// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include // NOLINT(readability/streams) #include "src/v8.h" #include "src/assembler-inl.h" #include "src/base/utils/random-number-generator.h" #include "src/disassembler.h" #include "src/heap/factory.h" #include "src/macro-assembler.h" #include "src/mips64/macro-assembler-mips64.h" #include "src/simulator.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { // Define these function prototypes to match JSEntryFunction in execution.cc. // TODO(mips64): Refine these signatures per test case. typedef Object*(F1)(int x, int p1, int p2, int p3, int p4); typedef Object*(F2)(int x, int y, int p2, int p3, int p4); typedef Object*(F3)(void* p, int p1, int p2, int p3, int p4); typedef Object*(F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4); typedef Object*(F5)(void* p0, void* p1, int p2, int p3, int p4); #define __ assm. TEST(MIPS0) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // Addition. __ addu(v0, a0, a1); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0xAB0, 0xC, 0, 0, 0)); CHECK_EQ(0xABCL, res); } TEST(MIPS1) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; __ mov(a1, a0); __ li(v0, 0l); __ b(&C); __ nop(); __ bind(&L); __ addu(v0, v0, a1); __ addiu(a1, a1, -1); __ bind(&C); __ xori(v1, a1, 0); __ Branch(&L, ne, v1, Operand((int64_t)0)); __ nop(); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(50, 0, 0, 0, 0)); CHECK_EQ(1275L, res); } TEST(MIPS2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label exit, error; // ----- Test all instructions. // Test lui, ori, and addiu, used in the li pseudo-instruction. // This way we can then safely load registers with chosen values. __ ori(a4, zero_reg, 0); __ lui(a4, 0x1234); __ ori(a4, a4, 0); __ ori(a4, a4, 0x0F0F); __ ori(a4, a4, 0xF0F0); __ addiu(a5, a4, 1); __ addiu(a6, a5, -0x10); // Load values in temporary registers. __ li(a4, 0x00000004); __ li(a5, 0x00001234); __ li(a6, 0x12345678); __ li(a7, 0x7FFFFFFF); __ li(t0, 0xFFFFFFFC); __ li(t1, 0xFFFFEDCC); __ li(t2, 0xEDCBA988); __ li(t3, 0x80000000); // SPECIAL class. __ srl(v0, a6, 8); // 0x00123456 __ sll(v0, v0, 11); // 0x91A2B000 __ sra(v0, v0, 3); // 0xF2345600 __ srav(v0, v0, a4); // 0xFF234560 __ sllv(v0, v0, a4); // 0xF2345600 __ srlv(v0, v0, a4); // 0x0F234560 __ Branch(&error, ne, v0, Operand(0x0F234560)); __ nop(); __ addu(v0, a4, a5); // 0x00001238 __ subu(v0, v0, a4); // 0x00001234 __ Branch(&error, ne, v0, Operand(0x00001234)); __ nop(); __ addu(v1, a7, a4); // 32bit addu result is sign-extended into 64bit reg. __ Branch(&error, ne, v1, Operand(0xFFFFFFFF80000003)); __ nop(); __ subu(v1, t3, a4); // 0x7FFFFFFC __ Branch(&error, ne, v1, Operand(0x7FFFFFFC)); __ nop(); __ and_(v0, a5, a6); // 0x0000000000001230 __ or_(v0, v0, a5); // 0x0000000000001234 __ xor_(v0, v0, a6); // 0x000000001234444C __ nor(v0, v0, a6); // 0xFFFFFFFFEDCBA987 __ Branch(&error, ne, v0, Operand(0xFFFFFFFFEDCBA983)); __ nop(); // Shift both 32bit number to left, to preserve meaning of next comparison. __ dsll32(a7, a7, 0); __ dsll32(t3, t3, 0); __ slt(v0, t3, a7); __ Branch(&error, ne, v0, Operand(0x1)); __ nop(); __ sltu(v0, t3, a7); __ Branch(&error, ne, v0, Operand(zero_reg)); __ nop(); // Restore original values in registers. __ dsrl32(a7, a7, 0); __ dsrl32(t3, t3, 0); // End of SPECIAL class. __ addiu(v0, zero_reg, 0x7421); // 0x00007421 __ addiu(v0, v0, -0x1); // 0x00007420 __ addiu(v0, v0, -0x20); // 0x00007400 __ Branch(&error, ne, v0, Operand(0x00007400)); __ nop(); __ addiu(v1, a7, 0x1); // 0x80000000 - result is sign-extended. __ Branch(&error, ne, v1, Operand(0xFFFFFFFF80000000)); __ nop(); __ slti(v0, a5, 0x00002000); // 0x1 __ slti(v0, v0, 0xFFFF8000); // 0x0 __ Branch(&error, ne, v0, Operand(zero_reg)); __ nop(); __ sltiu(v0, a5, 0x00002000); // 0x1 __ sltiu(v0, v0, 0x00008000); // 0x1 __ Branch(&error, ne, v0, Operand(0x1)); __ nop(); __ andi(v0, a5, 0xF0F0); // 0x00001030 __ ori(v0, v0, 0x8A00); // 0x00009A30 __ xori(v0, v0, 0x83CC); // 0x000019FC __ Branch(&error, ne, v0, Operand(0x000019FC)); __ nop(); __ lui(v1, 0x8123); // Result is sign-extended into 64bit register. __ Branch(&error, ne, v1, Operand(0xFFFFFFFF81230000)); __ nop(); // Bit twiddling instructions & conditional moves. // Uses a4-t3 as set above. __ Clz(v0, a4); // 29 __ Clz(v1, a5); // 19 __ addu(v0, v0, v1); // 48 __ Clz(v1, a6); // 3 __ addu(v0, v0, v1); // 51 __ Clz(v1, t3); // 0 __ addu(v0, v0, v1); // 51 __ Branch(&error, ne, v0, Operand(51)); __ Movn(a0, a7, a4); // Move a0<-a7 (a4 is NOT 0). __ Ins(a0, a5, 12, 8); // 0x7FF34FFF __ Branch(&error, ne, a0, Operand(0x7FF34FFF)); __ Movz(a0, t2, t3); // a0 not updated (t3 is NOT 0). __ Ext(a1, a0, 8, 12); // 0x34F __ Branch(&error, ne, a1, Operand(0x34F)); __ Movz(a0, t2, v1); // a0<-t2, v0 is 0, from 8 instr back. __ Branch(&error, ne, a0, Operand(t2)); // Everything was correctly executed. Load the expected result. __ li(v0, 0x31415926); __ b(&exit); __ nop(); __ bind(&error); // Got an error. Return a wrong result. __ li(v0, 666); __ bind(&exit); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0xAB0, 0xC, 0, 0, 0)); CHECK_EQ(0x31415926L, res); } TEST(MIPS3) { // Test floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; double i; float fa; float fb; float fc; float fd; float fe; float ff; float fg; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Double precision floating point instructions. __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f6, MemOperand(a0, offsetof(T, b))); __ add_d(f8, f4, f6); __ Sdc1(f8, MemOperand(a0, offsetof(T, c))); // c = a + b. __ mov_d(f10, f8); // c __ neg_d(f12, f6); // -b __ sub_d(f10, f10, f12); __ Sdc1(f10, MemOperand(a0, offsetof(T, d))); // d = c - (-b). __ Sdc1(f4, MemOperand(a0, offsetof(T, b))); // b = a. __ li(a4, 120); __ mtc1(a4, f14); __ cvt_d_w(f14, f14); // f14 = 120.0. __ mul_d(f10, f10, f14); __ Sdc1(f10, MemOperand(a0, offsetof(T, e))); // e = d * 120 = 1.8066e16. __ div_d(f12, f10, f4); __ Sdc1(f12, MemOperand(a0, offsetof(T, f))); // f = e / a = 120.44. __ sqrt_d(f14, f12); __ Sdc1(f14, MemOperand(a0, offsetof(T, g))); // g = sqrt(f) = 10.97451593465515908537 if (kArchVariant == kMips64r2) { __ Ldc1(f4, MemOperand(a0, offsetof(T, h))); __ Ldc1(f6, MemOperand(a0, offsetof(T, i))); __ Madd_d(f14, f6, f4, f6, f8); __ Sdc1(f14, MemOperand(a0, offsetof(T, h))); } // Single precision floating point instructions. __ Lwc1(f4, MemOperand(a0, offsetof(T, fa))); __ Lwc1(f6, MemOperand(a0, offsetof(T, fb))); __ add_s(f8, f4, f6); __ Swc1(f8, MemOperand(a0, offsetof(T, fc))); // fc = fa + fb. __ neg_s(f10, f6); // -fb __ sub_s(f10, f8, f10); __ Swc1(f10, MemOperand(a0, offsetof(T, fd))); // fd = fc - (-fb). __ Swc1(f4, MemOperand(a0, offsetof(T, fb))); // fb = fa. __ li(t0, 120); __ mtc1(t0, f14); __ cvt_s_w(f14, f14); // f14 = 120.0. __ mul_s(f10, f10, f14); __ Swc1(f10, MemOperand(a0, offsetof(T, fe))); // fe = fd * 120 __ div_s(f12, f10, f4); __ Swc1(f12, MemOperand(a0, offsetof(T, ff))); // ff = fe / fa __ sqrt_s(f14, f12); __ Swc1(f14, MemOperand(a0, offsetof(T, fg))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); // Double test values. t.a = 1.5e14; t.b = 2.75e11; t.c = 0.0; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.h = 1.5; t.i = 2.75; // Single test values. t.fa = 1.5e6; t.fb = 2.75e4; t.fc = 0.0; t.fd = 0.0; t.fe = 0.0; t.ff = 0.0; f.Call(&t, 0, 0, 0, 0); // Expected double results. CHECK_EQ(1.5e14, t.a); CHECK_EQ(1.5e14, t.b); CHECK_EQ(1.50275e14, t.c); CHECK_EQ(1.50550e14, t.d); CHECK_EQ(1.8066e16, t.e); CHECK_EQ(120.44, t.f); CHECK_EQ(10.97451593465515908537, t.g); if (kArchVariant == kMips64r2) { CHECK_EQ(6.875, t.h); } // Expected single results. CHECK_EQ(1.5e6, t.fa); CHECK_EQ(1.5e6, t.fb); CHECK_EQ(1.5275e06, t.fc); CHECK_EQ(1.5550e06, t.fd); CHECK_EQ(1.866e08, t.fe); CHECK_EQ(124.40000152587890625, t.ff); CHECK_EQ(11.1534748077392578125, t.fg); } TEST(MIPS4) { // Test moves between floating point and integer registers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; int64_t high; int64_t low; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f5, MemOperand(a0, offsetof(T, b))); // Swap f4 and f5, by using 3 integer registers, a4-a6, // both two 32-bit chunks, and one 64-bit chunk. // mXhc1 is mips32/64-r2 only, not r1, // but we will not support r1 in practice. __ mfc1(a4, f4); __ mfhc1(a5, f4); __ dmfc1(a6, f5); __ mtc1(a4, f5); __ mthc1(a5, f5); __ dmtc1(a6, f4); // Store the swapped f4 and f5 back to memory. __ Sdc1(f4, MemOperand(a0, offsetof(T, a))); __ Sdc1(f5, MemOperand(a0, offsetof(T, c))); // Test sign extension of move operations from coprocessor. __ Ldc1(f4, MemOperand(a0, offsetof(T, d))); __ mfhc1(a4, f4); __ mfc1(a5, f4); __ Sd(a4, MemOperand(a0, offsetof(T, high))); __ Sd(a5, MemOperand(a0, offsetof(T, low))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.a = 1.5e22; t.b = 2.75e11; t.c = 17.17; t.d = -2.75e11; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(2.75e11, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1.5e22, t.c); CHECK_EQ(static_cast(0xFFFFFFFFC25001D1L), t.high); CHECK_EQ(static_cast(0xFFFFFFFFBF800000L), t.low); } TEST(MIPS5) { // Test conversions between doubles and integers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; int i; int j; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Load all structure elements to registers. __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f6, MemOperand(a0, offsetof(T, b))); __ Lw(a4, MemOperand(a0, offsetof(T, i))); __ Lw(a5, MemOperand(a0, offsetof(T, j))); // Convert double in f4 to int in element i. __ cvt_w_d(f8, f4); __ mfc1(a6, f8); __ Sw(a6, MemOperand(a0, offsetof(T, i))); // Convert double in f6 to int in element j. __ cvt_w_d(f10, f6); __ mfc1(a7, f10); __ Sw(a7, MemOperand(a0, offsetof(T, j))); // Convert int in original i (a4) to double in a. __ mtc1(a4, f12); __ cvt_d_w(f0, f12); __ Sdc1(f0, MemOperand(a0, offsetof(T, a))); // Convert int in original j (a5) to double in b. __ mtc1(a5, f14); __ cvt_d_w(f2, f14); __ Sdc1(f2, MemOperand(a0, offsetof(T, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.a = 1.5e4; t.b = 2.75e8; t.i = 12345678; t.j = -100000; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(12345678.0, t.a); CHECK_EQ(-100000.0, t.b); CHECK_EQ(15000, t.i); CHECK_EQ(275000000, t.j); } TEST(MIPS6) { // Test simple memory loads and stores. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t ui; int32_t si; int32_t r1; int32_t r2; int32_t r3; int32_t r4; int32_t r5; int32_t r6; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Basic word load/store. __ Lw(a4, MemOperand(a0, offsetof(T, ui))); __ Sw(a4, MemOperand(a0, offsetof(T, r1))); // lh with positive data. __ Lh(a5, MemOperand(a0, offsetof(T, ui))); __ Sw(a5, MemOperand(a0, offsetof(T, r2))); // lh with negative data. __ Lh(a6, MemOperand(a0, offsetof(T, si))); __ Sw(a6, MemOperand(a0, offsetof(T, r3))); // lhu with negative data. __ Lhu(a7, MemOperand(a0, offsetof(T, si))); __ Sw(a7, MemOperand(a0, offsetof(T, r4))); // Lb with negative data. __ Lb(t0, MemOperand(a0, offsetof(T, si))); __ Sw(t0, MemOperand(a0, offsetof(T, r5))); // sh writes only 1/2 of word. __ lui(t1, 0x3333); __ ori(t1, t1, 0x3333); __ Sw(t1, MemOperand(a0, offsetof(T, r6))); __ Lhu(t1, MemOperand(a0, offsetof(T, si))); __ Sh(t1, MemOperand(a0, offsetof(T, r6))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.ui = 0x11223344; t.si = 0x99AABBCC; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(static_cast(0x11223344), t.r1); if (kArchEndian == kLittle) { CHECK_EQ(static_cast(0x3344), t.r2); CHECK_EQ(static_cast(0xFFFFBBCC), t.r3); CHECK_EQ(static_cast(0x0000BBCC), t.r4); CHECK_EQ(static_cast(0xFFFFFFCC), t.r5); CHECK_EQ(static_cast(0x3333BBCC), t.r6); } else { CHECK_EQ(static_cast(0x1122), t.r2); CHECK_EQ(static_cast(0xFFFF99AA), t.r3); CHECK_EQ(static_cast(0x000099AA), t.r4); CHECK_EQ(static_cast(0xFFFFFF99), t.r5); CHECK_EQ(static_cast(0x99AA3333), t.r6); } } TEST(MIPS7) { // Test floating point compare and branch instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; int32_t result; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label neither_is_nan, less_than, outa_here; __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f6, MemOperand(a0, offsetof(T, b))); if (kArchVariant != kMips64r6) { __ c(UN, D, f4, f6); __ bc1f(&neither_is_nan); } else { __ cmp(UN, L, f2, f4, f6); __ bc1eqz(&neither_is_nan, f2); } __ nop(); __ Sw(zero_reg, MemOperand(a0, offsetof(T, result))); __ Branch(&outa_here); __ bind(&neither_is_nan); if (kArchVariant == kMips64r6) { __ cmp(OLT, L, f2, f6, f4); __ bc1nez(&less_than, f2); } else { __ c(OLT, D, f6, f4, 