array. return kGoodSuffixShiftTable - start_; } // Table used temporarily while building the BoyerMoore good suffix // shift table. int* suffix_table() { // Return biased pointer that maps the range [start_..pattern_.length() // to the kSuffixTable array. return kSuffixTable - start_; } // The pattern to search for. Vector pattern_; // Pointer to implementation of the search. SearchFunction strategy_; // Cache value of Max(0, pattern_length() - kBMMaxShift) size_t start_; }; template inline T AlignDown(T value, U alignment) { return reinterpret_cast( (reinterpret_cast(value) & ~(alignment - 1))); } inline uint8_t GetHighestValueByte(uint16_t character) { return Max(static_cast(character & 0xFF), static_cast(character >> 8)); } inline uint8_t GetHighestValueByte(uint8_t character) { return character; } template inline size_t FindFirstCharacter(Vector pattern, Vector subject, size_t index) { const PatternChar pattern_first_char = pattern[0]; const size_t max_n = (subject.length() - pattern.length() + 1); const uint8_t search_byte = GetHighestValueByte(pattern_first_char); const SubjectChar search_char = static_cast(pattern_first_char); size_t pos = index; do { const SubjectChar* char_pos = reinterpret_cast( memchr(subject.start() + pos, search_byte, (max_n - pos) * sizeof(SubjectChar))); if (char_pos == nullptr) return subject.length(); char_pos = AlignDown(char_pos, sizeof(SubjectChar)); pos = static_cast(char_pos - subject.start()); if (subject[pos] == search_char) return pos; } while (++pos < max_n); return subject.length(); } template <> inline size_t FindFirstCharacter(Vector pattern, Vector subject, size_t index) { const uint8_t pattern_first_char = pattern[0]; const size_t max_n = (subject.length() - pattern.length() + 1); const uint8_t* char_pos = reinterpret_cast( memchr(subject.start() + index, pattern_first_char, max_n - index)); if (char_pos == nullptr) return subject.length(); return static_cast(char_pos - subject.start()); } //--------------------------------------------------------------------- // Single Character Pattern Search Strategy //--------------------------------------------------------------------- template size_t StringSearch::SingleCharSearch( StringSearch* search, Vector subject, size_t index) { CHECK_EQ(1, search->pattern_.length()); PatternChar pattern_first_char = search->pattern_[0]; if (sizeof(SubjectChar) == 1 && sizeof(PatternChar) == 1) { return FindFirstCharacter(search->pattern_, subject, index); } else { if (sizeof(PatternChar) > sizeof(SubjectChar)) { if (exceedsOneByte(pattern_first_char)) { return -1; } } return FindFirstCharacter(search->pattern_, subject, index); } } //--------------------------------------------------------------------- // Linear Search Strategy //--------------------------------------------------------------------- template inline bool CharCompare(const PatternChar* pattern, const SubjectChar* subject, size_t length) { ASSERT_GT(length, 0); size_t pos = 0; do { if (pattern[pos] != subject[pos]) { return false; } pos++; } while (pos < length); return true; } // Simple linear search for short patterns. Never bails out. template size_t StringSearch::LinearSearch( StringSearch* search, Vector subject, size_t index) { Vector pattern = search->pattern_; CHECK_GT(pattern.length(), 1); const size_t pattern_length = pattern.length(); size_t i = index; const size_t n = subject.length() - pattern_length; while (i <= n) { i = FindFirstCharacter(pattern, subject, i); if (i == subject.length()) return subject.length(); ASSERT_LE(i, n); i++; // Loop extracted to separate function to allow using return to do // a deeper break. if (CharCompare(pattern.start() + 1, subject.start() + i, pattern_length - 1)) { return i - 1; } } return subject.length(); } //--------------------------------------------------------------------- // Boyer-Moore string search //--------------------------------------------------------------------- template size_t StringSearch::BoyerMooreSearch( StringSearch* search, Vector subject, size_t start_index) { Vector pattern = search->pattern_; const size_t subject_length = subject.length(); const size_t pattern_length = pattern.length(); // Only preprocess at most kBMMaxShift last characters of pattern. size_t start = search->start_; int* bad_char_occurence = search->bad_char_table(); int* good_suffix_shift = search->good_suffix_shift_table(); PatternChar last_char = pattern[pattern_length - 1]; size_t index = start_index; // Continue search from i. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int c; while (last_char != (c = subject[index + j])) { int shift = j - CharOccurrence(bad_char_occurence, c); index += shift; if (index > subject_length - pattern_length) { return subject.length(); } } while (j >= 0 && pattern[j] == (c = subject[index + j])) { if (j == 0) { return index; } j--; } if (j < start) { // we have matched more than our tables allow us to be smart about. // Fall back on BMH shift. index += pattern_length - 1 - CharOccurrence(bad_char_occurence, static_cast(last_char)); } else { int gs_shift = good_suffix_shift[j + 1]; int bc_occ = CharOccurrence(bad_char_occurence, c); int shift = j - bc_occ; if (gs_shift > shift) { shift = gs_shift; } index += shift; } } return subject.length(); } template void StringSearch::PopulateBoyerMooreTable() { const size_t pattern_length = pattern_.length(); const PatternChar* pattern = pattern_.start(); // Only look at the last kBMMaxShift characters of pattern (from start_ // to pattern_length). const size_t start = start_; const size_t length = pattern_length - start; // Biased tables so that we can use pattern indices as table indices, // even if we only cover the part of the pattern from offset start. int* shift_table = good_suffix_shift_table(); int* suffix_table = this->suffix_table(); // Initialize table. for (size_t i = start; i < pattern_length; i++) { shift_table[i] = length; } shift_table[pattern_length] = 