#include "node_messaging.h" #include "async_wrap-inl.h" #include "async_wrap.h" #include "debug_utils.h" #include "node_buffer.h" #include "node_errors.h" #include "node_process.h" #include "util-inl.h" #include "util.h" using v8::Array; using v8::ArrayBuffer; using v8::ArrayBufferCreationMode; using v8::Context; using v8::EscapableHandleScope; using v8::Exception; using v8::Function; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::HandleScope; using v8::Isolate; using v8::Just; using v8::Local; using v8::Maybe; using v8::MaybeLocal; using v8::Nothing; using v8::Object; using v8::SharedArrayBuffer; using v8::String; using v8::Value; using v8::ValueDeserializer; using v8::ValueSerializer; using v8::WasmCompiledModule; namespace node { namespace worker { Message::Message(MallocedBuffer&& buffer) : main_message_buf_(std::move(buffer)) {} namespace { // This is used to tell V8 how to read transferred host objects, like other // `MessagePort`s and `SharedArrayBuffer`s, and make new JS objects out of them. class DeserializerDelegate : public ValueDeserializer::Delegate { public: DeserializerDelegate( Message* m, Environment* env, const std::vector& message_ports, const std::vector>& shared_array_buffers, const std::vector& wasm_modules) : message_ports_(message_ports), shared_array_buffers_(shared_array_buffers), wasm_modules_(wasm_modules) {} MaybeLocal ReadHostObject(Isolate* isolate) override { // Currently, only MessagePort hosts objects are supported, so identifying // by the index in the message's MessagePort array is sufficient. uint32_t id; if (!deserializer->ReadUint32(&id)) return MaybeLocal(); CHECK_LE(id, message_ports_.size()); return message_ports_[id]->object(isolate); }; MaybeLocal GetSharedArrayBufferFromId( Isolate* isolate, uint32_t clone_id) override { CHECK_LE(clone_id, shared_array_buffers_.size()); return shared_array_buffers_[clone_id]; } MaybeLocal GetWasmModuleFromId( Isolate* isolate, uint32_t transfer_id) override { CHECK_LE(transfer_id, wasm_modules_.size()); return WasmCompiledModule::FromTransferrableModule( isolate, wasm_modules_[transfer_id]); } ValueDeserializer* deserializer = nullptr; private: const std::vector& message_ports_; const std::vector>& shared_array_buffers_; const std::vector& wasm_modules_; }; } // anonymous namespace MaybeLocal Message::Deserialize(Environment* env, Local context) { EscapableHandleScope handle_scope(env->isolate()); Context::Scope context_scope(context); // Create all necessary MessagePort handles. std::vector ports(message_ports_.size()); for (uint32_t i = 0; i < message_ports_.size(); ++i) { ports[i] = MessagePort::New(env, context, std::move(message_ports_[i])); if (ports[i] == nullptr) { for (MessagePort* port : ports) { // This will eventually release the MessagePort object itself. if (port != nullptr) port->Close(); } return MaybeLocal(); } } message_ports_.clear(); std::vector> shared_array_buffers; // Attach all transferred SharedArrayBuffers to their new Isolate. for (uint32_t i = 0; i < shared_array_buffers_.size(); ++i) { Local sab; if (!shared_array_buffers_[i]->GetSharedArrayBuffer(env, context) .ToLocal(&sab)) return MaybeLocal(); shared_array_buffers.push_back(sab); } shared_array_buffers_.clear(); DeserializerDelegate delegate( this, env, ports, shared_array_buffers, wasm_modules_); ValueDeserializer deserializer( env->isolate(), reinterpret_cast(main_message_buf_.data), main_message_buf_.size, &delegate); delegate.deserializer = &deserializer; // Attach all transferred ArrayBuffers to their new Isolate. for (uint32_t i = 0; i < array_buffer_contents_.size(); ++i) { Local ab = ArrayBuffer::New(env->isolate(), array_buffer_contents_[i].release(), array_buffer_contents_[i].size, ArrayBufferCreationMode::kInternalized); deserializer.TransferArrayBuffer(i, ab); } array_buffer_contents_.clear(); if (deserializer.ReadHeader(context).IsNothing()) return MaybeLocal(); return handle_scope.Escape( deserializer.ReadValue(context).FromMaybe(Local())); } void Message::AddSharedArrayBuffer( SharedArrayBufferMetadataReference reference) { shared_array_buffers_.push_back(reference); } void Message::AddMessagePort(std::unique_ptr&& data) { message_ports_.emplace_back(std::move(data)); } uint32_t Message::AddWASMModule(WasmCompiledModule::TransferrableModule&& mod) { wasm_modules_.emplace_back(std::move(mod)); return wasm_modules_.size() - 1; } namespace { void ThrowDataCloneException(Environment* env, Local message) { Local argv[] = { message, FIXED_ONE_BYTE_STRING(env->isolate(), "DataCloneError") }; Local exception; Local domexception_ctor = env->domexception_function(); CHECK(!domexception_ctor.IsEmpty()); if (!domexception_ctor->NewInstance(env->context(), arraysize(argv), argv) .ToLocal(&exception)) { return; } env->isolate()->ThrowException(exception); } // This tells V8 how to serialize objects that it does not understand // (e.g. C++ objects) into the output buffer, in a way that our own // DeserializerDelegate understands how to unpack. class SerializerDelegate : public ValueSerializer::Delegate { public: SerializerDelegate(Environment* env, Local context, Message* m) : env_(env), context_(context), msg_(m) {} void ThrowDataCloneError(Local message) override { ThrowDataCloneException(env_, message); } Maybe WriteHostObject(Isolate* isolate, Local object) override { if (env_->message_port_constructor_template()->HasInstance(object)) { return WriteMessagePort(Unwrap(object)); } THROW_ERR_CANNOT_TRANSFER_OBJECT(env_); return Nothing(); } Maybe GetSharedArrayBufferId( Isolate* isolate, Local shared_array_buffer) override { uint32_t i; for (i = 0; i < seen_shared_array_buffers_.size(); ++i) { if (seen_shared_array_buffers_[i] == shared_array_buffer) return Just(i); } auto reference = SharedArrayBufferMetadata::ForSharedArrayBuffer( env_, context_, shared_array_buffer); if (!reference) { return Nothing(); } seen_shared_array_buffers_.push_back(shared_array_buffer); msg_->AddSharedArrayBuffer(reference); return Just(i); } Maybe GetWasmModuleTransferId( Isolate* isolate, Local module) override { return Just(msg_->AddWASMModule(module->GetTransferrableModule())); } void Finish() { // Only close the MessagePort handles and actually transfer them // once we know that serialization succeeded. for (MessagePort* port : ports_) { port->Close(); msg_->AddMessagePort(port->Detach()); } } ValueSerializer* serializer = nullptr; private: Maybe WriteMessagePort(MessagePort* port) { for (uint32_t i = 0; i < ports_.size(); i++) { if (ports_[i] == port) { serializer->WriteUint32(i); return Just(true); } } THROW_ERR_MISSING_MESSAGE_PORT_IN_TRANSFER_LIST(env_); return Nothing(); } Environment* env_; Local context_; Message* msg_; std::vector> seen_shared_array_buffers_; std::vector ports_; friend class worker::Message; }; } // anonymous namespace Maybe Message::Serialize(Environment* env, Local context, Local input, Local transfer_list_v, Local source_port) { HandleScope handle_scope(env->isolate()); Context::Scope context_scope(context); // Verify that we're not silently overwriting an existing message. CHECK(main_message_buf_.is_empty()); SerializerDelegate delegate(env, context, this); ValueSerializer serializer(env->isolate(), &delegate); delegate.serializer = &serializer; std::vector> array_buffers; if (transfer_list_v->IsArray()) { Local transfer_list = transfer_list_v.As(); uint32_t length = transfer_list->Length(); for (uint32_t i = 0; i < length; ++i) { Local entry; if (!transfer_list->Get(context, i).ToLocal(&entry)) return Nothing(); // Currently, we support ArrayBuffers and MessagePorts. if (entry->IsArrayBuffer()) { Local ab = entry.As(); // If we cannot render the ArrayBuffer unusable in this Isolate and // take ownership of its memory, copying the buffer will have to do. if (!ab->IsNeuterable() || ab->IsExternal()) continue; if (std::find(array_buffers.begin(), array_buffers.end(), ab) != array_buffers.end()) { ThrowDataCloneException( env, FIXED_ONE_BYTE_STRING( env->isolate(), "Transfer list contains duplicate ArrayBuffer")); return Nothing(); } // We simply use the array index in the `array_buffers` list as the // ID that we write into the serialized buffer. uint32_t id = array_buffers.size(); array_buffers.push_back(ab); serializer.TransferArrayBuffer(id, ab); continue; } else if (env->message_port_constructor_template() ->HasInstance(entry)) { // Check if the source MessagePort is being transferred. if (!source_port.IsEmpty() && entry == source_port) { ThrowDataCloneException( env, FIXED_ONE_BYTE_STRING(env->isolate(), "Transfer list contains source port")); return Nothing(); } MessagePort* port = Unwrap(entry.As()); if (port == nullptr || port->IsDetached()) { ThrowDataCloneException( env, FIXED_ONE_BYTE_STRING( env->isolate(), "MessagePort in transfer list is already detached")); return Nothing(); } if (std::find(delegate.ports_.begin(), delegate.ports_.end(), port) != delegate.ports_.end()) { ThrowDataCloneException( env, FIXED_ONE_BYTE_STRING( env->isolate(), "Transfer list contains duplicate MessagePort")); return Nothing(); } delegate.ports_.push_back(port); continue; } THROW_ERR_INVALID_TRANSFER_OBJECT(env); return Nothing(); } } serializer.WriteHeader(); if (serializer.WriteValue(context, input).IsNothing()) { return Nothing(); } for (Local ab : array_buffers) { // If serialization succeeded, we want to take ownership of // (a.k.a. externalize) the underlying memory region and render // it inaccessible in this Isolate. ArrayBuffer::Contents contents = ab->Externalize(); ab->Neuter(); array_buffer_contents_.push_back( MallocedBuffer { static_cast(contents.Data()), contents.ByteLength() }); } delegate.Finish(); // The serializer gave us a buffer allocated using `malloc()`. std::pair data = serializer.Release(); main_message_buf_ = MallocedBuffer(reinterpret_cast(data.first), data.second); return Just(true); } void Message::MemoryInfo(MemoryTracker* tracker) const { tracker->TrackField("array_buffer_contents", array_buffer_contents_); tracker->TrackFieldWithSize("shared_array_buffers", shared_array_buffers_.size() * sizeof(shared_array_buffers_[0])); tracker->TrackField("message_ports", message_ports_); } MessagePortData::MessagePortData(MessagePort* owner) : owner_(owner) { } MessagePortData::~MessagePortData() { CHECK_NULL(owner_); Disentangle(); } void MessagePortData::MemoryInfo(MemoryTracker* tracker) const { Mutex::ScopedLock lock(mutex_); tracker->TrackField("incoming_messages", incoming_messages_); } void MessagePortData::AddToIncomingQueue(Message&& message) { // This function will be called by other threads. Mutex::ScopedLock lock(mutex_); incoming_messages_.emplace_back(std::move(message)); if (owner_ != nullptr) { Debug(owner_, "Adding message to incoming queue"); owner_->TriggerAsync(); } } bool MessagePortData::IsSiblingClosed() const { Mutex::ScopedLock lock(*sibling_mutex_); return sibling_ == nullptr; } void MessagePortData::Entangle(MessagePortData* a, MessagePortData* b) { CHECK_NULL(a->sibling_); CHECK_NULL(b->sibling_); a->sibling_ = b; b->sibling_ = a; a->sibling_mutex_ = b->sibling_mutex_; } void MessagePortData::PingOwnerAfterDisentanglement() { Mutex::ScopedLock lock(mutex_); if (owner_ != nullptr) owner_->TriggerAsync(); } void MessagePortData::Disentangle() { // Grab a copy of the sibling mutex, then replace it so that each sibling // has its own sibling_mutex_ now. std::shared_ptr sibling_mutex = sibling_mutex_; Mutex::ScopedLock sibling_lock(*sibling_mutex); sibling_mutex_ = std::make_shared(); MessagePortData* sibling = sibling_; if (sibling_ != nullptr) { sibling_->sibling_ = nullptr; sibling_ = nullptr; } // We close MessagePorts after disentanglement, so we trigger the // corresponding uv_async_t to let them know that this happened. PingOwnerAfterDisentanglement(); if (sibling != nullptr) { sibling->PingOwnerAfterDisentanglement(); } } MessagePort::~MessagePort() { if (data_) data_->owner_ = nullptr; } MessagePort::MessagePort(Environment* env, Local context, Local wrap) : HandleWrap(env, wrap, reinterpret_cast(new uv_async_t()), AsyncWrap::PROVIDER_MESSAGEPORT), data_(new MessagePortData(this)) { auto onmessage = [](uv_async_t* handle) { // Called when data has been put into the queue. MessagePort* channel = static_cast(handle->data); channel->OnMessage(); }; CHECK_EQ(uv_async_init(env->event_loop(), async(), onmessage), 0); async()->data = static_cast(this); Local fn; if (!wrap->Get(context, env->oninit_symbol()).ToLocal(&fn)) return; if (fn->IsFunction()) { Local init = fn.As(); USE(init->Call(context, wrap, 0, nullptr)); } Debug(this, "Created message port"); } void MessagePort::AddToIncomingQueue(Message&& message) { data_->AddToIncomingQueue(std::move(message)); } uv_async_t* MessagePort::async() { return reinterpret_cast(GetHandle()); } bool MessagePort::IsDetached() const { return data_ == nullptr || IsHandleClosing(); } void MessagePort::TriggerAsync() { if (IsHandleClosing()) return; CHECK_EQ(uv_async_send(async()), 0); } void MessagePort::Close(v8::Local close_callback) { Debug(this, "Closing message port, data set = %d", static_cast(!!data_)); if (data_) { // Wrap this call with accessing the mutex, so that TriggerAsync() // can check IsHandleClosing() without race conditions. Mutex::ScopedLock sibling_lock(data_->mutex_); HandleWrap::Close(close_callback); } else { HandleWrap::Close(close_callback); } } void MessagePort::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (!args.IsConstructCall()) { THROW_ERR_CONSTRUCT_CALL_REQUIRED(env); return; } Local context = args.This()->CreationContext(); Context::Scope context_scope(context); new MessagePort(env, context, args.This()); } MessagePort* MessagePort::New( Environment* env, Local context, std::unique_ptr data) { Context::Scope context_scope(context); Local ctor; if (!GetMessagePortConstructor(env, context).ToLocal(&ctor)) return nullptr; // Construct a new instance, then assign the listener instance and possibly // the MessagePortData to it. Local instance; if (!ctor->NewInstance(context).ToLocal(&instance)) return nullptr; MessagePort* port = Unwrap(instance); CHECK_NOT_NULL(port); if (data) { port->Detach(); port->data_ = std::move(data); // This lock is here to avoid race conditions with the `owner_` read // in AddToIncomingQueue(). (This would likely be unproblematic without it, // but it's better to be safe than sorry.) Mutex::ScopedLock lock(port->data_->mutex_); port->data_->owner_ = port; // If the existing MessagePortData object had pending messages, this is // the easiest way to run that queue. port->TriggerAsync(); } return port; } void MessagePort::OnMessage() { Debug(this, "Running MessagePort::OnMessage()"); HandleScope