2); __ bc1t(&less_than, 2); } __ nop(); __ Sw(zero_reg, MemOperand(a0, offsetof(T, result))); __ Branch(&outa_here); __ bind(&less_than); __ Addu(a4, zero_reg, Operand(1)); __ Sw(a4, MemOperand(a0, offsetof(T, result))); // Set true. // This test-case should have additional tests. __ bind(&outa_here); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.a = 1.5e14; t.b = 2.75e11; t.c = 2.0; t.d = -4.0; t.e = 0.0; t.f = 0.0; t.result = 0; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(1.5e14, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1, t.result); } TEST(MIPS8) { if (kArchVariant == kMips64r2) { // Test ROTR and ROTRV instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t input; int32_t result_rotr_4; int32_t result_rotr_8; int32_t result_rotr_12; int32_t result_rotr_16; int32_t result_rotr_20; int32_t result_rotr_24; int32_t result_rotr_28; int32_t result_rotrv_4; int32_t result_rotrv_8; int32_t result_rotrv_12; int32_t result_rotrv_16; int32_t result_rotrv_20; int32_t result_rotrv_24; int32_t result_rotrv_28; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // Basic word load. __ Lw(a4, MemOperand(a0, offsetof(T, input))); // ROTR instruction (called through the Ror macro). __ Ror(a5, a4, 0x0004); __ Ror(a6, a4, 0x0008); __ Ror(a7, a4, 0x000C); __ Ror(t0, a4, 0x0010); __ Ror(t1, a4, 0x0014); __ Ror(t2, a4, 0x0018); __ Ror(t3, a4, 0x001C); // Basic word store. __ Sw(a5, MemOperand(a0, offsetof(T, result_rotr_4))); __ Sw(a6, MemOperand(a0, offsetof(T, result_rotr_8))); __ Sw(a7, MemOperand(a0, offsetof(T, result_rotr_12))); __ Sw(t0, MemOperand(a0, offsetof(T, result_rotr_16))); __ Sw(t1, MemOperand(a0, offsetof(T, result_rotr_20))); __ Sw(t2, MemOperand(a0, offsetof(T, result_rotr_24))); __ Sw(t3, MemOperand(a0, offsetof(T, result_rotr_28))); // ROTRV instruction (called through the Ror macro). __ li(t3, 0x0004); __ Ror(a5, a4, t3); __ li(t3, 0x0008); __ Ror(a6, a4, t3); __ li(t3, 0x000C); __ Ror(a7, a4, t3); __ li(t3, 0x0010); __ Ror(t0, a4, t3); __ li(t3, 0x0014); __ Ror(t1, a4, t3); __ li(t3, 0x0018); __ Ror(t2, a4, t3); __ li(t3, 0x001C); __ Ror(t3, a4, t3); // Basic word store. __ Sw(a5, MemOperand(a0, offsetof(T, result_rotrv_4))); __ Sw(a6, MemOperand(a0, offsetof(T, result_rotrv_8))); __ Sw(a7, MemOperand(a0, offsetof(T, result_rotrv_12))); __ Sw(t0, MemOperand(a0, offsetof(T, result_rotrv_16))); __ Sw(t1, MemOperand(a0, offsetof(T, result_rotrv_20))); __ Sw(t2, MemOperand(a0, offsetof(T, result_rotrv_24))); __ Sw(t3, MemOperand(a0, offsetof(T, result_rotrv_28))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.input = 0x12345678; f.Call(&t, 0x0, 0, 0, 0); CHECK_EQ(static_cast(0x81234567), t.result_rotr_4); CHECK_EQ(static_cast(0x78123456), t.result_rotr_8); CHECK_EQ(static_cast(0x67812345), t.result_rotr_12); CHECK_EQ(static_cast(0x56781234), t.result_rotr_16); CHECK_EQ(static_cast(0x45678123), t.result_rotr_20); CHECK_EQ(static_cast(0x34567812), t.result_rotr_24); CHECK_EQ(static_cast(0x23456781), t.result_rotr_28); CHECK_EQ(static_cast(0x81234567), t.result_rotrv_4); CHECK_EQ(static_cast(0x78123456), t.result_rotrv_8); CHECK_EQ(static_cast(0x67812345), t.result_rotrv_12); CHECK_EQ(static_cast(0x56781234), t.result_rotrv_16); CHECK_EQ(static_cast(0x45678123), t.result_rotrv_20); CHECK_EQ(static_cast(0x34567812), t.result_rotrv_24); CHECK_EQ(static_cast(0x23456781), t.result_rotrv_28); } } TEST(MIPS9) { // Test BRANCH improvements. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label exit, exit2, exit3; __ Branch(&exit, ge, a0, Operand(zero_reg)); __ Branch(&exit2, ge, a0, Operand(0x00001FFF)); __ Branch(&exit3, ge, a0, Operand(0x0001FFFF)); __ bind(&exit); __ bind(&exit2); __ bind(&exit3); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); isolate->factory()->NewCode(desc, Code::STUB, Handle()); } TEST(MIPS10) { // Test conversions between doubles and long integers. // Test hos the long ints map to FP regs pairs. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double a_converted; double b; int32_t dbl_mant; int32_t dbl_exp; int32_t long_hi; int32_t long_lo; int64_t long_as_int64; int32_t b_long_hi; int32_t b_long_lo; int64_t b_long_as_int64; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; if (kArchVariant == kMips64r2) { // Rewritten for FR=1 FPU mode: // - 32 FP regs of 64-bits each, no odd/even pairs. // - Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode. // Load all structure elements to registers. __ Ldc1(f0, MemOperand(a0, offsetof(T, a))); // Save the raw bits of the double. __ mfc1(a4, f0); __ mfhc1(a5, f0); __ Sw(a4, MemOperand(a0, offsetof(T, dbl_mant))); __ Sw(a5, MemOperand(a0, offsetof(T, dbl_exp))); // Convert double in f0 to long, save hi/lo parts. __ cvt_l_d(f0, f0); __ mfc1(a4, f0); // f0 LS 32 bits of long. __ mfhc1(a5, f0); // f0 MS 32 bits of long. __ Sw(a4, MemOperand(a0, offsetof(T, long_lo))); __ Sw(a5, MemOperand(a0, offsetof(T, long_hi))); // Combine the high/low ints, convert back to double. __ dsll32(a6, a5, 0); // Move a5 to high bits of a6. __ or_(a6, a6, a4); __ dmtc1(a6, f1); __ cvt_d_l(f1, f1); __ Sdc1(f1, MemOperand(a0, offsetof(T, a_converted))); // Convert the b long integers to double b. __ Lw(a4, MemOperand(a0, offsetof(T, b_long_lo))); __ Lw(a5, MemOperand(a0, offsetof(T, b_long_hi))); __ mtc1(a4, f8); // f8 LS 32-bits. __ mthc1(a5, f8); // f8 MS 32-bits. __ cvt_d_l(f10, f8); __ Sdc1(f10, MemOperand(a0, offsetof(T, b))); // Convert double b back to long-int. __ Ldc1(f31, MemOperand(a0, offsetof(T, b))); __ cvt_l_d(f31, f31); __ dmfc1(a7, f31); __ Sd(a7, MemOperand(a0, offsetof(T, b_long_as_int64))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.a = 2.147483647e9; // 0x7FFFFFFF -> 0x41DFFFFFFFC00000 as double. t.b_long_hi = 0x000000FF; // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double. t.b_long_lo = 0x00FF00FF; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(static_cast(0x41DFFFFF), t.dbl_exp); CHECK_EQ(static_cast(0xFFC00000), t.dbl_mant); CHECK_EQ(0, t.long_hi); CHECK_EQ(static_cast(0x7FFFFFFF), t.long_lo); CHECK_EQ(2.147483647e9, t.a_converted); // 0xFF00FF00FF -> 1.095233372415e12. CHECK_EQ(1.095233372415e12, t.b); CHECK_EQ(static_cast(0xFF00FF00FF), t.b_long_as_int64); } } TEST(MIPS11) { // Do not run test on MIPS64r6, as these instructions are removed. if (kArchVariant != kMips64r6) { // Test LWL, LWR, SWL and SWR instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t reg_init; int32_t mem_init; int32_t lwl_0; int32_t lwl_1; int32_t lwl_2; int32_t lwl_3; int32_t lwr_0; int32_t lwr_1; int32_t lwr_2; int32_t lwr_3; int32_t swl_0; int32_t swl_1; int32_t swl_2; int32_t swl_3; int32_t swr_0; int32_t swr_1; int32_t swr_2; int32_t swr_3; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // Test all combinations of LWL and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, lwl_0))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a5, MemOperand(a0, offsetof(T, mem_init) + 1)); __ Sw(a5, MemOperand(a0, offsetof(T, lwl_1))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a6, MemOperand(a0, offsetof(T, mem_init) + 2)); __ Sw(a6, MemOperand(a0, offsetof(T, lwl_2))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a7, MemOperand(a0, offsetof(T, mem_init) + 3)); __ Sw(a7, MemOperand(a0, offsetof(T, lwl_3))); // Test all combinations of LWR and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, lwr_0))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a5, MemOperand(a0, offsetof(T, mem_init) + 1)); __ Sw(a5, MemOperand(a0, offsetof(T, lwr_1))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a6, MemOperand(a0, offsetof(T, mem_init) + 2)); __ Sw(a6, MemOperand(a0, offsetof(T, lwr_2))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a7, MemOperand(a0, offsetof(T, mem_init) + 3)); __ Sw(a7, MemOperand(a0, offsetof(T, lwr_3))); // Test all combinations of SWL and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, swl_0))); __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ swl(a4, MemOperand(a0, offsetof(T, swl_0))); __ Lw(a5, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a5, MemOperand(a0, offsetof(T, swl_1))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ swl(a5, MemOperand(a0, offsetof(T, swl_1) + 1)); __ Lw(a6, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a6, MemOperand(a0, offsetof(T, swl_2))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ swl(a6, MemOperand(a0, offsetof(T, swl_2) + 2)); __ Lw(a7, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a7, MemOperand(a0, offsetof(T, swl_3))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ swl(a7, MemOperand(a0, offsetof(T, swl_3) + 3)); // Test all combinations of SWR and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, swr_0))); __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ swr(a4, MemOperand(a0, offsetof(T, swr_0))); __ Lw(a5, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a5, MemOperand(a0, offsetof(T, swr_1))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ swr(a5, MemOperand(a0, offsetof(T, swr_1) + 1)); __ Lw(a6, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a6, MemOperand(a0, offsetof(T, swr_2))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ swr(a6, MemOperand(a0, offsetof(T, swr_2) + 2)); __ Lw(a7, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a7, MemOperand(a0, offsetof(T, swr_3))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ swr(a7, MemOperand(a0, offsetof(T, swr_3) + 3)); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.reg_init = 0xAABBCCDD; t.mem_init = 0x11223344; f.Call(&t, 0, 0, 0, 0); if (kArchEndian == kLittle) { CHECK_EQ(static_cast(0x44BBCCDD), t.lwl_0); CHECK_EQ(static_cast(0x3344CCDD), t.lwl_1); CHECK_EQ(static_cast(0x223344DD), t.lwl_2); CHECK_EQ(static_cast(0x11223344), t.lwl_3); CHECK_EQ(static_cast(0x11223344), t.lwr_0); CHECK_EQ(static_cast(0xAA112233), t.lwr_1); CHECK_EQ(static_cast(0xAABB1122), t.lwr_2); CHECK_EQ(static_cast(0xAABBCC11), t.lwr_3); CHECK_EQ(static_cast(0x112233AA), t.swl_0); CHECK_EQ(static_cast(0x1122AABB), t.swl_1); CHECK_EQ(static_cast(0x11AABBCC), t.swl_2); CHECK_EQ(static_cast(0xAABBCCDD), t.swl_3); CHECK_EQ(static_cast(0xAABBCCDD), t.swr_0); CHECK_EQ(static_cast(0xBBCCDD44), t.swr_1); CHECK_EQ(static_cast(0xCCDD3344), t.swr_2); CHECK_EQ(static_cast(0xDD223344), t.swr_3); } else { CHECK_EQ(static_cast(0x11223344), t.lwl_0); CHECK_EQ(static_cast(0x223344DD), t.lwl_1); CHECK_EQ(static_cast(0x3344CCDD), t.lwl_2); CHECK_EQ(static_cast(0x44BBCCDD), t.lwl_3); CHECK_EQ(static_cast(0xAABBCC11), t.lwr_0); CHECK_EQ(static_cast(0xAABB1122), t.lwr_1); CHECK_EQ(static_cast(0xAA112233), t.lwr_2); CHECK_EQ(static_cast(0x11223344), t.lwr_3); CHECK_EQ(static_cast(0xAABBCCDD), t.swl_0); CHECK_EQ(static_cast(0x11AABBCC), t.swl_1); CHECK_EQ(static_cast(0x1122AABB), t.swl_2); CHECK_EQ(static_cast(0x112233AA), t.swl_3); CHECK_EQ(static_cast(0xDD223344), t.swr_0); CHECK_EQ(static_cast(0xCCDD3344), t.swr_1); CHECK_EQ(static_cast(0xBBCCDD44), t.swr_2); CHECK_EQ(static_cast(0xAABBCCDD), t.swr_3); } } } TEST(MIPS12) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t x; int32_t y; int32_t y1; int32_t y2; int32_t y3; int32_t y4; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ mov(t2, fp); // Save frame pointer. __ mov(fp, a0); // Access struct T by fp. __ Lw(a4, MemOperand(a0, offsetof(T, y))); __ Lw(a7, MemOperand(a0, offsetof(T, y4))); __ addu(a5, a4, a7); __ subu(t0, a4, a7); __ nop(); __ push(a4); // These instructions disappear after opt. __ Pop(); __ addu(a4, a4, a4); __ nop(); __ Pop(); // These instructions disappear after opt. __ push(a7); __ nop(); __ push(a7); // These instructions disappear after opt. __ pop(a7); __ nop(); __ push(a7); __ pop(t0); __ nop(); __ Sw(a4, MemOperand(fp, offsetof(T, y))); __ Lw(a4, MemOperand(fp, offsetof(T, y))); __ nop(); __ Sw(a4, MemOperand(fp, offsetof(T, y))); __ Lw(a5, MemOperand(fp, offsetof(T, y))); __ nop(); __ push(a5); __ Lw(a5, MemOperand(fp, offsetof(T, y))); __ pop(a5); __ nop(); __ push(a5); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a5); __ nop(); __ push(a5); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a6); __ nop(); __ push(a6); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a5); __ nop(); __ push(a5); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a7); __ nop(); __ mov(fp, t2); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.x = 1; t.y = 2; t.y1 = 3; t.y2 = 4; t.y3 = 0XBABA; t.y4 = 0xDEDA; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(3, t.y1); } TEST(MIPS13) { // Test Cvt_d_uw and Trunc_uw_d macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double cvt_big_out; double cvt_small_out; uint32_t trunc_big_out; uint32_t trunc_small_out; uint32_t cvt_big_in; uint32_t cvt_small_in; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ Sw(a4, MemOperand(a0, offsetof(T, cvt_small_in))); __ Cvt_d_uw(f10, a4); __ Sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out))); __ Trunc_uw_d(f10, f10, f4); __ Swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out))); __ Sw(a4, MemOperand(a0, offsetof(T, cvt_big_in))); __ Cvt_d_uw(f8, a4); __ Sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out))); __ Trunc_uw_d(f8, f8, f4); __ Swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.cvt_big_in = 0xFFFFFFFF; t.cvt_small_in = 333; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(t.cvt_big_out, static_cast(t.cvt_big_in)); CHECK_EQ(t.cvt_small_out, static_cast(t.cvt_small_in)); CHECK_EQ(static_cast(t.trunc_big_out), static_cast(t.cvt_big_in)); CHECK_EQ(static_cast(t.trunc_small_out), static_cast(t.cvt_small_in)); } TEST(MIPS14) { // Test round, floor, ceil, trunc, cvt. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); #define ROUND_STRUCT_ELEMENT(x) \ uint32_t x##_isNaN2008; \ int32_t x##_up_out; \ int32_t x##_down_out; \ int32_t neg_##x##_up_out; \ int32_t neg_##x##_down_out; \ uint32_t x##_err1_out; \ uint32_t x##_err2_out; \ uint32_t x##_err3_out; \ uint32_t x##_err4_out; \ int32_t x##_invalid_result; typedef struct { double round_up_in; double round_down_in; double neg_round_up_in; double neg_round_down_in; double err1_in; double err2_in; double err3_in; double err4_in; ROUND_STRUCT_ELEMENT(round) ROUND_STRUCT_ELEMENT(floor) ROUND_STRUCT_ELEMENT(ceil) ROUND_STRUCT_ELEMENT(trunc) ROUND_STRUCT_ELEMENT(cvt) } T; T t; #undef ROUND_STRUCT_ELEMENT MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); #define RUN_ROUND_TEST(x) \ __ cfc1(t0, FCSR); \ __ Sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \ __ Ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \ __ Swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result))); RUN_ROUND_TEST(round) RUN_ROUND_TEST(floor) RUN_ROUND_TEST(ceil) RUN_ROUND_TEST(trunc) RUN_ROUND_TEST(cvt) // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.round_up_in = 123.51; t.round_down_in = 123.49; t.neg_round_up_in = -123.5; t.neg_round_down_in = -123.49; t.err1_in = 123.51; t.err2_in = 1; t.err3_in = static_cast(1) + 0xFFFFFFFF; t.err4_in = NAN; f.Call(&t, 0, 0, 0, 0); #define GET_FPU_ERR(x) (static_cast(x & kFCSRFlagMask)) #define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask) #define CHECK_ROUND_RESULT(type) \ CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \ CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \ CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \ CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \ if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips64r6) { \ CHECK_EQ(static_cast(0), t.type##_invalid_result);\ } else { \ CHECK_EQ(static_cast(kFPUInvalidResult), t.type##_invalid_result);\ } CHECK_ROUND_RESULT(round); CHECK_ROUND_RESULT(floor); CHECK_ROUND_RESULT(ceil); CHECK_ROUND_RESULT(cvt); } TEST(MIPS15) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(AssemblerOptions{}, nullptr, 0); Label target; __ beq(v0, v1, &target); __ nop(); __ bne(v0, v1, &target); __ nop(); __ bind(&target); __ nop(); } // ----- mips64 tests ----------------------------------------------- TEST(MIPS16) { // Test 64-bit memory loads and stores. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { int64_t r1; int64_t r2; int64_t r3; int64_t r4; int64_t r5; int64_t r6; int64_t r7; int64_t r8; int64_t r9; int64_t r10; int64_t r11; int64_t r12; uint32_t ui; int32_t si; }; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Basic 32-bit word load/store, with un-signed data. __ Lw(a4, MemOperand(a0, offsetof(T, ui))); __ Sw(a4, MemOperand(a0, offsetof(T, r1))); // Check that the data got zero-extended into 64-bit a4. __ Sd(a4, MemOperand(a0, offsetof(T, r2))); // Basic 32-bit word load/store, with SIGNED data. __ Lw(a5, MemOperand(a0, offsetof(T, si))); __ Sw(a5, MemOperand(a0, offsetof(T, r3))); // Check that the data got sign-extended into 64-bit a4. __ Sd(a5, MemOperand(a0, offsetof(T, r4))); // 32-bit UNSIGNED word load/store, with SIGNED data. __ Lwu(a6, MemOperand(a0, offsetof(T, si))); __ Sw(a6, MemOperand(a0, offsetof(T, r5))); // Check that the data got zero-extended into 64-bit a4. __ Sd(a6, MemOperand(a0, offsetof(T, r6))); // lh with positive data. __ Lh(a5, MemOperand(a0, offsetof(T, ui))); __ Sw(a5, MemOperand(a0, offsetof(T, r7))); // lh with negative data. __ Lh(a6, MemOperand(a0, offsetof(T, si))); __ Sw(a6, MemOperand(a0, offsetof(T, r8))); // lhu with negative data. __ Lhu(a7, MemOperand(a0, offsetof(T, si))); __ Sw(a7, MemOperand(a0, offsetof(T, r9))); // Lb with negative data. __ Lb(t0, MemOperand(a0, offsetof(T, si))); __ Sw(t0, MemOperand(a0, offsetof(T, r10))); // sh writes only 1/2 of word. __ Lw(a4, MemOperand(a0, offsetof(T, ui))); __ Sh(a4, MemOperand(a0, offsetof(T, r11))); __ Lw(a4, MemOperand(a0, offsetof(T, si))); __ Sh(a4, MemOperand(a0, offsetof(T, r12))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.ui = 0x44332211; t.si = 0x99AABBCC; t.r1 = 0x5555555555555555; t.r2 = 0x5555555555555555; t.r3 = 0x5555555555555555; t.r4 = 0x5555555555555555; t.r5 = 0x5555555555555555; t.r6 = 0x5555555555555555; t.r7 = 0x5555555555555555; t.r8 = 0x5555555555555555; t.r9 = 0x5555555555555555; t.r10 = 0x5555555555555555; t.r11 = 0x5555555555555555; t.r12 = 0x5555555555555555; f.Call(&t, 0, 0, 0, 0); if (kArchEndian == kLittle) { // Unsigned data, 32 & 64 CHECK_EQ(static_cast(0x5555555544332211L), t.r1); // lw, sw. CHECK_EQ(static_cast(0x0000000044332211L), t.r2); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x5555555599AABBCCL), t.r3); // lw, sw. CHECK_EQ(static_cast(0xFFFFFFFF99AABBCCL), t.r4); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x5555555599AABBCCL), t.r5); // lwu, sw. CHECK_EQ(static_cast(0x0000000099AABBCCL), t.r6); // sd. // lh with unsigned and signed data. CHECK_EQ(static_cast(0x5555555500002211L), t.r7); // lh, sw. CHECK_EQ(static_cast(0x55555555FFFFBBCCL), t.r8); // lh, sw. // lhu with signed data. CHECK_EQ(static_cast(0x555555550000BBCCL), t.r9); // lhu, sw. // lb with signed data. CHECK_EQ(static_cast(0x55555555FFFFFFCCL), t.r10); // lb, sw. // sh with unsigned and signed data. CHECK_EQ(static_cast(0x5555555555552211L), t.r11); // lw, sh. CHECK_EQ(static_cast(0x555555555555BBCCL), t.r12); // lw, sh. } else { // Unsigned data, 32 & 64 CHECK_EQ(static_cast(0x4433221155555555L), t.r1); // lw, sw. CHECK_EQ(static_cast(0x0000000044332211L), t.r2); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x99AABBCC55555555L), t.r3); // lw, sw. CHECK_EQ(static_cast(0xFFFFFFFF99AABBCCL), t.r4); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x99AABBCC55555555L), t.r5); // lwu, sw. CHECK_EQ(static_cast(0x0000000099AABBCCL), t.r6); // sd. // lh with unsigned and signed data. CHECK_EQ(static_cast(0x0000443355555555L), t.r7); // lh, sw. CHECK_EQ(static_cast(0xFFFF99AA55555555L), t.r8); // lh, sw. // lhu with signed data. CHECK_EQ(static_cast(0x000099AA55555555L), t.r9); // lhu, sw. // lb with signed data. CHECK_EQ(static_cast(0xFFFFFF9955555555L), t.r10); // lb, sw. // sh with unsigned and signed data. CHECK_EQ(static_cast(0x2211555555555555L), t.r11); // lw, sh. CHECK_EQ(static_cast(0xBBCC555555555555L), t.r12); // lw, sh. } } // ----------------------mips64r6 specific tests---------------------- TEST(seleqz_selnez) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { int a; int b; int c; int d; double e; double f; double g; double h; float i; float j; float k; float l; } Test; Test test; // Integer part of test. __ addiu(t1, zero_reg, 1); // t1 = 1 __ seleqz(t3, t1, zero_reg); // t3 = 1 __ Sw(t3, MemOperand(a0, offsetof(Test, a))); // a = 1 __ seleqz(t2, t1, t1); // t2 = 0 __ Sw(t2, MemOperand(a0, offsetof(Test, b))); // b = 0 __ selnez(t3, t1, zero_reg); // t3 = 1; __ Sw(t3, MemOperand(a0, offsetof(Test, c))); // c = 0 __ selnez(t3, t1, t1); // t3 = 1 __ Sw(t3, MemOperand(a0, offsetof(Test, d))); // d = 1 // Floating point part of test. __ Ldc1(f0, MemOperand(a0, offsetof(Test, e))); // src __ Ldc1(f2, MemOperand(a0, offsetof(Test, f))); // test __ Lwc1(f8, MemOperand(a0, offsetof(Test, i))); // src __ Lwc1(f10, MemOperand(a0, offsetof(Test, j))); // test __ seleqz_d(f4, f0, f2); __ selnez_d(f6, f0, f2); __ seleqz_s(f12, f8, f10); __ selnez_s(f14, f8, f10); __ Sdc1(f4, MemOperand(a0, offsetof(Test, g))); // src __ Sdc1(f6, MemOperand(a0, offsetof(Test, h))); // src __ Swc1(f12, MemOperand(a0, offsetof(Test, k))); // src __ Swc1(f14, MemOperand(a0, offsetof(Test, l))); // src __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(1, test.a); CHECK_EQ(0, test.b); CHECK_EQ(0, test.c); CHECK_EQ(1, test.d); const int test_size = 3; const int input_size = 5; double inputs_D[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double outputs_D[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9, 18446744073709551616.0, 18446744073709555712.0}; float inputs_S[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float outputs_S[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8, 18446744073709551616.0, 18446746272732807168.0}; for (int j=0; j < test_size; j+=2) { for (int i=0; i < input_size; i++) { test.e = inputs_D[i]; test.f = tests_D[j]; test.i = inputs_S[i]; test.j = tests_S[j]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(outputs_D[i], test.g); CHECK_EQ(0, test.h); CHECK_EQ(outputs_S[i], test.k); CHECK_EQ(0, test.l); test.f = tests_D[j+1]; test.j = tests_S[j+1]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(0, test.g); CHECK_EQ(outputs_D[i], test.h); CHECK_EQ(0, test.k); CHECK_EQ(outputs_S[i], test.l); } } } } TEST(min_max) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); struct TestFloat { double a; double b; double c; double d; float e; float f; float g; float h; }; TestFloat test; const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = std::numeric_limits::infinity(); const int kTableLength = 13; double inputsa[kTableLength] = {2.0, 3.0, dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan}; double inputsb[kTableLength] = {3.0, 2.0, 3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan}; double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan}; double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan}; float inputse[kTableLength] = {2.0, 3.0, fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan}; float inputsf[kTableLength] = {3.0, 2.0, 3.0, fnan, 0.0, -0.0, fnan, finf, finf, 42.0, finf, fminf, fnan}; float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan}; float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan}; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, e))); __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, f))); __ min_d(f10, f4, f8); __ max_d(f12, f4, f8); __ min_s(f14, f2, f6); __ max_s(f16, f2, f6); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d))); __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, g))); __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, h))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 4; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); } } } TEST(rint_d) { if (kArchVariant == kMips64r6) { const int kTableLength = 30; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; int fcsr; }TestFloat; TestFloat test; double inputs[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E+308, 6.27463370218383111104242366943E-307, 309485009821345068724781056.89, 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RN[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RZ[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RP[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 1, 309485009821345068724781057.