1; suffix_table[pattern_length] = pattern_length + 1; if (pattern_length <= start) { return; } // Find suffixes. PatternChar last_char = pattern[pattern_length - 1]; size_t suffix = pattern_length + 1; { size_t i = pattern_length; while (i > start) { PatternChar c = pattern[i - 1]; while (suffix <= pattern_length && c != pattern[suffix - 1]) { if (static_cast(shift_table[suffix]) == length) { shift_table[suffix] = suffix - i; } suffix = suffix_table[suffix]; } suffix_table[--i] = --suffix; if (suffix == pattern_length) { // No suffix to extend, so we check against last_char only. while ((i > start) && (pattern[i - 1] != last_char)) { if (static_cast(shift_table[pattern_length]) == length) { shift_table[pattern_length] = pattern_length - i; } suffix_table[--i] = pattern_length; } if (i > start) { suffix_table[--i] = --suffix; } } } } // Build shift table using suffixes. if (suffix < pattern_length) { for (size_t i = start; i <= pattern_length; i++) { if (static_cast(shift_table[i]) == length) { shift_table[i] = suffix - start; } if (i == suffix) { suffix = suffix_table[suffix]; } } } } //--------------------------------------------------------------------- // Boyer-Moore-Horspool string search. //--------------------------------------------------------------------- template size_t StringSearch::BoyerMooreHorspoolSearch( StringSearch* search, Vector subject, size_t start_index) { Vector pattern = search->pattern_; const size_t subject_length = subject.length(); const size_t pattern_length = pattern.length(); int* char_occurrences = search->bad_char_table(); int64_t badness = -pattern_length; // How bad we are doing without a good-suffix table. PatternChar last_char = pattern[pattern_length - 1]; int last_char_shift = pattern_length - 1 - CharOccurrence(char_occurrences, static_cast(last_char)); // Perform search size_t index = start_index; // No matches found prior to this index. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int subject_char; while (last_char != (subject_char = subject[index + j])) { int bc_occ = CharOccurrence(char_occurrences, subject_char); int shift = j - bc_occ; index += shift; badness += 1 - shift; // at most zero, so badness cannot increase. if (index > subject_length - pattern_length) { return subject_length; } } j--; while (j >= 0 && pattern[j] == (subject[index + j])) { if (j == 0) { return index; } j--; } index += last_char_shift; // Badness increases by the number of characters we have // checked, and decreases by the number of characters we // can skip by shifting. It's a measure of how we are doing // compared to reading each character exactly once. badness += (pattern_length - j) - last_char_shift; if (badness > 0) { search->PopulateBoyerMooreTable(); search->strategy_ = &BoyerMooreSearch; return BoyerMooreSearch(search, subject, index); } } return subject.length(); } template void StringSearch::PopulateBoyerMooreHorspoolTable() { const size_t pattern_length = pattern_.length(); int* bad_char_occurrence = bad_char_table(); // Only preprocess at most kBMMaxShift last characters of pattern. const size_t start = start_; // Run forwards to populate bad_char_table, so that *last* instance // of character equivalence class is the one registered. // Notice: Doesn't include the last character. const size_t table_size = AlphabetSize(); if (start == 0) { // All patterns less than kBMMaxShift in length. memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence)); } else { for (size_t i = 0; i < table_size; i++) { bad_char_occurrence[i] = start - 1; } } for (size_t i = start; i < pattern_length - 1; i++) { PatternChar c = pattern_[i]; int bucket = (sizeof(PatternChar) == 1) ? c : c % AlphabetSize(); bad_char_occurrence[bucket] = i; } } //--------------------------------------------------------------------- // Linear string search with bailout to BMH. //--------------------------------------------------------------------- // Simple linear search for short patterns, which bails out if the string // isn't found very early in the subject. Upgrades to BoyerMooreHorspool. template size_t StringSearch::InitialSearch( StringSearch* search, Vector subject, size_t index) { Vector pattern = search->pattern_; const size_t pattern_length = pattern.length(); // Badness is a count of how much work we have done. When we have // done enough work we decide it's probably worth switching to a better // algorithm. int64_t badness = -10 - (pattern_length << 2); // We know our pattern is at least 2 characters, we cache the first so // the common case of the first character not matching is faster. for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) { badness++; if (badness <= 0) { i = FindFirstCharacter(pattern, subject, i); if (i == subject.length()) return subject.length(); ASSERT_LE(i, n); size_t j = 1; do { if (pattern[j] != subject[i + j]) { break; } j++; } while (j < pattern_length); if (j == pattern_length) { return i; } badness += j; } else { search->PopulateBoyerMooreHorspoolTable(); search->strategy_ = &BoyerMooreHorspoolSearch; return BoyerMooreHorspoolSearch(search, subject, i); } } return subject.length(); } // Perform a a single stand-alone search. // If searching multiple times for the same pattern, a search // object should be constructed once and the Search function then called // for each search. template size_t SearchString(Vector subject, Vector pattern, size_t start_index) { StringSearch search(pattern); return search.Search(subject, start_index); } } } // namespace node::stringsearch namespace node { using node::stringsearch::Vector; template size_t SearchString(const SubjectChar* haystack, size_t haystack_length, const PatternChar* needle, size_t needle_length, size_t start_index) { return node::stringsearch::SearchString( Vector(haystack, haystack_length), Vector(needle, needle_length), start_index); } } // namespace node #endif // SRC_STRING_SEARCH_H_