handle_scope(env()->isolate()); Local context = object(env()->isolate())->CreationContext(); // data_ can only ever be modified by the owner thread, so no need to lock. // However, the message port may be transferred while it is processing // messages, so we need to check that this handle still owns its `data_` field // on every iteration. while (data_) { Message received; { // Get the head of the message queue. Mutex::ScopedLock lock(data_->mutex_); if (stop_event_loop_) { Debug(this, "MessagePort stops loop as requested"); CHECK(!data_->receiving_messages_); uv_stop(env()->event_loop()); break; } Debug(this, "MessagePort has message, receiving = %d", static_cast(data_->receiving_messages_)); if (!data_->receiving_messages_) break; if (data_->incoming_messages_.empty()) break; received = std::move(data_->incoming_messages_.front()); data_->incoming_messages_.pop_front(); } if (!env()->can_call_into_js()) { Debug(this, "MessagePort drains queue because !can_call_into_js()"); // In this case there is nothing to do but to drain the current queue. continue; } { // Call the JS .onmessage() callback. HandleScope handle_scope(env()->isolate()); Context::Scope context_scope(context); Local args[] = { received.Deserialize(env(), context).FromMaybe(Local()) }; if (args[0].IsEmpty() || MakeCallback(env()->onmessage_string(), 1, args).IsEmpty()) { // Re-schedule OnMessage() execution in case of failure. if (data_) TriggerAsync(); return; } } } if (data_ && data_->IsSiblingClosed()) { Close(); } } bool MessagePort::IsSiblingClosed() const { CHECK(data_); return data_->IsSiblingClosed(); } void MessagePort::OnClose() { Debug(this, "MessagePort::OnClose()"); if (data_) { data_->owner_ = nullptr; data_->Disentangle(); } data_.reset(); delete async(); } std::unique_ptr MessagePort::Detach() { CHECK(data_); Mutex::ScopedLock lock(data_->mutex_); data_->owner_ = nullptr; return std::move(data_); } Maybe MessagePort::PostMessage(Environment* env, Local message_v, Local transfer_v) { Isolate* isolate = env->isolate(); Local obj = object(isolate); Local context = obj->CreationContext(); Message msg; // Per spec, we need to both check if transfer list has the source port, and // serialize the input message, even if the MessagePort is closed or detached. Maybe serialization_maybe = msg.Serialize(env, context, message_v, transfer_v, obj); if (data_ == nullptr) { return serialization_maybe; } if (serialization_maybe.IsNothing()) { return Nothing(); } Mutex::ScopedLock lock(*data_->sibling_mutex_); bool doomed = false; // Check if the target port is posted to itself. if (data_->sibling_ != nullptr) { for (const auto& port_data : msg.message_ports()) { if (data_->sibling_ == port_data.get()) { doomed = true; ProcessEmitWarning(env, "The target port was posted to itself, and " "the communication channel was lost"); break; } } } if (data_->sibling_ == nullptr || doomed) return Just(true); data_->sibling_->AddToIncomingQueue(std::move(msg)); return Just(true); } void MessagePort::PostMessage(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (args.Length() == 0) { return THROW_ERR_MISSING_ARGS(env, "Not enough arguments to " "MessagePort.postMessage"); } MessagePort* port = Unwrap(args.This()); // Even if the backing MessagePort object has already been deleted, we still // want to serialize the message to ensure spec-compliant behavior w.r.t. // transfers. if (port == nullptr) { Message msg; Local obj = args.This(); Local context = obj->CreationContext(); USE(msg.Serialize(env, context, args[0], args[1], obj)); return; } port->PostMessage(env, args[0], args[1]); } void MessagePort::Start() { Mutex::ScopedLock lock(data_->mutex_); Debug(this, "Start