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RM[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr))); __ ctc1(t0, FCSR); __ rint_d(f8, f4); __ Sdc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, outputs[j][i]); } } } } TEST(sel) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { double dd; double ds; double dt; float fd; float fs; float ft; } Test; Test test; __ Ldc1(f0, MemOperand(a0, offsetof(Test, dd))); // test __ Ldc1(f2, MemOperand(a0, offsetof(Test, ds))); // src1 __ Ldc1(f4, MemOperand(a0, offsetof(Test, dt))); // src2 __ Lwc1(f6, MemOperand(a0, offsetof(Test, fd))); // test __ Lwc1(f8, MemOperand(a0, offsetof(Test, fs))); // src1 __ Lwc1(f10, MemOperand(a0, offsetof(Test, ft))); // src2 __ sel_d(f0, f2, f4); __ sel_s(f6, f8, f10); __ Sdc1(f0, MemOperand(a0, offsetof(Test, dd))); __ Swc1(f6, MemOperand(a0, offsetof(Test, fd))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); const int test_size = 3; const int input_size = 5; double inputs_dt[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double inputs_ds[input_size] = {0.1, 69.88, -91.325, 18446744073709551625.0, -18446744073709551625.0}; float inputs_ft[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float inputs_fs[input_size] = {0.1, 69.88, -91.325, 18446744073709551625.0, -18446744073709551625.0}; double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9, 18446744073709551616.0, 18446744073709555712.0}; float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8, 18446744073709551616.0, 18446746272732807168.0}; for (int j=0; j < test_size; j+=2) { for (int i=0; i < input_size; i++) { test.dt = inputs_dt[i]; test.dd = tests_D[j]; test.ds = inputs_ds[i]; test.ft = inputs_ft[i]; test.fd = tests_S[j]; test.fs = inputs_fs[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dd, inputs_ds[i]); CHECK_EQ(test.fd, inputs_fs[i]); test.dd = tests_D[j+1]; test.fd = tests_S[j+1]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dd, inputs_dt[i]); CHECK_EQ(test.fd, inputs_ft[i]); } } } } TEST(rint_s) { if (kArchVariant == kMips64r6) { const int kTableLength = 30; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; int fcsr; }TestFloat; TestFloat test; float inputs[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E+38, 6.27463370218383111104242366943E-37, 309485009821345068724781056.89, 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RN[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RZ[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RP[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 1, 309485009821345068724781057.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RM[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr))); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ rint_s(f8, f4); __ Swc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, outputs[j][i]); } } } } TEST(mina_maxa) { if (kArchVariant == kMips64r6) { const int kTableLength = 23; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = std::numeric_limits::infinity(); struct TestFloat { double a; double b; double resd; double resd1; float c; float d; float resf; float resf1; }; TestFloat test; double inputsa[kTableLength] = { 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan}; double inputsb[kTableLength] = { 4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, 3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan}; double resd[kTableLength] = { 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan}; double resd1[kTableLength] = { 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, 3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan}; float inputsc[kTableLength] = { 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan}; float inputsd[kTableLength] = {4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, 3.0, fnan, -0.0, 0.0, fnan, finf, finf, 42.0, finf, fminf, fnan}; float resf[kTableLength] = { 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan}; float resf1[kTableLength] = { 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, 3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan}; __ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ Lwc1(f10, MemOperand(a0, offsetof(TestFloat, d))); __ mina_d(f6, f2, f4); __ mina_s(f12, f8, f10); __ maxa_d(f14, f2, f4); __ maxa_s(f16, f8, f10); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, resf))); __ Sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd))); __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1))); __ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.c = inputsc[i]; test.d = inputsd[i]; f.Call(&test, 0, 0, 0, 0); if (i < kTableLength - 1) { CHECK_EQ(test.resd, resd[i]); CHECK_EQ(test.resf, resf[i]); CHECK_EQ(test.resd1, resd1[i]); CHECK_EQ(test.resf1, resf1[i]); } else { CHECK(std::isnan(test.resd)); CHECK(std::isnan(test.resf)); CHECK(std::isnan(test.resd1)); CHECK(std::isnan(test.resf1)); } } } } // ----------------------mips64r2 specific tests---------------------- TEST(trunc_l) { if (kArchVariant == kMips64r2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; // a trunc result int64_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ trunc_l_d(f8, f4); __ trunc_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } } TEST(movz_movn) { if (kArchVariant == kMips64r2) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { int64_t rt; double a; double b; double bold; double b1; double bold1; float c; float d; float dold; float d1; float dold1; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; __ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c))); __ Ld(t0, MemOperand(a0, offsetof(TestFloat, rt))); __ Move(f12, 0.0); __ Move(f10, 0.0); __ Move(f16, 0.0); __ Move(f14, 0.0); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold))); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, dold))); __ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1))); __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1))); __ movz_s(f10, f6, t0); __ movz_d(f12, f2, t0); __ movn_s(f14, f6, t0); __ movn_d(f16, f2, t0); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, d))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, b))); __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, d1))); __ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_S[i]; test.rt = 1; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, test.bold); CHECK_EQ(test.d, test.dold); CHECK_EQ(test.b1, outputs_D[i]); CHECK_EQ(test.d1, outputs_S[i]); test.rt = 0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_S[i]); CHECK_EQ(test.b1, test.bold1); CHECK_EQ(test.d1, test.dold1); } } } TEST(movt_movd) { if (kArchVariant == kMips64r2) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); typedef struct test_float { double srcd; double dstd; double dstdold; double dstd1; double dstdold1; float srcf; float dstf; float dstfold; float dstf1; float dstfold1; int32_t cc; int32_t fcsr; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 20.8, -2.9 }; double inputs_S[kTableLength] = { 4.88, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.88, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 20.8, -2.9 }; int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7}; for (int i = 0; i < kTableLength; i++) { test.srcd = inputs_D[i]; test.srcf = inputs_S[i]; for (int j = 0; j< 8; j++) { test.cc = condition_flags[j]; if (test.cc == 0) { test.fcsr = 1 << 23; } else { test.fcsr = 1 << (24+condition_flags[j]); } HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf))); __ Lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr))); __ cfc1(t0, FCSR); __ ctc1(t1, FCSR); __ li(t2, 0x0l); __ mtc1(t2, f12); __ mtc1(t2, f10); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold))); __ movt_s(f12, f4, test.cc); __ movt_d(f10, f2, test.cc); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1))); __ movf_s(f12, f4, test.cc); __ movf_d(f10, f2, test.cc); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1))); __ ctc1(t0, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dstf, outputs_S[i]); CHECK_EQ(test.dstd, outputs_D[i]); CHECK_EQ(test.dstf1, test.dstfold1); CHECK_EQ(test.dstd1, test.dstdold1); test.fcsr = 0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dstf, test.dstfold); CHECK_EQ(test.dstd, test.dstdold); CHECK_EQ(test.dstf1, outputs_S[i]); CHECK_EQ(test.dstd1, outputs_D[i]); } } } } // ----------------------tests for all archs-------------------------- TEST(cvt_w_d) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; int32_t b; int fcsr; }Test; const int kTableLength = 24; double inputs[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, 2147483653.0 }; double outputs_RN[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RZ[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RP[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RM[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lw(t0, MemOperand(a0, offsetof(Test, fcsr))); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ cvt_w_d(f8, f4); __ Swc1(f8, MemOperand(a0, offsetof(Test, b))); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, outputs[j][i]); } } } TEST(trunc_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a trunc result int32_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ trunc_w_d(f8, f4); __ trunc_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(round_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a trunc result int32_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ round_w_d(f8, f4); __ round_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(round_l) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ round_l_d(f8, f4); __ round_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(sub) { const int kTableLength = 12; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; float resultS; double c; double d; double resultD; }TestFloat; TestFloat test; double inputfs_D[kTableLength] = { 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 }; double inputft_D[kTableLength] = { 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 }; double outputs_D[kTableLength] = { 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 }; float inputfs_S[kTableLength] = { 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 }; float inputft_S[kTableLength] = { 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 }; float outputs_S[kTableLength] = { 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ Ldc1(f10, MemOperand(a0, offsetof(TestFloat, d))); __ sub_s(f6, f2, f4); __ sub_d(f12, f8, f10); __ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputfs_S[i]; test.b = inputft_S[i]; test.c = inputfs_D[i]; test.d = inputft_D[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); } } TEST(sqrt_rsqrt_recip) { const int kTableLength = 4; const double deltaDouble = 2E-15; const float deltaFloat = 2E-7; const float sqrt2_s = sqrt(2); const double sqrt2_d = sqrt(2); CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float resultS; float resultS1; float resultS2; double c; double resultD; double resultD1; double resultD2; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 0.0L, 4.0L, 2.0L, 4e-28L }; double outputs_D[kTableLength] = { 0.0L, 2.0L, sqrt2_d, 2e-14L }; float inputs_S[kTableLength] = { 0.0, 4.0, 2.0, 4e-28 }; float outputs_S[kTableLength] = { 0.0, 2.0, sqrt2_s, 2e-14 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ sqrt_s(f6, f2); __ sqrt_d(f12, f8); __ rsqrt_d(f14, f8); __ rsqrt_s(f16, f2); __ recip_d(f18, f8); __ recip_s(f4, f2); __ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1))); __ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1))); __ Swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2))); __ Sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { float f1; double d1; test.a = inputs_S[i]; test.c = inputs_D[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); if (i != 0) { f1 = test.resultS1 - 1.0F/outputs_S[i]; f1 = (f1 < 0) ? f1 : -f1; CHECK(f1 <= deltaFloat); d1 = test.resultD1 - 1.0L/outputs_D[i]; d1 = (d1 < 0) ? d1 : -d1; CHECK(d1 <= deltaDouble); f1 = test.resultS2 - 1.0F/inputs_S[i]; f1 = (f1 < 0) ? f1 : -f1; CHECK(f1 <= deltaFloat); d1 = test.resultD2 - 1.0L/inputs_D[i]; d1 = (d1 < 0) ? d1 : -d1; CHECK(d1 <= deltaDouble); } else { CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]); CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]); CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]); CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]); } } } TEST(neg) { const int kTableLength = 2; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float resultS; double c; double resultD; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 4.0, -2.0 }; double outputs_D[kTableLength] = { -4.0, 2.0 }; float inputs_S[kTableLength] = { 4.0, -2.0 }; float outputs_S[kTableLength] = { -4.0, 2.0 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ neg_s(f6, f2); __ neg_d(f12, f8); __ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_S[i]; test.c = inputs_D[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); } } TEST(mul) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; float resultS; double c; double d; double resultD; }TestFloat; TestFloat test; double inputfs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputft_D[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float inputfs_S[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; float inputft_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, c))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, d))); __ mul_s(f10, f2, f4); __ mul_d(f12, f6, f8); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputfs_S[i]; test.b = inputft_S[i]; test.c = inputfs_D[i]; test.d = inputft_D[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]); CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]); } } TEST(mov) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; float c; float d; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c))); __ mov_s(f8, f6); __ mov_d(f10, f4); __ Swc1(f8, MemOperand(a0, offsetof(TestFloat, d))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_S[i]); } } TEST(floor_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a floor result int32_t d; // b floor result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ floor_w_d(f8, f4); __ floor_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(floor_l) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ floor_l_d(f8, f4); __ floor_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(ceil_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a floor result int32_t d; // b floor result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ ceil_w_d(f8, f4); __ ceil_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(ceil_l) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ ceil_l_d(f8, f4); __ ceil_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; f.Call(&test, 0, 0, 0, 0); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(jump_tables1) { // Test jump tables with forward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; __ daddiu(sp, sp, -8); __ Sd(ra, MemOperand(sp)); __ Align(8); Label done; { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); PredictableCodeSizeScope predictable(&assm, (kNumCases * 2 + 6) * kInstrSize); __ nal(); __ dsll(at, a0, 3); // In delay slot. __ daddu(at, at, ra); __ Ld(at, MemOperand(at, 4 * kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xFFFF); __ ori(v0, v0, values[i] & 0xFFFF); __ b(&done); __ nop(); } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ daddiu(sp, sp, 8); __ jr(ra); __ nop(); CHECK_EQ(0, assm.UnboundLabelsCount()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], static_cast(res)); } } TEST(jump_tables2) { // Test jump tables with backward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; __ daddiu(sp, sp, -8); __ Sd(ra, MemOperand(sp)); Label done, dispatch; __ b(&dispatch); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xFFFF); __ ori(v0, v0, values[i] & 0xFFFF); __ b(&done); __ nop(); } __ Align(8); __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); PredictableCodeSizeScope predictable(&assm, (kNumCases * 2 + 6) * kInstrSize); __ nal(); __ dsll(at, a0, 3); // In delay slot. __ daddu(at, at, ra); __ Ld(at, MemOperand(at, 4 * kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ daddiu(sp, sp, 8); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables3) { // Test jump tables with backward jumps and embedded heap objects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; Handle values[kNumCases]; for (int i = 0; i < kNumCases; ++i) { double value = isolate->random_number_generator()->NextDouble(); values[i] = isolate->factory()->NewHeapNumber(value, TENURED); } Label labels[kNumCases]; Object* obj; int64_t imm64; __ daddiu(sp, sp, -8); __ Sd(ra, MemOperand(sp)); Label done, dispatch; __ b(&dispatch); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); obj = *values[i]; imm64 = reinterpret_cast(obj); __ lui(v0, (imm64 >> 32) & kImm16Mask); __ ori(v0, v0, (imm64 >> 16) & kImm16Mask); __ dsll(v0, v0, 16); __ ori(v0, v0, imm64 & kImm16Mask); __ b(&done); __ nop(); } __ Align(8); __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); PredictableCodeSizeScope predictable(&assm, (kNumCases * 2 + 6) * kInstrSize); __ nal(); __ dsll(at, a0, 3); // In delay slot. __ daddu(at, at, ra); __ Ld(at, MemOperand(at, 4 * kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ daddiu(sp, sp, 8); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kNumCases; ++i) { Handle result(f.Call(i, 0, 0, 0, 0), isolate); #ifdef OBJECT_PRINT ::printf("f(%d) = ", i); result->Print(std::cout); ::printf("\n"); #endif CHECK(values[i].is_identical_to(result)); } } TEST(BITSWAP) { // Test BITSWAP if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int64_t r1; int64_t r2; int64_t r3; int64_t r4; int64_t r5; int64_t r6; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ Ld(a4, MemOperand(a0, offsetof(T, r1))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r1))); __ Ld(a4, MemOperand(a0, offsetof(T, r2))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r2))); __ Ld(a4, MemOperand(a0, offsetof(T, r3))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r3))); __ Ld(a4, MemOperand(a0, offsetof(T, r4))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r4))); __ Ld(a4, MemOperand(a0, offsetof(T, r5))); __ nop(); __ dbitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r5))); __ Ld(a4, MemOperand(a0, offsetof(T, r6))); __ nop(); __ dbitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r6))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); t.r1 = 0x00102100781A15C3; t.r2 = 0x001021008B71FCDE; t.r3 = 0xFF8017FF781A15C3; t.r4 = 0xFF8017FF8B71FCDE; t.r5 = 0x10C021098B71FCDE; t.r6 = 0xFB8017FF781A15C3; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(static_cast(0x000000001E58A8C3L), t.r1); CHECK_EQ(static_cast(0xFFFFFFFFD18E3F7BL), t.r2); CHECK_EQ(static_cast(0x000000001E58A8C3L), t.r3); CHECK_EQ(static_cast(0xFFFFFFFFD18E3F7BL), t.r4); CHECK_EQ(static_cast(0x08038490D18E3F7BL), t.r5); CHECK_EQ(static_cast(0xDF01E8FF1E58A8C3L), t.r6); } } TEST(class_fmt) { if (kArchVariant == kMips64r6) { // Test CLASS.fmt instruction. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double dSignalingNan; double dQuietNan; double dNegInf; double dNegNorm; double dNegSubnorm; double dNegZero; double dPosInf; double dPosNorm; double dPosSubnorm; double dPosZero; float fSignalingNan; float fQuietNan; float fNegInf; float fNegNorm; float fNegSubnorm; float fNegZero; float fPosInf; float fPosNorm; float fPosSubnorm; float fPosZero; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ Ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegInf))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegInf))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegZero))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegZero))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosInf))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosInf))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosZero))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosZero))); // Testing instruction CLASS.S __ Lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fQuietNan))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegInf))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegInf))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegNorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegZero))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegZero))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosInf))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosInf))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosNorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosZero))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosZero))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); // Double test values. t.dSignalingNan = std::numeric_limits::signaling_NaN(); t.dQuietNan = std::numeric_limits::quiet_NaN(); t.dNegInf = -1.0 / 0.0; t.dNegNorm = -5.0; t.dNegSubnorm = -DBL_MIN / 2.0; t.dNegZero = -0.0; t.dPosInf = 2.0 / 0.0; t.dPosNorm = 275.35; t.dPosSubnorm = DBL_MIN / 2.0; t.dPosZero = +0.0; // Float test values t.fSignalingNan = std::numeric_limits::signaling_NaN(); t.fQuietNan = std::numeric_limits::quiet_NaN(); t.fNegInf = -0.5/0.0; t.fNegNorm = -FLT_MIN; t.fNegSubnorm = -FLT_MIN / 1.5; t.fNegZero = -0.0; t.fPosInf = 100000.0 / 0.0; t.fPosNorm = FLT_MAX; t.fPosSubnorm = FLT_MIN / 20.0; t.fPosZero = +0.0; f.Call(&t, 0, 0, 0, 0); // Expected double results. CHECK_EQ(bit_cast(t.dSignalingNan), 0x001); CHECK_EQ(bit_cast(t.dQuietNan), 0x002); CHECK_EQ(bit_cast(t.dNegInf), 0x004); CHECK_EQ(bit_cast(t.dNegNorm), 0x008); CHECK_EQ(bit_cast(t.dNegSubnorm), 0x010); CHECK_EQ(bit_cast(t.dNegZero), 0x020); CHECK_EQ(bit_cast(t.dPosInf), 0x040); CHECK_EQ(bit_cast(t.dPosNorm), 0x080); CHECK_EQ(bit_cast(t.dPosSubnorm), 0x100); CHECK_EQ(bit_cast(t.dPosZero), 0x200); // Expected float results. CHECK_EQ(bit_cast(t.fSignalingNan), 0x001); CHECK_EQ(bit_cast(t.fQuietNan), 0x002); CHECK_EQ(bit_cast(t.fNegInf), 0x004); CHECK_EQ(bit_cast(t.fNegNorm), 0x008); CHECK_EQ(bit_cast(t.fNegSubnorm), 0x010); CHECK_EQ(bit_cast(t.fNegZero), 0x020); CHECK_EQ(bit_cast(t.fPosInf), 0x040); CHECK_EQ(bit_cast(t.fPosNorm), 0x080); CHECK_EQ(bit_cast(t.fPosSubnorm), 0x100); CHECK_EQ(bit_cast(t.fPosZero), 0x200); } } TEST(ABS) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { int64_t fir; double a; float b; double fcsr; } TestFloat; TestFloat test; // Save FIR. __ cfc1(a1, FCSR); __ Sd(a1, MemOperand(a0, offsetof(TestFloat, fcsr))); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ abs_d(f10, f4); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ abs_s(f10, f4); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, b))); // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); test.a = -2.0; test.b = -2.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.a, 2.0); CHECK_EQ(test.b, 2.0); test.a = 2.0; test.b = 2.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.a, 2.0); CHECK_EQ(test.b, 2.0); // Testing biggest positive number test.a = std::numeric_limits::max(); test.b = std::numeric_limits::max(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.a, std::numeric_limits::max()); CHECK_EQ(test.b, std::numeric_limits::max()); // Testing smallest negative number test.a = -std::numeric_limits::max(); // lowest() test.b = -std::numeric_limits::max(); // lowest() f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.a, std::numeric_limits::max()); CHECK_EQ(test.b, std::numeric_limits::max()); // Testing smallest positive number test.a = -std::numeric_limits::min(); test.b = -std::numeric_limits::min(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.a, std::numeric_limits::min()); CHECK_EQ(test.b, std::numeric_limits::min()); // Testing infinity test.a = -std::numeric_limits::max() / std::numeric_limits::min(); test.b = -std::numeric_limits::max() / std::numeric_limits::min(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.a, std::numeric_limits::max() / std::numeric_limits::min()); CHECK_EQ(test.b, std::numeric_limits::max() / std::numeric_limits::min()); test.a = std::numeric_limits::quiet_NaN(); test.b = std::numeric_limits::quiet_NaN(); f.Call(&test, 0, 0, 0, 0); CHECK(std::isnan(test.a)); CHECK(std::isnan(test.b)); test.a = std::numeric_limits::signaling_NaN(); test.b = std::numeric_limits::signaling_NaN(); f.Call(&test, 0, 0, 0, 0); CHECK(std::isnan(test.a)); CHECK(std::isnan(test.b)); } TEST(ADD_FMT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; double c; float fa; float fb; float fc; } TestFloat; TestFloat test; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ add_d(f10, f8, f4); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa))); __ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb))); __ add_s(f10, f8, f4); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, fc))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); test.a = 2.0; test.b = 3.0; test.fa = 2.0; test.fb = 3.