#include "async_wrap.h" #include "node_buffer.h" #include "node_context_data.h" #include "node_errors.h" #include "node_file.h" #include "node_internals.h" #include "node_native_module.h" #include "node_options-inl.h" #include "node_platform.h" #include "node_process.h" #include "node_v8_platform-inl.h" #include "node_worker.h" #include "tracing/agent.h" #include "tracing/traced_value.h" #include "v8-profiler.h" #include #include #include namespace node { using errors::TryCatchScope; using v8::Context; using v8::EmbedderGraph; using v8::External; using v8::Function; using v8::HandleScope; using v8::Integer; using v8::Isolate; using v8::Local; using v8::Message; using v8::NewStringType; using v8::Number; using v8::Object; using v8::Private; using v8::Promise; using v8::PromiseHookType; using v8::StackFrame; using v8::StackTrace; using v8::String; using v8::Symbol; using v8::TracingController; using v8::Undefined; using v8::Value; using worker::Worker; #define kTraceCategoryCount 1 // TODO(@jasnell): Likely useful to move this to util or node_internal to // allow reuse. But since we're not reusing it yet... class TraceEventScope { public: TraceEventScope(const char* category, const char* name, void* id) : category_(category), name_(name), id_(id) { TRACE_EVENT_NESTABLE_ASYNC_BEGIN0(category_, name_, id_); } ~TraceEventScope() { TRACE_EVENT_NESTABLE_ASYNC_END0(category_, name_, id_); } private: const char* category_; const char* name_; void* id_; }; int const Environment::kNodeContextTag = 0x6e6f64; void* const Environment::kNodeContextTagPtr = const_cast( static_cast(&Environment::kNodeContextTag)); IsolateData::IsolateData(Isolate* isolate, uv_loop_t* event_loop, MultiIsolatePlatform* platform, uint32_t* zero_fill_field) : isolate_(isolate), event_loop_(event_loop), zero_fill_field_(zero_fill_field), platform_(platform) { if (platform_ != nullptr) platform_->RegisterIsolate(isolate_, event_loop); options_.reset( new PerIsolateOptions(*(per_process::cli_options->per_isolate))); // Create string and private symbol properties as internalized one byte // strings after the platform is properly initialized. // // Internalized because it makes property lookups a little faster and // because the string is created in the old space straight away. It's going // to end up in the old space sooner or later anyway but now it doesn't go // through v8::Eternal's new space handling first. // // One byte because our strings are ASCII and we can safely skip V8's UTF-8 // decoding step. #define V(PropertyName, StringValue) \ PropertyName ## _.Set( \ isolate, \ Private::New( \ isolate, \ String::NewFromOneByte( \ isolate, \ reinterpret_cast(StringValue), \ NewStringType::kInternalized, \ sizeof(StringValue) - 1).ToLocalChecked())); PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(V) #undef V #define V(PropertyName, StringValue) \ PropertyName ## _.Set( \ isolate, \ Symbol::New( \ isolate, \ String::NewFromOneByte( \ isolate, \ reinterpret_cast(StringValue), \ NewStringType::kInternalized, \ sizeof(StringValue) - 1).ToLocalChecked())); PER_ISOLATE_SYMBOL_PROPERTIES(V) #undef V #define V(PropertyName, StringValue) \ PropertyName ## _.Set( \ isolate, \ String::NewFromOneByte( \ isolate, \ reinterpret_cast(StringValue), \ NewStringType::kInternalized, \ sizeof(StringValue) - 1).ToLocalChecked()); PER_ISOLATE_STRING_PROPERTIES(V) #undef V } IsolateData::~IsolateData() { if (platform_ != nullptr) platform_->UnregisterIsolate(isolate_); } void InitThreadLocalOnce() { CHECK_EQ(0, uv_key_create(&Environment::thread_local_env)); } void Environment::TrackingTraceStateObserver::UpdateTraceCategoryState() { if (!env_->owns_process_state()) { // Ideally, we’d have a consistent story that treats all threads/Environment // instances equally here. However, tracing is essentially global, and this // callback is called from whichever thread calls `StartTracing()` or // `StopTracing()`. The only way to do this in a threadsafe fashion // seems to be only tracking this from the main thread, and only allowing // these state modifications from the main thread. return; } env_->trace_category_state()[0] = *TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED( TRACING_CATEGORY_NODE1(async_hooks)); Isolate* isolate = env_->isolate(); HandleScope handle_scope(isolate); Local cb = env_->trace_category_state_function(); if (cb.IsEmpty()) return; TryCatchScope try_catch(env_); try_catch.SetVerbose(true); cb->Call(env_->context(), Undefined(isolate), 0, nullptr).ToLocalChecked(); } static std::atomic next_thread_id{0}; uint64_t Environment::AllocateThreadId() { return next_thread_id++; } Environment::Environment(IsolateData* isolate_data, Local context, Flags flags, uint64_t thread_id) : isolate_(context->GetIsolate()), isolate_data_(isolate_data), immediate_info_(context->GetIsolate()), tick_info_(context->GetIsolate()), timer_base_(uv_now(isolate_data->event_loop())), should_abort_on_uncaught_toggle_(isolate_, 1), trace_category_state_(isolate_, kTraceCategoryCount), stream_base_state_(isolate_, StreamBase::kNumStreamBaseStateFields), flags_(flags), thread_id_(thread_id == kNoThreadId ? AllocateThreadId() : thread_id), fs_stats_field_array_(isolate_, kFsStatsBufferLength), fs_stats_field_bigint_array_(isolate_, kFsStatsBufferLength), context_(context->GetIsolate(), context) { // We'll be creating new objects so make sure we've entered the context. HandleScope handle_scope(isolate()); Context::Scope context_scope(context); set_as_external(External::New(isolate(), this)); // We create new copies of the per-Environment option sets, so that it is // easier to modify them after Environment creation. The defaults are // part of the per-Isolate option set, for which in turn the defaults are // part of the per-process option set. options_.reset(new EnvironmentOptions(*isolate_data->options()->per_env)); inspector_host_port_.reset(new HostPort(options_->debug_options().host_port)); #if HAVE_INSPECTOR // We can only create the inspector agent after having cloned the options. inspector_agent_ = std::unique_ptr(new inspector::Agent(this)); #endif AssignToContext(context, ContextInfo("")); if (tracing::AgentWriterHandle* writer = GetTracingAgentWriter()) { trace_state_observer_ = std::make_unique(this); TracingController* tracing_controller = writer->GetTracingController(); tracing_controller->AddTraceStateObserver(trace_state_observer_.get()); } destroy_async_id_list_.reserve(512); BeforeExit( [](void* arg) { Environment* env = static_cast(arg); if (!env->destroy_async_id_list()->empty()) AsyncWrap::DestroyAsyncIdsCallback(env, nullptr); }, this); performance_state_.reset(new performance::performance_state(isolate())); performance_state_->Mark( performance::NODE_PERFORMANCE_MILESTONE_ENVIRONMENT); performance_state_->Mark( performance::NODE_PERFORMANCE_MILESTONE_NODE_START, performance::performance_node_start); performance_state_->Mark( performance::NODE_PERFORMANCE_MILESTONE_V8_START, performance::performance_v8_start); // By default, always abort when --abort-on-uncaught-exception was passed. should_abort_on_uncaught_toggle_[0] = 1; std::string debug_cats; credentials::SafeGetenv("NODE_DEBUG_NATIVE", &debug_cats); set_debug_categories(debug_cats, true); isolate()->GetHeapProfiler()->AddBuildEmbedderGraphCallback( BuildEmbedderGraph, this); if (options_->no_force_async_hooks_checks) { async_hooks_.no_force_checks(); } // TODO(addaleax): the per-isolate state should not be controlled by // a single Environment. isolate()->SetPromiseRejectCallback(task_queue::PromiseRejectCallback); } Environment::~Environment() { isolate()->GetHeapProfiler()->RemoveBuildEmbedderGraphCallback( BuildEmbedderGraph, this); // Make sure there are no re-used libuv wrapper objects. // CleanupHandles() should have removed all of them. CHECK(file_handle_read_wrap_freelist_.empty()); HandleScope handle_scope(isolate()); #if HAVE_INSPECTOR // Destroy inspector agent before erasing the context. The inspector // destructor depends on the context still being accessible. inspector_agent_.reset(); #endif context()->SetAlignedPointerInEmbedderData( ContextEmbedderIndex::kEnvironment, nullptr); if (trace_state_observer_) { tracing::AgentWriterHandle* writer = GetTracingAgentWriter(); CHECK_NOT_NULL(writer); TracingController* tracing_controller = writer->GetTracingController(); tracing_controller->RemoveTraceStateObserver(trace_state_observer_.get()); } delete[] heap_statistics_buffer_; delete[] heap_space_statistics_buffer_; delete[] http_parser_buffer_; TRACE_EVENT_NESTABLE_ASYNC_END0( TRACING_CATEGORY_NODE1(environment), "Environment", this); // Do