#include "node_crypto_bio.h" #include "openssl/bio.h" #include "util.h" #include "util-inl.h" #include #include namespace node { const BIO_METHOD NodeBIO::method = { BIO_TYPE_MEM, "node.js SSL buffer", NodeBIO::Write, NodeBIO::Read, NodeBIO::Puts, NodeBIO::Gets, NodeBIO::Ctrl, NodeBIO::New, NodeBIO::Free, nullptr }; BIO* NodeBIO::New() { // The const_cast doesn't violate const correctness. OpenSSL's usage of // BIO_METHOD is effectively const but BIO_new() takes a non-const argument. return BIO_new(const_cast(&method)); } BIO* NodeBIO::NewFixed(const char* data, size_t len) { BIO* bio = New(); if (bio == nullptr || len > INT_MAX || BIO_write(bio, data, len) != static_cast(len) || BIO_set_mem_eof_return(bio, 0) != 1) { BIO_free(bio); return nullptr; } return bio; } void NodeBIO::AssignEnvironment(Environment* env) { env_ = env; } int NodeBIO::New(BIO* bio) { bio->ptr = new NodeBIO(); // XXX Why am I doing it?! bio->shutdown = 1; bio->init = 1; bio->num = -1; return 1; } int NodeBIO::Free(BIO* bio) { if (bio == nullptr) return 0; if (bio->shutdown) { if (bio->init && bio->ptr != nullptr) { delete FromBIO(bio); bio->ptr = nullptr; } } return 1; } int NodeBIO::Read(BIO* bio, char* out, int len) { int bytes; BIO_clear_retry_flags(bio); bytes = FromBIO(bio)->Read(out, len); if (bytes == 0) { bytes = bio->num; if (bytes != 0) { BIO_set_retry_read(bio); } } return bytes; } char* NodeBIO::Peek(size_t* size) { *size = read_head_->write_pos_ - read_head_->read_pos_; return read_head_->data_ + read_head_->read_pos_; } size_t NodeBIO::PeekMultiple(char** out, size_t* size, size_t* count) { Buffer* pos = read_head_; size_t max = *count; size_t total = 0; size_t i; for (i = 0; i < max; i++) { size[i] = pos->write_pos_ - pos->read_pos_; total += size[i]; out[i] = pos->data_ + pos->read_pos_; /* Don't get past write head */ if (pos == write_head_) break; else pos = pos->next_; } if (i == max) *count = i; else *count = i + 1; return total; } int NodeBIO::Write(BIO* bio, const char* data, int len) { BIO_clear_retry_flags(bio); FromBIO(bio)->Write(data, len); return len; } int NodeBIO::Puts(BIO* bio, const char* str) { return Write(bio, str, strlen(str)); } int NodeBIO::Gets(BIO* bio, char* out, int size) { NodeBIO* nbio = FromBIO(bio); if (nbio->Length() == 0) return 0; int i = nbio->IndexOf('\n', size); // Include '\n', if it's there. If not, don't read off the end. if (i < size && i >= 0 && static_cast(i) < nbio->Length()) i++; // Shift `i` a bit to nullptr-terminate string later if (size == i) i--; // Flush read data nbio->Read(out, i); out[i] = 0; return i; } long NodeBIO::Ctrl(BIO* bio, int cmd, long num, // NOLINT(runtime/int) void* ptr) { NodeBIO* nbio; long ret; // NOLINT(runtime/int) nbio = FromBIO(bio); ret = 1; switch (cmd) { case BIO_CTRL_RESET: nbio->Reset(); break; case BIO_CTRL_EOF: ret = nbio->Length() == 0; break; case BIO_C_SET_BUF_MEM_EOF_RETURN: bio->num = num; break; case BIO_CTRL_INFO: ret = nbio->Length(); if (ptr != nullptr) *reinterpret_cast(ptr) = nullptr; break; case BIO_C_SET_BUF_MEM: CHECK(0 && "Can't use SET_BUF_MEM_PTR with NodeBIO"); break; case BIO_C_GET_BUF_MEM_PTR: CHECK(0 && "Can't use GET_BUF_MEM_PTR with NodeBIO"); ret = 0; break; case BIO_CTRL_GET_CLOSE: ret = bio->shutdown; break; case BIO_CTRL_SET_CLOSE: bio->shutdown = num; break; case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_PENDING: ret = nbio->Length(); break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_PUSH: case BIO_CTRL_POP: default: ret = 0; break; } return ret; } void NodeBIO::TryMoveReadHead() { // `read_pos_` and `write_pos_` means the position of the reader and writer // inside the buffer, respectively. When they're equal - its safe to reset // them, because both reader and writer will continue doing their stuff // from new (zero) positions. while (read_head_->read_pos_ != 0 && read_head_->read_pos_ == read_head_->write_pos_) { // Reset positions read_head_->read_pos_ = 0; read_head_->write_pos_ = 0; // Move read_head_ forward, just in case if there're still some data to // read in the next buffer. if (read_head_ != write_head_) read_head_ = read_head_->next_; } } size_t NodeBIO::Read(char* out, size_t size) { size_t bytes_read = 0; size_t expected = Length() > size ? size : Length(); size_t offset = 0; size_t left = size; while (bytes_read < expected) { CHECK_LE(read_head_->read_pos_, read_head_->write_pos_); size_t avail = read_head_->write_pos_ - read_head_->read_pos_; if (avail > left) avail = left; // Copy data if (out != nullptr) memcpy(out + offset, read_head_->data_ + read_head_->read_pos_, avail); read_head_->read_pos_ += avail; // Move pointers bytes_read += avail; offset += avail; left -= avail; TryMoveReadHead(); } CHECK_EQ(expected, bytes_read); length_ -= bytes_read; // Free all empty buffers, but write_head's child FreeEmpty(); return bytes_read; } void NodeBIO::FreeEmpty() { if (write_head_ == nullptr) return; Buffer* child = write_head_->next_; if (child == write_head_ || child == read_head_) return; Buffer* cur = child->next_; if (cur == write_head_ || cur == read_head_) return; Buffer* prev = child; while (cur != read_head_) { CHECK_NE(cur, write_head_); CHECK_EQ(cur->write_pos_, cur->read_pos_); Buffer* next = cur->next_; delete cur; cur = next; } prev->next_ = cur; } size_t NodeBIO::IndexOf(char delim, size_t limit) { size_t bytes_read = 0; size_t max = Length() > limit ? limit : Length(); size_t left = limit; Buffer* current = read_head_; while (bytes_read < max) { CHECK_LE(current->read_pos_, current->write_pos_); size_t avail = current->write_pos_ - current->read_pos_; if (avail > left) avail = left; // Walk through data char* tmp = current->data_ + current->read_pos_; size_t off = 0; while (off < avail && *tmp != delim) { off++; tmp++; } // Move pointers bytes_read += off; left -= off; // Found `delim` if (off != avail) { return bytes_read; } // Move to next buffer if (current->read_pos_ + avail == current->len_) { current = current->next_; } } CHECK_EQ(max, bytes_read); return max; } void NodeBIO::Write(const char* data, size_t size) { size_t offset = 0; size_t left = size; // Allocate initial buffer if the ring is empty TryAllocateForWrite(left); while (left > 0) { size_t to_write = left; CHECK_LE(write_head_->write_pos_, write_head_->len_); size_t avail = write_head_->len_ - write_head_->write_pos_; if (to_write > avail) to_write = avail; // Copy data memcpy(write_head_->data_ + write_head_->write_pos_, data + offset, to_write); // Move pointers left -= to_write; offset += to_write; length_ += to_write; write_head_->write_pos_ += to_write; CHECK_LE(write_head_->write_pos_, write_head_->len_); // Go to next buffer if there still are some bytes to write if (left != 0) { CHECK_EQ(write_head_->write_pos_, write_head_->len_); TryAllocateForWrite(left); write_head_ = write_head_->next_; // Additionally, since we're moved to the next buffer, read head // may be moved as well. TryMoveReadHead(); } } CHECK_EQ(left, 0); } char* NodeBIO::PeekWritable(size_t* size) { TryAllocateForWrite(*size); size_t available = write_head_->len_ - write_head_->write_pos_; if (*size != 0 && available > *size) available = *size; else *size = available; return write_head_->data_ + write_head_->write_pos_; } void NodeBIO::Commit(size_t size) { write_head_->write_pos_ += size; length_ += size; CHECK_LE(write_head_->write_pos_, write_head_->len_); // Allocate new buffer if write head is full, // and there're no other place to go TryAllocateForWrite(0); if (write_head_->write_pos_ == write_head_->len_) { write_head_ = write_head_->next_; // Additionally, since we're moved to the next buffer, read head // may be moved as well. TryMoveReadHead(); } } void NodeBIO::TryAllocateForWrite(size_t hint) { Buffer* w = write_head_; Buffer* r = read_head_; // If write head is full, next buffer is either read head or not empty. if (w == nullptr || (w->write_pos_ == w->len_ && (w->next_ == r || w->next_->write_pos_ != 0))) { size_t len = w == nullptr ? initial_ : kThroughputBufferLength; if (len < hint) len = hint; Buffer* next = new Buffer(env_, len); if (w == nullptr) { next->next_ = next; write_head_ = next; read_head_ = next; } else { next->next_ = w->next_; w->next_ = next; } } } void NodeBIO::Reset() { if (read_head_ == nullptr) return; while (read_head_->read_pos_ != read_head_->write_pos_) { CHECK(read_head_->write_pos_ > read_head_->read_pos_); length_ -= read_head_->write_pos_ - read_head_->read_pos_; read_head_->write_pos_ = 0; read_head_->read_pos_ = 0; read_head_ = read_head_->next_; } write_head_ = read_head_; CHECK_EQ(length_, 0); } NodeBIO::~NodeBIO() { if (read_head_ == nullptr) return; Buffer* current = read_head_; do { Buffer* next = current->next_; delete current; current = next; } while (current != read_head_); read_head_ = nullptr; write_head_ = nullptr; } } // namespace node