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.c, 5.0); CHECK_EQ(test.fc, 5.0); test.a = std::numeric_limits::max(); test.b = -std::numeric_limits::max(); // lowest() test.fa = std::numeric_limits::max(); test.fb = -std::numeric_limits::max(); // lowest() f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.c, 0.0); CHECK_EQ(test.fc, 0.0); test.a = std::numeric_limits::max(); test.b = std::numeric_limits::max(); test.fa = std::numeric_limits::max(); test.fb = std::numeric_limits::max(); f.Call(&test, 0, 0, 0, 0); CHECK(!std::isfinite(test.c)); CHECK(!std::isfinite(test.fc)); test.a = 5.0; test.b = std::numeric_limits::signaling_NaN(); test.fa = 5.0; test.fb = std::numeric_limits::signaling_NaN(); f.Call(&test, 0, 0, 0, 0); CHECK(std::isnan(test.c)); CHECK(std::isnan(test.fc)); } TEST(C_COND_FMT) { if (kArchVariant == kMips64r2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double dOp1; double dOp2; uint32_t dF; uint32_t dUn; uint32_t dEq; uint32_t dUeq; uint32_t dOlt; uint32_t dUlt; uint32_t dOle; uint32_t dUle; float fOp1; float fOp2; uint32_t fF; uint32_t fUn; uint32_t fEq; uint32_t fUeq; uint32_t fOlt; uint32_t fUlt; uint32_t fOle; uint32_t fUle; } TestFloat; TestFloat test; __ li(t1, 1); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1))); __ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2))); __ Lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1))); __ Lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(F, f4, f6, 0); __ c_s(F, f14, f16, 2); __ movt(t2, t1, 0); __ movt(t3, t1, 2); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dF))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fF))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(UN, f4, f6, 2); __ c_s(UN, f14, f16, 4); __ movt(t2, t1, 2); __ movt(t3, t1, 4); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUn))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUn))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(EQ, f4, f6, 4); __ c_s(EQ, f14, f16, 6); __ movt(t2, t1, 4); __ movt(t3, t1, 6); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dEq))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fEq))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(UEQ, f4, f6, 6); __ c_s(UEQ, f14, f16, 0); __ movt(t2, t1, 6); __ movt(t3, t1, 0); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(OLT, f4, f6, 0); __ c_s(OLT, f14, f16, 2); __ movt(t2, t1, 0); __ movt(t3, t1, 2); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(ULT, f4, f6, 2); __ c_s(ULT, f14, f16, 4); __ movt(t2, t1, 2); __ movt(t3, t1, 4); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(OLE, f4, f6, 4); __ c_s(OLE, f14, f16, 6); __ movt(t2, t1, 4); __ movt(t3, t1, 6); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dOle))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fOle))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(ULE, f4, f6, 6); __ c_s(ULE, f14, f16, 0); __ movt(t2, t1, 6); __ movt(t3, t1, 0); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUle))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUle))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); test.dOp1 = 2.0; test.dOp2 = 3.0; test.fOp1 = 2.0; test.fOp2 = 3.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 0U); CHECK_EQ(test.dOlt, 1U); CHECK_EQ(test.dUlt, 1U); CHECK_EQ(test.dOle, 1U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 0U); CHECK_EQ(test.fOlt, 1U); CHECK_EQ(test.fUlt, 1U); CHECK_EQ(test.fOle, 1U); CHECK_EQ(test.fUle, 1U); test.dOp1 = std::numeric_limits::max(); test.dOp2 = std::numeric_limits::min(); test.fOp1 = std::numeric_limits::min(); test.fOp2 = -std::numeric_limits::max(); // lowest() f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 0U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 0U); CHECK_EQ(test.dOle, 0U); CHECK_EQ(test.dUle, 0U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 0U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 0U); CHECK_EQ(test.fOle, 0U); CHECK_EQ(test.fUle, 0U); test.dOp1 = -std::numeric_limits::max(); // lowest() test.dOp2 = -std::numeric_limits::max(); // lowest() test.fOp1 = std::numeric_limits::max(); test.fOp2 = std::numeric_limits::max(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 1U); CHECK_EQ(test.dUeq, 1U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 0U); CHECK_EQ(test.dOle, 1U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 1U); CHECK_EQ(test.fUeq, 1U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 0U); CHECK_EQ(test.fOle, 1U); CHECK_EQ(test.fUle, 1U); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = 0.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = 0.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 1U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 1U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 1U); CHECK_EQ(test.dOle, 0U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 1U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 1U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 1U); CHECK_EQ(test.fOle, 0U); CHECK_EQ(test.fUle, 1U); } } TEST(CMP_COND_FMT) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double dOp1; double dOp2; double dF; double dUn; double dEq; double dUeq; double dOlt; double dUlt; double dOle; double dUle; double dOr; double dUne; double dNe; float fOp1; float fOp2; float fF; float fUn; float fEq; float fUeq; float fOlt; float fUlt; float fOle; float fUle; float fOr; float fUne; float fNe; } TestFloat; TestFloat test; __ li(t1, 1); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1))); __ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2))); __ Lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1))); __ Lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2))); __ cmp_d(F, f2, f4, f6); __ cmp_s(F, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fF))); __ cmp_d(UN, f2, f4, f6); __ cmp_s(UN, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn))); __ cmp_d(EQ, f2, f4, f6); __ cmp_s(EQ, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq))); __ cmp_d(UEQ, f2, f4, f6); __ cmp_s(UEQ, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq))); __ cmp_d(LT, f2, f4, f6); __ cmp_s(LT, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt))); __ cmp_d(ULT, f2, f4, f6); __ cmp_s(ULT, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt))); __ cmp_d(LE, f2, f4, f6); __ cmp_s(LE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle))); __ cmp_d(ULE, f2, f4, f6); __ cmp_s(ULE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle))); __ cmp_d(ORD, f2, f4, f6); __ cmp_s(ORD, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr))); __ cmp_d(UNE, f2, f4, f6); __ cmp_s(UNE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne))); __ cmp_d(NE, f2, f4, f6); __ cmp_s(NE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t dTrue = 0xFFFFFFFFFFFFFFFF; uint64_t dFalse = 0x0000000000000000; uint32_t fTrue = 0xFFFFFFFF; uint32_t fFalse = 0x00000000; test.dOp1 = 2.0; test.dOp2 = 3.0; test.fOp1 = 2.0; test.fOp2 = 3.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dFalse); CHECK_EQ(bit_cast(test.dOlt), dTrue); CHECK_EQ(bit_cast(test.dUlt), dTrue); CHECK_EQ(bit_cast(test.dOle), dTrue); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dTrue); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fFalse); CHECK_EQ(bit_cast(test.fOlt), fTrue); CHECK_EQ(bit_cast(test.fUlt), fTrue); CHECK_EQ(bit_cast(test.fOle), fTrue); CHECK_EQ(bit_cast(test.fUle), fTrue); test.dOp1 = std::numeric_limits::max(); test.dOp2 = std::numeric_limits::min(); test.fOp1 = std::numeric_limits::min(); test.fOp2 = -std::numeric_limits::max(); // lowest() f.Call(&test, 0, 0, 0, 0); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dFalse); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dFalse); CHECK_EQ(bit_cast(test.dOle), dFalse); CHECK_EQ(bit_cast(test.dUle), dFalse); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dTrue); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fFalse); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fFalse); CHECK_EQ(bit_cast(test.fOle), fFalse); CHECK_EQ(bit_cast(test.fUle), fFalse); test.dOp1 = -std::numeric_limits::max(); // lowest() test.dOp2 = -std::numeric_limits::max(); // lowest() test.fOp1 = std::numeric_limits::max(); test.fOp2 = std::numeric_limits::max(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dTrue); CHECK_EQ(bit_cast(test.dUeq), dTrue); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dFalse); CHECK_EQ(bit_cast(test.dOle), dTrue); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dFalse); CHECK_EQ(bit_cast(test.dNe), dFalse); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fTrue); CHECK_EQ(bit_cast(test.fUeq), fTrue); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fFalse); CHECK_EQ(bit_cast(test.fOle), fTrue); CHECK_EQ(bit_cast(test.fUle), fTrue); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = 0.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = 0.0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dTrue); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dTrue); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dTrue); CHECK_EQ(bit_cast(test.dOle), dFalse); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dFalse); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dFalse); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fTrue); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fTrue); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fTrue); CHECK_EQ(bit_cast(test.fOle), fFalse); CHECK_EQ(bit_cast(test.fUle), fTrue); } } TEST(CVT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float cvt_d_s_in; double cvt_d_s_out; int32_t cvt_d_w_in; double cvt_d_w_out; int64_t cvt_d_l_in; double cvt_d_l_out; float cvt_l_s_in; int64_t cvt_l_s_out; double cvt_l_d_in; int64_t cvt_l_d_out; double cvt_s_d_in; float cvt_s_d_out; int32_t cvt_s_w_in; float cvt_s_w_out; int64_t cvt_s_l_in; float cvt_s_l_out; float cvt_w_s_in; int32_t cvt_w_s_out; double cvt_w_d_in; int32_t cvt_w_d_out; } TestFloat; TestFloat test; // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); #define GENERATE_CVT_TEST(x, y, z) \ __ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \ __ x(f0, f0); \ __ nop(); \ __ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out))); GENERATE_CVT_TEST(cvt_d_s, lw, sd) GENERATE_CVT_TEST(cvt_d_w, lw, sd) GENERATE_CVT_TEST(cvt_d_l, ld, sd) GENERATE_CVT_TEST(cvt_l_s, lw, sd) GENERATE_CVT_TEST(cvt_l_d, ld, sd) GENERATE_CVT_TEST(cvt_s_d, ld, sw) GENERATE_CVT_TEST(cvt_s_w, lw, sw) GENERATE_CVT_TEST(cvt_s_l, ld, sw) GENERATE_CVT_TEST(cvt_w_s, lw, sw) GENERATE_CVT_TEST(cvt_w_d, ld, sw) // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); test.cvt_d_s_in = -0.51; test.cvt_d_w_in = -1; test.cvt_d_l_in = -1; test.cvt_l_s_in = -0.51; test.cvt_l_d_in = -0.51; test.cvt_s_d_in = -0.51; test.cvt_s_w_in = -1; test.cvt_s_l_in = -1; test.cvt_w_s_in = -0.51; test.cvt_w_d_in = -0.51; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(-1, test.cvt_l_s_out); CHECK_EQ(-1, test.cvt_l_d_out); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(-1, test.cvt_w_s_out); CHECK_EQ(-1, test.cvt_w_d_out); test.cvt_d_s_in = 0.49; test.cvt_d_w_in = 1; test.cvt_d_l_in = 1; test.cvt_l_s_in = 0.49; test.cvt_l_d_in = 0.49; test.cvt_s_d_in = 0.49; test.cvt_s_w_in = 1; test.cvt_s_l_in = 1; test.cvt_w_s_in = 0.49; test.cvt_w_d_in = 0.49; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(0, test.cvt_l_s_out); CHECK_EQ(0, test.cvt_l_d_out); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(0, test.cvt_w_s_out); CHECK_EQ(0, test.cvt_w_d_out); test.cvt_d_s_in = std::numeric_limits::max(); test.cvt_d_w_in = std::numeric_limits::max(); test.cvt_d_l_in = std::numeric_limits::max(); test.cvt_l_s_in = std::numeric_limits::max(); test.cvt_l_d_in = std::numeric_limits::max(); test.cvt_s_d_in = std::numeric_limits::max(); test.cvt_s_w_in = std::numeric_limits::max(); test.cvt_s_l_in = std::numeric_limits::max(); test.cvt_w_s_in = std::numeric_limits::max(); test.cvt_w_d_in = std::numeric_limits::max(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(test.cvt_l_s_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_l_d_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(test.cvt_w_s_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_w_d_out, std::numeric_limits::max()); test.cvt_d_s_in = -std::numeric_limits::max(); // lowest() test.cvt_d_w_in = std::numeric_limits::min(); // lowest() test.cvt_d_l_in = std::numeric_limits::min(); // lowest() test.cvt_l_s_in = -std::numeric_limits::max(); // lowest() test.cvt_l_d_in = -std::numeric_limits::max(); // lowest() test.cvt_s_d_in = -std::numeric_limits::max(); // lowest() test.cvt_s_w_in = std::numeric_limits::min(); // lowest() test.cvt_s_l_in = std::numeric_limits::min(); // lowest() test.cvt_w_s_in = -std::numeric_limits::max(); // lowest() test.cvt_w_d_in = -std::numeric_limits::max(); // lowest() f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); // The returned value when converting from fixed-point to float-point // is not consistent between board, simulator and specification // in this test case, therefore modifying the test CHECK(test.cvt_l_s_out == std::numeric_limits::min() || test.cvt_l_s_out == std::numeric_limits::max()); CHECK(test.cvt_l_d_out == std::numeric_limits::min() || test.cvt_l_d_out == std::numeric_limits::max()); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK(test.cvt_w_s_out == std::numeric_limits::min() || test.cvt_w_s_out == std::numeric_limits::max()); CHECK(test.cvt_w_d_out == std::numeric_limits::min() || test.cvt_w_d_out == std::numeric_limits::max()); test.cvt_d_s_in = std::numeric_limits::min(); test.cvt_d_w_in = std::numeric_limits::min(); test.cvt_d_l_in = std::numeric_limits::min(); test.cvt_l_s_in = std::numeric_limits::min(); test.cvt_l_d_in = std::numeric_limits::min(); test.cvt_s_d_in = std::numeric_limits::min(); test.cvt_s_w_in = std::numeric_limits::min(); test.cvt_s_l_in = std::numeric_limits::min(); test.cvt_w_s_in = std::numeric_limits::min(); test.cvt_w_d_in = std::numeric_limits::min(); f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(0, test.cvt_l_s_out); CHECK_EQ(0, test.cvt_l_d_out); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(0, test.cvt_w_s_out); CHECK_EQ(0, test.cvt_w_d_out); } TEST(DIV_FMT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { double dOp1; double dOp2; double dRes; float fOp1; float fOp2; float fRes; } Test; Test test; // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); __ Ldc1(f4, MemOperand(a0, offsetof(Test, dOp1))); __ Ldc1(f2, MemOperand(a0, offsetof(Test, dOp2))); __ nop(); __ div_d(f6, f4, f2); __ Sdc1(f6, MemOperand(a0, offsetof(Test, dRes))); __ Lwc1(f4, MemOperand(a0, offsetof(Test, fOp1))); __ Lwc1(f2, MemOperand(a0, offsetof(Test, fOp2))); __ nop(); __ div_s(f6, f4, f2); __ Swc1(f6, MemOperand(a0, offsetof(Test, fRes))); // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); f.Call(&test, 0, 0, 0, 0); const int test_size = 3; double dOp1[test_size] = { 5.0, DBL_MAX, DBL_MAX, }; double dOp2[test_size] = { 2.0, 2.0, -DBL_MAX, }; double dRes[test_size] = { 2.5, DBL_MAX / 2.0, -1.0, }; float fOp1[test_size] = { 5.0, FLT_MAX, FLT_MAX, }; float fOp2[test_size] = { 2.0, 2.0, -FLT_MAX, }; float fRes[test_size] = { 2.5, FLT_MAX / 2.0, -1.0, }; for (int i = 0; i < test_size; i++) { test.dOp1 = dOp1[i]; test.dOp2 = dOp2[i]; test.fOp1 = fOp1[i]; test.fOp2 = fOp2[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.dRes, dRes[i]); CHECK_EQ(test.fRes, fRes[i]); } test.dOp1 = DBL_MAX; test.dOp2 = -0.0; test.fOp1 = FLT_MAX; test.fOp2 = -0.0; f.Call(&test, 0, 0, 0, 0); CHECK(!std::isfinite(test.dRes)); CHECK(!std::isfinite(test.fRes)); test.dOp1 = 0.0; test.dOp2 = -0.0; test.fOp1 = 0.0; test.fOp2 = -0.0; f.Call(&test, 0, 0, 0, 0); CHECK(std::isnan(test.dRes)); CHECK(std::isnan(test.fRes)); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = -5.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = -5.0; f.Call(&test, 0, 0, 0, 0); CHECK(std::isnan(test.dRes)); CHECK(std::isnan(test.fRes)); } uint64_t run_align(uint64_t rs_value, uint64_t rt_value, uint8_t bp) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ align(v0, a0, a1, bp); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(rs_value, rt_value, 0, 0, 0)); return res; } TEST(r6_align) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAlign { uint64_t rs_value; uint64_t rt_value; uint8_t bp; uint64_t expected_res; }; // clang-format off struct TestCaseAlign tc[] = { // rs_value, rt_value, bp, expected_res { 0x11223344, 0xAABBCCDD, 0, 0xFFFFFFFFAABBCCDD }, { 0x11223344, 0xAABBCCDD, 1, 0xFFFFFFFFBBCCDD11 }, { 0x11223344, 0xAABBCCDD, 2, 0xFFFFFFFFCCDD1122 }, { 0x11223344, 0xAABBCCDD, 3, 0xFFFFFFFFDD112233 }, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value, tc[i].rt_value, tc[i].bp)); } } } uint64_t run_dalign(uint64_t rs_value, uint64_t rt_value, uint8_t bp) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ dalign(v0, a0, a1, bp); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(rs_value, rt_value, 0, 0, 0)); return res; } TEST(r6_dalign) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseDalign { uint64_t rs_value; uint64_t rt_value; uint8_t bp; uint64_t expected_res; }; // clang-format off struct TestCaseDalign tc[] = { // rs_value, rt_value, bp, expected_res { 0x1122334455667700, 0xAABBCCDDEEFF8899, 0, 0xAABBCCDDEEFF8899 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 1, 0xBBCCDDEEFF889911 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 2, 0xCCDDEEFF88991122 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 3, 0xDDEEFF8899112233 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 4, 0xEEFF889911223344 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 5, 0xFF88991122334455 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 6, 0x8899112233445566 }, { 0x1122334455667700, 0xAABBCCDDEEFF8899, 7, 0x9911223344556677 } }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDalign); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_dalign(tc[i].rs_value, tc[i].rt_value, tc[i].bp)); } } } uint64_t PC; // The program counter. uint64_t run_aluipc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ aluipc(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); PC = (uint64_t)code->entry(); // Set the program counter. uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_aluipc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAluipc { int16_t offset; }; struct TestCaseAluipc tc[] = { // offset { -32768 }, // 0x8000 { -1 }, // 0xFFFF { 0 }, { 1 }, { 32767 }, // 0x7FFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint64_t res = run_aluipc(tc[i].offset); // Now, the program_counter (PC) is set. uint64_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16)); CHECK_EQ(expected_res, res); } } } uint64_t run_auipc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ auipc(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); PC = (uint64_t)code->entry(); // Set the program counter. uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_auipc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAuipc { int16_t offset; }; struct TestCaseAuipc tc[] = { // offset { -32768 }, // 0x8000 { -1 }, // 0xFFFF { 0 }, { 1 }, { 32767 }, // 0x7FFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint64_t res = run_auipc(tc[i].offset); // Now, the program_counter (PC) is set. uint64_t expected_res = PC + (tc[i].offset << 16); CHECK_EQ(expected_res, res); } } } uint64_t run_aui(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(t0, rs); __ aui(v0, t0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } uint64_t run_daui(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(t0, rs); __ daui(v0, t0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } uint64_t run_dahi(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, rs); __ dahi(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } uint64_t run_dati(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, rs); __ dati(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_aui_family) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAui { uint64_t rs; uint16_t offset; uint64_t ref_res; }; // AUI test cases. struct TestCaseAui aui_tc[] = { {0xFFFEFFFF, 0x1, 0xFFFFFFFFFFFFFFFF}, {0xFFFFFFFF, 0x0, 0xFFFFFFFFFFFFFFFF}, {0, 0xFFFF, 0xFFFFFFFFFFFF0000}, {0x0008FFFF, 0xFFF7, 0xFFFFFFFFFFFFFFFF}, {32767, 32767, 0x000000007FFF7FFF}, {0x00000000FFFFFFFF, 0x1, 0x000000000000FFFF}, {0xFFFFFFFF, 0xFFFF, 0xFFFFFFFFFFFEFFFF}, }; size_t nr_test_cases = sizeof(aui_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_aui(aui_tc[i].rs, aui_tc[i].offset); CHECK_EQ(aui_tc[i].ref_res, res); } // DAUI test cases. struct TestCaseAui daui_tc[] = { {0xFFFFFFFFFFFEFFFF, 0x1, 0xFFFFFFFFFFFFFFFF}, {0xFFFFFFFFFFFFFFFF, 0x0, 0xFFFFFFFFFFFFFFFF}, {0, 0xFFFF, 0xFFFFFFFFFFFF0000}, {0x0008FFFF, 0xFFF7, 0xFFFFFFFFFFFFFFFF}, {32767, 32767, 0x000000007FFF7FFF}, {0x00000000FFFFFFFF, 0x1, 0x000000010000FFFF}, {0xFFFFFFFF, 0xFFFF, 0x00000000FFFEFFFF}, }; nr_test_cases = sizeof(daui_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_daui(daui_tc[i].rs, daui_tc[i].offset); CHECK_EQ(daui_tc[i].ref_res, res); } // DATI test cases. struct TestCaseAui dati_tc[] = { {0xFFFFFFFFFFFEFFFF, 0x1, 0x0000FFFFFFFEFFFF}, {0xFFFFFFFFFFFFFFFF, 0x0, 0xFFFFFFFFFFFFFFFF}, {0, 0xFFFF, 0xFFFF000000000000}, {0x0008FFFF, 0xFFF7, 0xFFF700000008FFFF}, {32767, 32767, 0x7FFF000000007FFF}, {0x00000000FFFFFFFF, 0x1, 0x00010000FFFFFFFF}, {0xFFFFFFFFFFFF, 0xFFFF, 0xFFFFFFFFFFFFFFFF}, }; nr_test_cases = sizeof(dati_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_dati(dati_tc[i].rs, dati_tc[i].offset); CHECK_EQ(dati_tc[i].ref_res, res); } // DAHI test cases. struct TestCaseAui dahi_tc[] = { {0xFFFFFFFEFFFFFFFF, 0x1, 0xFFFFFFFFFFFFFFFF}, {0xFFFFFFFFFFFFFFFF, 0x0, 0xFFFFFFFFFFFFFFFF}, {0, 0xFFFF, 0xFFFFFFFF00000000}, }; nr_test_cases = sizeof(dahi_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_dahi(dahi_tc[i].rs, dahi_tc[i].offset); CHECK_EQ(dahi_tc[i].ref_res, res); } } } uint64_t run_li_macro(uint64_t imm, LiFlags mode, int32_t num_instr = 0) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label code_start; __ bind(&code_start); __ li(v0, imm, mode); if (num_instr > 0) { CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(li_macro) { CcTest::InitializeVM(); // Test li macro-instruction for border cases. struct TestCase_li { uint64_t imm; int32_t r2_num_instr; int32_t r6_num_instr; }; // We call li(v0, imm) to test cases listed below. struct TestCase_li tc[] = { // imm, r2_num_instr, r6_num_instr {0xFFFFFFFFFFFF8000, 1, 1}, // min_int16 // The test case above generates daddiu instruction. // This is int16 value and we can load it using just daddiu. {0x8000, 1, 1}, // max_int16 + 1 // Generates ori // max_int16 + 1 is not int16 but is uint16, just use ori. {0xFFFFFFFFFFFF7FFF, 2, 2}, // min_int16 - 1 // Generates lui + ori // We load int32 value using lui + ori. {0x8001, 1, 1}, // max_int16 + 2 // Generates ori // Also an uint16 value, use ori. {0x00010000, 1, 1}, // max_uint16 + 1 // Generates lui // Low 16 bits are 0, load value using lui. {0x00010001, 2, 2}, // max_uint16 + 2 // Generates lui + ori // We have to generate two instructions in this case. {0x00000000FFFFFFFF, 2, 2}, // max_uint32 // r2 - daddiu + dsrl32 // r6 - daddiu + dahi {0x00000000FFFFFFFE, 3, 2}, // max_uint32 - 1 // r2 - lui + ori + dsll // r6 - daddiu + dahi {0x00FFFF000000FFFE, 3, 3}, // ori + dsll32 + ori {0x00000001FFFFFFFE, 4, 2}, // max_uint32 << 1 // r2 - lui + ori + dsll + ori // r6 - daddiu + dahi {0x0000FFFFFFFFFFFE, 4, 2}, // max_uint48 - 1 // r2 - daddiu + dsll32 + ori + dsubu // Loading imm directly would require ori + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dati {0xFFFFFFFF00000000, 2, 2}, // max_uint32 << 32 // r2 - daddiu + dsll32 // r6 - ori + dahi // We need ori to clear register before loading value using dahi. {0xFFFFFFFF80000000, 1, 1}, // min_int32 // The test case above generates lui instruction. {0x0000000080000000, 2, 2}, // max_int32 + 1 // r2 - ori + dsll // r6 - lui + dahi {0x0000800000000000, 2, 2}, // ori + dsll32 {0xFFFF800000000000, 2, 2}, // r2 - daddiu + dsll32 // r6 - ori + dahi {0xFFFF80000000FFFF, 3, 2}, // r2 - daddiu + dsll32 + ori // r6 - ori + dahi {0xFFFFFF123000FFFF, 3, 3}, // daddiu + dsll + ori {0xFFFF00000000FFFF, 3, 2}, // r2 - daddiu + dsll32 + ori // r6 - ori + dati {0xFFFF8000FFFF0000, 3, 2}, // r2 - lui + ori + dsll // r6 - lui + dahi {0x0000FFFFFFFF0000, 4, 2}, // r2 - ori + dsll + ori + dsll // r6 - lui + dati {0x1234FFFF80000000, 3, 2}, // r2 - lui + ori + dsll // r6 - lui + dati {0x1234FFFF80010000, 5, 2}, // r2 - lui + ori + dsll + ori + dsll // r6 - lui + dati {0xFFFF8000FFFF8000, 2, 2}, // r2 - daddiu + dinsu // r6 - daddiu + dahi {0xFFFF0000FFFF8000, 4, 3}, // r2 - ori + dsll32 + ori + dsubu // Loading imm directly would require lui + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dahi + dati {0x8000000080000000, 2, 2}, // lui + dinsu {0xABCD0000ABCD0000, 2, 2}, // lui + dinsu {0x8000800080008000, 3, 3}, // lui + ori + dinsu {0xABCD1234ABCD1234, 3, 3}, // The test case above generates lui + ori + dinsu instruction sequence. {0xFFFF800080008000, 4, 3}, // r2 - lui + ori + dsll + ori // r6 - lui + ori + dahi {0xFFFFABCD, 3, 2}, // r2 - ori + dsll + ori // r6 - daddiu + dahi {0x1FFFFABCD, 4, 2}, // r2 - lui + ori + dsll + ori // r6 - daddiu + dahi {0xFFFFFFFFABCD, 4, 2}, // r2 - daddiu + dsll32 + ori + dsubu // Loading imm directly would require ori + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dati {0x1FFFFFFFFABCD, 4, 2}, // r2 - daddiu + dsll32 + ori + dsubu // Loading imm directly would require lui + ori + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dati {0xFFFF7FFF80010000, 5, 2}, // r2 - lui + ori + dsll + ori + dsll // r6 - lui + dahi // Here lui sets high 32 bits to 1 so dahi can be used to get target // value. {0x00007FFF7FFF0000, 3, 2}, // r2 - lui + ori + dsll // r6 - lui + dahi // High 32 bits are not set so dahi can be used to get target value. {0xFFFF7FFF7FFF0000, 5, 3}, // r2 - lui + ori + dsll + ori + dsll // r6 - lui + dahi + dati // High 32 bits are not set so just dahi can't be used to get target // value. {0x00007FFF80010000, 3, 3}, // r2 - lui + ori + dsll // r6 - lui + ori + dsll // High 32 bits are set so can't just use lui + dahi to get target value. {0x1234ABCD87654321, 6, 4}, // The test case above