not unload addons on the main thread. Some addons need to retain memory // beyond the Environment's lifetime, and unloading them early would break // them; with Worker threads, we have the opportunity to be stricter. // Also, since the main thread usually stops just before the process exits, // this is far less relevant here. if (!is_main_thread()) { // Dereference all addons that were loaded into this environment. for (binding::DLib& addon : loaded_addons_) { addon.Close(); } } } void Environment::Start(bool start_profiler_idle_notifier) { HandleScope handle_scope(isolate()); Context::Scope context_scope(context()); CHECK_EQ(0, uv_timer_init(event_loop(), timer_handle())); uv_unref(reinterpret_cast(timer_handle())); uv_check_init(event_loop(), immediate_check_handle()); uv_unref(reinterpret_cast(immediate_check_handle())); uv_idle_init(event_loop(), immediate_idle_handle()); uv_check_start(immediate_check_handle(), CheckImmediate); // Inform V8's CPU profiler when we're idle. The profiler is sampling-based // but not all samples are created equal; mark the wall clock time spent in // epoll_wait() and friends so profiling tools can filter it out. The samples // still end up in v8.log but with state=IDLE rather than state=EXTERNAL. // TODO(bnoordhuis) Depends on a libuv implementation detail that we should // probably fortify in the API contract, namely that the last started prepare // or check watcher runs first. It's not 100% foolproof; if an add-on starts // a prepare or check watcher after us, any samples attributed to its callback // will be recorded with state=IDLE. uv_prepare_init(event_loop(), &idle_prepare_handle_); uv_check_init(event_loop(), &idle_check_handle_); uv_unref(reinterpret_cast(&idle_prepare_handle_)); uv_unref(reinterpret_cast(&idle_check_handle_)); // Register clean-up cb to be called to clean up the handles // when the environment is freed, note that they are not cleaned in // the one environment per process setup, but will be called in // FreeEnvironment. RegisterHandleCleanups(); if (start_profiler_idle_notifier) { StartProfilerIdleNotifier(); } static uv_once_t init_once = UV_ONCE_INIT; uv_once(&init_once, InitThreadLocalOnce); uv_key_set(&thread_local_env, this); } MaybeLocal Environment::ProcessCliArgs( const std::vector& args, const std::vector& exec_args) { if (args.size() > 1) { std::string first_arg = args[1]; if (first_arg == "inspect") { execution_mode_ = ExecutionMode::kInspect; } else if (first_arg == "debug") { execution_mode_ = ExecutionMode::kDebug; } else if (first_arg != "-") { execution_mode_ = ExecutionMode::kRunMainModule; } } if (*TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED( TRACING_CATEGORY_NODE1(environment)) != 0) { auto traced_value = tracing::TracedValue::Create(); traced_value->BeginArray("args"); for (const std::string& arg : args) traced_value->AppendString(arg); traced_value->EndArray(); traced_value->BeginArray("exec_args"); for (const std::string& arg : exec_args) traced_value->AppendString(arg); traced_value->EndArray(); TRACE_EVENT_NESTABLE_ASYNC_BEGIN1(TRACING_CATEGORY_NODE1(environment), "Environment", this, "args", std::move(traced_value)); } Local process_object = node::CreateProcessObject(this, args, exec_args) .FromMaybe(Local()); set_process_object(process_object); return process_object; } void Environment::RegisterHandleCleanups() { HandleCleanupCb close_and_finish = [](Environment* env, uv_handle_t* handle, void* arg) { handle->data = env; env->CloseHandle(handle, [](uv_handle_t* handle) {}); }; RegisterHandleCleanup( reinterpret_cast(timer_handle()), close_and_finish, nullptr); RegisterHandleCleanup( reinterpret_cast(immediate_check_handle()), close_and_finish, nullptr); RegisterHandleCleanup( reinterpret_cast(immediate_idle_handle()), close_and_finish, nullptr); RegisterHandleCleanup( reinterpret_cast(&idle_prepare_handle_), close_and_finish, nullptr); RegisterHandleCleanup( reinterpret_cast(&idle_check_handle_), close_and_finish, nullptr); } void Environment::CleanupHandles() { for (ReqWrap* request : req_wrap_queue_) request->Cancel(); for (HandleWrap* handle : handle_wrap_queue_) handle->Close(); for (HandleCleanup& hc : handle_cleanup_queue_) hc.cb_(this, hc.handle_, hc.arg_); handle_cleanup_queue_.clear(); while (handle_cleanup_waiting_ != 0 || request_waiting_ != 0 || !handle_wrap_queue_.IsEmpty()) { uv_run(event_loop(), UV_RUN_ONCE); } file_handle_read_wrap_freelist_.clear(); } void Environment::StartProfilerIdleNotifier() { if (profiler_idle_notifier_started_) return; profiler_idle_notifier_started_ = true; uv_prepare_start(&idle_prepare_handle_, [](uv_prepare_t* handle) { Environment* env = ContainerOf(&Environment::idle_prepare_handle_, handle); env->isolate()->SetIdle(true); }); uv_check_start(&idle_check_handle_, [](uv_check_t* handle) { Environment* env = ContainerOf(&Environment::idle_check_handle_, handle); env->isolate()->SetIdle(false); }); } void Environment::StopProfilerIdleNotifier() { profiler_idle_notifier_started_ = false; uv_prepare_stop(&idle_prepare_handle_); uv_check_stop(&idle_check_handle_); } void Environment::PrintSyncTrace() const { if (!options_->trace_sync_io) return; HandleScope handle_scope(isolate()); Local stack = StackTrace::CurrentStackTrace(isolate(), 10, StackTrace::kDetailed); fprintf(stderr, "(node:%d) WARNING: Detected use of sync API\n", uv_os_getpid()); for (int i = 0; i < stack->GetFrameCount() - 1; i++) { Local stack_frame = stack->GetFrame(isolate(), i); node::Utf8Value fn_name_s(isolate(), stack_frame->GetFunctionName()); node::Utf8Value script_name(isolate(), stack_frame->GetScriptName()); const int line_number = stack_frame->GetLineNumber(); const int column = stack_frame->GetColumn(); if (stack_frame->IsEval()) { if (stack_frame->GetScriptId() == Message::kNoScriptIdInfo) { fprintf(stderr, " at [eval]:%i:%i\n", line_number, column); } else { fprintf(stderr, " at [eval] (%s:%i:%i)\n", *script_name, line_number, column); } break; } if (fn_name_s.length() == 0) { fprintf(stderr, " at %s:%i:%i\n", *script_name, line_number, column); } else { fprintf(stderr, " at %s (%s:%i:%i)\n", *fn_name_s, *script_name, line_number, column); } } fflush(stderr); } void Environment::RunCleanup() { TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "RunCleanup", this); CleanupHandles(); while (!cleanup_hooks_.empty()) { // Copy into a vector, since we can't sort an unordered_set in-place. std::vector callbacks( cleanup_hooks_.begin(), cleanup_hooks_.end()); // We can't erase the copied elements from `cleanup_hooks_` yet, because we // need to be able to check whether they were un-scheduled by another hook. std::sort(callbacks.begin(), callbacks.end(), [](const CleanupHookCallback& a, const CleanupHookCallback& b) { // Sort in descending order so that the most recently inserted callbacks // are run first. return a.insertion_order_counter_ > b.insertion_order_counter_; }); for (const CleanupHookCallback& cb : callbacks) { if (cleanup_hooks_.count(cb) == 0) { // This hook was removed from the `cleanup_hooks_` set during another // hook that was run earlier. Nothing to do here. continue; } cb.fn_(cb.arg_); cleanup_hooks_.erase(cb); } CleanupHandles(); } } void Environment::RunBeforeExitCallbacks() { TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "BeforeExit", this); for (ExitCallback before_exit : before_exit_functions_) { before_exit.cb_(before_exit.arg_); } before_exit_functions_.clear(); } void Environment::BeforeExit(void (*cb)(void* arg), void* arg) { before_exit_functions_.push_back(ExitCallback{cb, arg}); } void Environment::RunAtExitCallbacks() { TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "AtExit", this); for (ExitCallback at_exit : at_exit_functions_) { at_exit.cb_(at_exit.arg_); } at_exit_functions_.clear(); } void Environment::AtExit(void (*cb)(void* arg), void* arg) { at_exit_functions_.push_back(ExitCallback{cb, arg}); } void Environment::AddPromiseHook(promise_hook_func fn, void* arg) { auto it = std::find_if( promise_hooks_.begin(), promise_hooks_.end(), [&](const PromiseHookCallback& hook) { return hook.cb_ == fn && hook.arg_ == arg; }); if (it != promise_hooks_.end()) { it->enable_count_++; return; } promise_hooks_.push_back(PromiseHookCallback{fn, arg, 1}); if (promise_hooks_.size() == 1) { isolate_->SetPromiseHook(EnvPromiseHook); } } bool Environment::RemovePromiseHook(promise_hook_func fn, void* arg) { auto it = std::find_if( promise_hooks_.begin(), promise_hooks_.end(), [&](const PromiseHookCallback& hook) { return hook.cb_ == fn && hook.arg_ == arg; }); if (it == promise_hooks_.end()) return false; if (--it->enable_count_ > 0) return true; promise_hooks_.erase(it); if (promise_hooks_.empty()) { isolate_->SetPromiseHook(nullptr); } return true; } void Environment::EnvPromiseHook(PromiseHookType type, Local promise, Local parent) { Local context = promise->CreationContext(); Environment* env = Environment::GetCurrent(context); if (env == nullptr) return; TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "EnvPromiseHook", env); for (const PromiseHookCallback& hook : env->promise_hooks_) { hook.cb_(type, promise, parent, hook.arg_); } } void Environment::RunAndClearNativeImmediates() { TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "RunAndClearNativeImmediates", this); size_t count = native_immediate_callbacks_.size(); if (count > 0) { size_t ref_count = 0; std::vector list; native_immediate_callbacks_.swap(list); auto drain_list = [&]() { TryCatchScope try_catch(this); for (auto it = list.begin(); it != list.end(); ++it) { #ifdef DEBUG v8::SealHandleScope seal_handle_scope(isolate()); #endif it->cb_(this, it->data_); if (it->refed_) ref_count++; if (UNLIKELY(try_catch.HasCaught())) { if (!try_catch.HasTerminated()) FatalException(isolate(), try_catch); // Bail out, remove the already executed callbacks from list // and set up a new TryCatch for the other pending callbacks. std::move_backward(it, list.end(), list.begin() + (list.end() - it)); list.resize(list.end() - it); return true; } } return false; }; while (drain_list()) {} DCHECK_GE(immediate_info()->count(), count); immediate_info()->count_dec(count); immediate_info()->ref_count_dec(ref_count); } } void Environment::ScheduleTimer(int64_t duration_ms) { uv_timer_start(timer_handle(), RunTimers, duration_ms, 0); } void Environment::ToggleTimerRef(bool ref) { if (ref) { uv_ref(reinterpret_cast(timer_handle())); } else { uv_unref(reinterpret_cast(timer_handle())); } } void Environment::RunTimers(uv_timer_t* handle) { Environment* env = Environment::from_timer_handle(handle); TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "RunTimers", env); if (!env->can_call_into_js()) return; HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local process = env->process_object(); InternalCallbackScope scope(env, process, {0, 0}); Local cb = env->timers_callback_function(); MaybeLocal ret; Local arg = env->GetNow(); // This code will loop until all currently due timers will process. It is // impossible for us to end up in an infinite loop due to how the JS-side // is structured. do { TryCatchScope try_catch(env); try_catch.SetVerbose(true); ret = cb->Call(env->context(), process, 1, &arg); } while (ret.IsEmpty() && env->can_call_into_js()); // NOTE(apapirovski): If it ever becomes possible that `call_into_js` above // is reset back to `true` after being previously set to `false` then this // code becomes invalid and needs to be rewritten. Otherwise catastrophic // timers corruption will occur and all timers behaviour will become // entirely unpredictable. if (ret.IsEmpty()) return; // To allow for less JS-C++ boundary crossing, the value returned from JS // serves a few purposes: // 1. If it's 0, no more timers exist and the handle should be unrefed // 2. If it's > 0, the value represents the next timer's expiry and there // is at least one timer remaining that is refed. // 3. If it's < 0, the absolute value represents the next timer's expiry // and there are no timers that are refed. int64_t expiry_ms = ret.ToLocalChecked()->IntegerValue(env->context()).FromJust(); uv_handle_t* h = reinterpret_cast(handle); if (expiry_ms != 0) { int64_t duration_ms = llabs(expiry_ms) - (uv_now(env->event_loop()) - env->timer_base()); env->ScheduleTimer(duration_ms > 0 ? duration_ms : 1); if (expiry_ms > 0) uv_ref(h); else uv_unref(h); } else { uv_unref(h); } } void Environment::CheckImmediate(uv_check_t* handle) { Environment* env = Environment::from_immediate_check_handle(handle); TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment), "CheckImmediate", env); if (env->immediate_info()->count() == 0) return; HandleScope scope(env->isolate()); Context::Scope