receiving messages"); data_->receiving_messages_ = true; if (!data_->incoming_messages_.empty()) TriggerAsync(); } void MessagePort::Stop() { Mutex::ScopedLock lock(data_->mutex_); Debug(this, "Stop receiving messages"); data_->receiving_messages_ = false; } void MessagePort::StopEventLoop() { Mutex::ScopedLock lock(data_->mutex_); data_->receiving_messages_ = false; stop_event_loop_ = true; Debug(this, "Received StopEventLoop request"); TriggerAsync(); } void MessagePort::Start(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); MessagePort* port; ASSIGN_OR_RETURN_UNWRAP(&port, args.This()); if (!port->data_) { THROW_ERR_CLOSED_MESSAGE_PORT(env); return; } port->Start(); } void MessagePort::Stop(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); MessagePort* port; ASSIGN_OR_RETURN_UNWRAP(&port, args.This()); if (!port->data_) { THROW_ERR_CLOSED_MESSAGE_PORT(env); return; } port->Stop(); } void MessagePort::Drain(const FunctionCallbackInfo& args) { MessagePort* port; ASSIGN_OR_RETURN_UNWRAP(&port, args.This()); port->OnMessage(); } void MessagePort::Entangle(MessagePort* a, MessagePort* b) { Entangle(a, b->data_.get()); } void MessagePort::Entangle(MessagePort* a, MessagePortData* b) { MessagePortData::Entangle(a->data_.get(), b); } MaybeLocal GetMessagePortConstructor( Environment* env, Local context) { // Factor generating the MessagePort JS constructor into its own piece // of code, because it is needed early on in the child environment setup. Local templ = env->message_port_constructor_template(); if (!templ.IsEmpty()) return templ->GetFunction(context); { Local m = env->NewFunctionTemplate(MessagePort::New); m->SetClassName(env->message_port_constructor_string()); m->InstanceTemplate()->SetInternalFieldCount(1); m->Inherit(HandleWrap::GetConstructorTemplate(env)); env->SetProtoMethod(m, "postMessage", MessagePort::PostMessage); env->SetProtoMethod(m, "start", MessagePort::Start); env->SetProtoMethod(m, "stop", MessagePort::Stop); env->SetProtoMethod(m, "drain", MessagePort::Drain); env->set_message_port_constructor_template(m); } return GetMessagePortConstructor(env, context); } namespace { static void MessageChannel(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (!args.IsConstructCall()) { THROW_ERR_CONSTRUCT_CALL_REQUIRED(env); return; } Local context = args.This()->CreationContext(); Context::Scope context_scope(context); MessagePort* port1 = MessagePort::New(env, context); MessagePort* port2 = MessagePort::New(env, context); MessagePort::Entangle(port1, port2); args.This()->Set(env->context(), env->port1_string(), port1->object()) .FromJust(); args.This()->Set(env->context(), env->port2_string(), port2->object()) .FromJust(); } static void RegisterDOMException(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK_EQ(args.Length(), 1); CHECK(args[0]->IsFunction()); env->set_domexception_function(args[0].As()); } static void InitMessaging(Local target, Local unused, Local context, void* priv) { Environment* env = Environment::GetCurrent(context); { Local message_channel_string = FIXED_ONE_BYTE_STRING(env->isolate(), "MessageChannel"); Local templ = env->NewFunctionTemplate(MessageChannel); templ->SetClassName(message_channel_string); target->Set(env->context(), message_channel_string, templ->GetFunction(context).ToLocalChecked()).FromJust(); } target->Set(context, env->message_port_constructor_string(), GetMessagePortConstructor(env, context).ToLocalChecked()) .FromJust(); env->SetMethod(target, "registerDOMException", RegisterDOMException); } } // anonymous namespace } // namespace worker } // namespace node NODE_MODULE_CONTEXT_AWARE_INTERNAL(messaging, node::worker::InitMessaging)