context_scope(env->context()); env->RunAndClearNativeImmediates(); if (!env->can_call_into_js()) return; do { MakeCallback(env->isolate(), env->process_object(), env->immediate_callback_function(), 0, nullptr, {0, 0}).ToLocalChecked(); } while (env->immediate_info()->has_outstanding() && env->can_call_into_js()); if (env->immediate_info()->ref_count() == 0) env->ToggleImmediateRef(false); } void Environment::ToggleImmediateRef(bool ref) { if (ref) { // Idle handle is needed only to stop the event loop from blocking in poll. uv_idle_start(immediate_idle_handle(), [](uv_idle_t*){ }); } else { uv_idle_stop(immediate_idle_handle()); } } Local Environment::GetNow() { uv_update_time(event_loop()); uint64_t now = uv_now(event_loop()); CHECK_GE(now, timer_base()); now -= timer_base(); if (now <= 0xffffffff) return Integer::NewFromUnsigned(isolate(), static_cast(now)); else return Number::New(isolate(), static_cast(now)); } void Environment::set_debug_categories(const std::string& cats, bool enabled) { std::string debug_categories = cats; while (!debug_categories.empty()) { std::string::size_type comma_pos = debug_categories.find(','); std::string wanted = ToLower(debug_categories.substr(0, comma_pos)); #define V(name) \ { \ static const std::string available_category = ToLower(#name); \ if (available_category.find(wanted) != std::string::npos) \ set_debug_enabled(DebugCategory::name, enabled); \ } DEBUG_CATEGORY_NAMES(V) if (comma_pos == std::string::npos) break; // Use everything after the `,` as the list for the next iteration. debug_categories = debug_categories.substr(comma_pos + 1); } } void CollectExceptionInfo(Environment* env, Local obj, int errorno, const char* err_string, const char* syscall, const char* message, const char* path, const char* dest) { obj->Set(env->context(), env->errno_string(), Integer::New(env->isolate(), errorno)).FromJust(); obj->Set(env->context(), env->code_string(), OneByteString(env->isolate(), err_string)).FromJust(); if (message != nullptr) { obj->Set(env->context(), env->message_string(), OneByteString(env->isolate(), message)).FromJust(); } Local path_buffer; if (path != nullptr) { path_buffer = Buffer::Copy(env->isolate(), path, strlen(path)).ToLocalChecked(); obj->Set(env->context(), env->path_string(), path_buffer).FromJust(); } Local dest_buffer; if (dest != nullptr) { dest_buffer = Buffer::Copy(env->isolate(), dest, strlen(dest)).ToLocalChecked(); obj->Set(env->context(), env->dest_string(), dest_buffer).FromJust(); } if (syscall != nullptr) { obj->Set(env->context(), env->syscall_string(), OneByteString(env->isolate(), syscall)).FromJust(); } } void Environment::CollectUVExceptionInfo(Local object, int errorno, const char* syscall, const char* message, const char* path, const char* dest) { if (!object->IsObject() || errorno == 0) return; Local obj = object.As(); const char* err_string = uv_err_name(errorno); if (message == nullptr || message[0] == '\0') { message = uv_strerror(errorno); } node::CollectExceptionInfo(this, obj, errorno, err_string, syscall, message, path, dest); } void Environment::AsyncHooks::grow_async_ids_stack() { async_ids_stack_.reserve(async_ids_stack_.Length() * 3); env()->async_hooks_binding()->Set( env()->context(), env()->async_ids_stack_string(), async_ids_stack_.GetJSArray()).FromJust(); } uv_key_t Environment::thread_local_env = {}; void Environment::Exit(int exit_code) { if (is_main_thread()) { stop_sub_worker_contexts(); DisposePlatform(); exit(exit_code); } else { worker_context_->Exit(exit_code); } } void Environment::stop_sub_worker_contexts() { while (!sub_worker_contexts_.empty()) { Worker* w = *sub_worker_contexts_.begin(); remove_sub_worker_context(w); w->Exit(1); w->JoinThread(); } } void Environment::BuildEmbedderGraph(Isolate* isolate, EmbedderGraph* graph, void* data) { MemoryTracker tracker(isolate, graph); static_cast(data)->ForEachBaseObject([&](BaseObject* obj) { tracker.Track(obj); }); } // Not really any better place than env.cc at this moment. void BaseObject::DeleteMe(void* data) { BaseObject* self = static_cast(data); delete self; } Local BaseObject::WrappedObject() const { return object(); } bool BaseObject::IsRootNode() const { return !persistent_handle_.IsWeak(); } } // namespace node