generates: // r2 - lui + ori + dsll + ori + dsll + ori instruction sequence, // r6 - lui + ori + dahi + dati. // Load using full instruction sequence. {0xFFFF0000FFFFFFFF, 3, 3}, // r2 - ori + dsll32 + nor // Loading imm directly would require lui + dsll + ori + dsll + ori. // Optimized by loading ~imm and using nor to get imm. Loading -imm would // require one instruction more. // r6 - daddiu + dahi + dati }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCase_li); for (size_t i = 0; i < nr_test_cases; ++i) { if (kArchVariant == kMips64r2) { CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].r2_num_instr)); } else { CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].r6_num_instr)); } CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, CONSTANT_SIZE)); if (is_int48(tc[i].imm)) { CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, ADDRESS_LOAD)); } } } uint64_t run_lwpc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2^8k // addiu t3, a4, 0xFFFF; (0x250FFFFF) // ... // addiu t0, a4, 0x0000; (0x250C0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xFFFFF; i >= 0xC0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ lwpc(t8, offset); // offset 0; 0xEF080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2^8k // addiu a4, a4, 0x0000; (0x25080000) // ... // addiu a7, a4, 0xFFFF; (0x250BFFFF) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xBFFFF; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_lwpc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseLwpc { int offset; uint64_t expected_res; }; // clang-format off struct TestCaseLwpc tc[] = { // offset, expected_res { -262144, 0x250FFFFF }, // offset 0x40000 { -4, 0x250C0003 }, { -1, 0x250C0000 }, { 0, 0xFFFFFFFFEF080000 }, { 1, 0x03001025 }, // mov(v0, t8) { 2, 0x25080000 }, { 4, 0x25080002 }, { 262143, 0x250BFFFD }, // offset 0x3FFFF }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_lwpc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_lwupc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2^8k // addiu t3, a4, 0xFFFF; (0x250FFFFF) // ... // addiu t0, a4, 0x0000; (0x250C0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xFFFFF; i >= 0xC0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ lwupc(t8, offset); // offset 0; 0xEF080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2^8k // addiu a4, a4, 0x0000; (0x25080000) // ... // addiu a7, a4, 0xFFFF; (0x250BFFFF) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xBFFFF; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_lwupc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseLwupc { int offset; uint64_t expected_res; }; // clang-format off struct TestCaseLwupc tc[] = { // offset, expected_res { -262144, 0x250FFFFF }, // offset 0x40000 { -4, 0x250C0003 }, { -1, 0x250C0000 }, { 0, 0xEF100000 }, { 1, 0x03001025 }, // mov(v0, t8) { 2, 0x25080000 }, { 4, 0x25080002 }, { 262143, 0x250BFFFD }, // offset 0x3FFFF }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwupc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_lwupc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_jic(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label get_program_counter, stop_execution; __ push(ra); __ li(v0, 0l); __ li(t1, 0x66); __ addiu(v0, v0, 0x1); // <-- offset = -32 __ addiu(v0, v0, 0x2); __ addiu(v0, v0, 0x10); __ addiu(v0, v0, 0x20); __ beq(v0, t1, &stop_execution); __ nop(); __ nal(); // t0 <- program counter __ mov(t0, ra); __ jic(t0, offset); __ addiu(v0, v0, 0x100); __ addiu(v0, v0, 0x200); __ addiu(v0, v0, 0x1000); __ addiu(v0, v0, 0x2000); // <--- offset = 16 __ pop(ra); __ jr(ra); __ nop(); __ bind(&stop_execution); __ pop(ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_jic) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseJic { // As rt will be used t0 register which will have value of // the program counter for the jic instruction. int16_t offset; uint32_t expected_res; }; struct TestCaseJic tc[] = { // offset, expected_result { 16, 0x2033 }, { 4, 0x3333 }, { -32, 0x66 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_jic(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_beqzc(int32_t value, int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label stop_execution; __ li(v0, 0l); __ li(t1, 0x66); __ addiu(v0, v0, 0x1); // <-- offset = -8 __ addiu(v0, v0, 0x2); __ addiu(v0, v0, 0x10); __ addiu(v0, v0, 0x20); __ beq(v0, t1, &stop_execution); __ nop(); __ beqzc(a0, offset); __ addiu(v0, v0, 0x1); __ addiu(v0, v0, 0x100); __ addiu(v0, v0, 0x200); __ addiu(v0, v0, 0x1000); __ addiu(v0, v0, 0x2000); // <--- offset = 4 __ jr(ra); __ nop(); __ bind(&stop_execution); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(value, 0, 0, 0, 0)); return res; } TEST(r6_beqzc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseBeqzc { uint32_t value; int32_t offset; uint32_t expected_res; }; // clang-format off struct TestCaseBeqzc tc[] = { // value, offset, expected_res { 0x0, -8, 0x66 }, { 0x0, 0, 0x3334 }, { 0x0, 1, 0x3333 }, { 0xABC, 1, 0x3334 }, { 0x0, 4, 0x2033 }, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_beqzc(tc[i].value, tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } void load_elements_of_vector(MacroAssembler& assm, const uint64_t elements[], MSARegister w, Register t0, Register t1) { __ li(t0, static_cast(elements[0] & 0xFFFFFFFF)); __ li(t1, static_cast((elements[0] >> 32) & 0xFFFFFFFF)); __ insert_w(w, 0, t0); __ insert_w(w, 1, t1); __ li(t0, static_cast(elements[1] & 0xFFFFFFFF)); __ li(t1, static_cast((elements[1] >> 32) & 0xFFFFFFFF)); __ insert_w(w, 2, t0); __ insert_w(w, 3, t1); } inline void store_elements_of_vector(MacroAssembler& assm, MSARegister w, Register a) { __ st_d(w, MemOperand(a, 0)); } typedef union { uint8_t b[16]; uint16_t h[8]; uint32_t w[4]; uint64_t d[2]; } msa_reg_t; struct TestCaseMsaBranch { uint64_t wt_lo; uint64_t wt_hi; }; template void run_bz_bnz(TestCaseMsaBranch* input, Branch GenerateBranch, bool branched) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); typedef struct { uint64_t ws_lo; uint64_t ws_hi; uint64_t wd_lo; uint64_t wd_hi; } T; T t = {0x20B9CC4F1A83E0C5, 0xA27E1B5F2F5BB18A, 0x0000000000000000, 0x0000000000000000}; msa_reg_t res; Label do_not_move_w0_to_w2; load_elements_of_vector(assm, &t.ws_lo, w0, t0, t1); load_elements_of_vector(assm, &t.wd_lo, w2, t0, t1); load_elements_of_vector(assm, &input->wt_lo, w1, t0, t1); GenerateBranch(assm, do_not_move_w0_to_w2); __ nop(); __ move_v(w2, w0); __ bind(&do_not_move_w0_to_w2); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); if (branched) { CHECK_EQ(t.wd_lo, res.d[0]); CHECK_EQ(t.wd_hi, res.d[1]); } else { CHECK_EQ(t.ws_lo, res.d[0]); CHECK_EQ(t.ws_hi, res.d[1]); } } TEST(MSA_bz_bnz) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; TestCaseMsaBranch tz_v[] = { {0x0, 0x0}, {0xABC, 0x0}, {0x0, 0xABC}, {0xABC, 0xABC}}; for (unsigned i = 0; i < arraysize(tz_v); ++i) { run_bz_bnz( &tz_v[i], [](MacroAssembler& assm, Label& br_target) { __ bz_v(w1, &br_target); }, tz_v[i].wt_lo == 0 && tz_v[i].wt_hi == 0); } #define TEST_BZ_DF(input_array, lanes, instruction, int_type) \ for (unsigned i = 0; i < arraysize(input_array); ++i) { \ int j; \ int_type* element = reinterpret_cast(&input_array[i]); \ for (j = 0; j < lanes; ++j) { \ if (element[j] == 0) { \ break; \ } \ } \ run_bz_bnz(&input_array[i], \ [](MacroAssembler& assm, Label& br_target) { \ __ instruction(w1, &br_target); \ }, \ j != lanes); \ } TestCaseMsaBranch tz_b[] = {{0x0, 0x0}, {0xBC0000, 0x0}, {0x0, 0xAB000000000000CD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BZ_DF(tz_b, kMSALanesByte, bz_b, int8_t) TestCaseMsaBranch tz_h[] = {{0x0, 0x0}, {0xBCDE0000, 0x0}, {0x0, 0xABCD00000000ABCD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BZ_DF(tz_h, kMSALanesHalf, bz_h, int16_t) TestCaseMsaBranch tz_w[] = {{0x0, 0x0}, {0xBCDE123400000000, 0x0}, {0x0, 0x000000001234ABCD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BZ_DF(tz_w, kMSALanesWord, bz_w, int32_t) TestCaseMsaBranch tz_d[] = {{0x0, 0x0}, {0xBCDE0000, 0x0}, {0x0, 0xABCD00000000ABCD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BZ_DF(tz_d, kMSALanesDword, bz_d, int64_t) #undef TEST_BZ_DF TestCaseMsaBranch tnz_v[] = { {0x0, 0x0}, {0xABC, 0x0}, {0x0, 0xABC}, {0xABC, 0xABC}}; for (unsigned i = 0; i < arraysize(tnz_v); ++i) { run_bz_bnz(&tnz_v[i], [](MacroAssembler& assm, Label& br_target) { __ bnz_v(w1, &br_target); }, tnz_v[i].wt_lo != 0 || tnz_v[i].wt_hi != 0); } #define TEST_BNZ_DF(input_array, lanes, instruction, int_type) \ for (unsigned i = 0; i < arraysize(input_array); ++i) { \ int j; \ int_type* element = reinterpret_cast(&input_array[i]); \ for (j = 0; j < lanes; ++j) { \ if (element[j] == 0) { \ break; \ } \ } \ run_bz_bnz(&input_array[i], \ [](MacroAssembler& assm, Label& br_target) { \ __ instruction(w1, &br_target); \ }, \ j == lanes); \ } TestCaseMsaBranch tnz_b[] = {{0x0, 0x0}, {0xBC0000, 0x0}, {0x0, 0xAB000000000000CD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BNZ_DF(tnz_b, 16, bnz_b, int8_t) TestCaseMsaBranch tnz_h[] = {{0x0, 0x0}, {0xBCDE0000, 0x0}, {0x0, 0xABCD00000000ABCD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BNZ_DF(tnz_h, 8, bnz_h, int16_t) TestCaseMsaBranch tnz_w[] = {{0x0, 0x0}, {0xBCDE123400000000, 0x0}, {0x0, 0x000000001234ABCD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BNZ_DF(tnz_w, 4, bnz_w, int32_t) TestCaseMsaBranch tnz_d[] = {{0x0, 0x0}, {0xBCDE0000, 0x0}, {0x0, 0xABCD00000000ABCD}, {0x123456789ABCDEF0, 0xAAAAAAAAAAAAAAAA}}; TEST_BNZ_DF(tnz_d, 2, bnz_d, int64_t) #undef TEST_BNZ_DF } uint64_t run_jialc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label main_block, get_program_counter; __ push(ra); __ li(v0, 0l); __ beq(v0, v0, &main_block); __ nop(); // Block 1 __ addiu(v0, v0, 0x1); // <-- offset = -40 __ addiu(v0, v0, 0x2); __ jr(ra); __ nop(); // Block 2 __ addiu(v0, v0, 0x10); // <-- offset = -24 __ addiu(v0, v0, 0x20); __ jr(ra); __ nop(); // Block 3 (Main) __ bind(&main_block); __ nal(); // t0 <- program counter __ mov(t0, ra); __ jialc(t0, offset); __ addiu(v0, v0, 0x4); __ pop(ra); __ jr(ra); __ nop(); // Block 4 __ addiu(v0, v0, 0x100); // <-- offset = 20 __ addiu(v0, v0, 0x200); __ jr(ra); __ nop(); // Block 5 __ addiu(v0, v0, 0x1000); // <--- offset = 36 __ addiu(v0, v0, 0x2000); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_jialc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseJialc { // As rt will be used t0 register which will have value of // the program counter for the jialc instruction. int16_t offset; uint32_t expected_res; }; struct TestCaseJialc tc[] = { // offset, expected_res { -40, 0x7 }, { -24, 0x34 }, { 20, 0x304 }, { 36, 0x3004 } }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_jialc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_addiupc(int32_t imm19) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ addiupc(v0, imm19); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); PC = (uint64_t)code->entry(); // Set the program counter. uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_addiupc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAddiupc { int32_t imm19; }; struct TestCaseAddiupc tc[] = { // imm19 { -262144 }, // 0x40000 { -1 }, // 0x7FFFF { 0 }, { 1 }, // 0x00001 { 262143 } // 0x3FFFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint64_t res = run_addiupc(tc[i].imm19); // Now, the program_counter (PC) is set. uint64_t expected_res = PC + (tc[i].imm19 << 2); CHECK_EQ(expected_res, res); } } } uint64_t run_ldpc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2 * 2^7k = 2^8k // addiu t3, a4, 0xFFFF; (0x250FFFFF) // ... // addiu t0, a4, 0x0000; (0x250C0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xFFFFF; i >= 0xC0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ ldpc(t8, offset); // offset 0; 0xEF080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2 * 2^7k = 2^8k // addiu a4, a4, 0x0000; (0x25080000) // ... // addiu a7, a4, 0xFFFF; (0x250BFFFF) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xBFFFF; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_ldpc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseLdpc { int offset; uint64_t expected_res; }; auto doubleword = [](uint32_t word2, uint32_t word1) { if (kArchEndian == kLittle) return (static_cast(word2) << 32) + word1; else return (static_cast(word1) << 32) + word2; }; TestCaseLdpc tc[] = { // offset, expected_res {-131072, doubleword(0x250FFFFE, 0x250FFFFF)}, {-4, doubleword(0x250C0006, 0x250C0007)}, {-1, doubleword(0x250C0000, 0x250C0001)}, {0, doubleword(0x03001025, 0xEF180000)}, {1, doubleword(0x25080001, 0x25080000)}, {4, doubleword(0x25080007, 0x25080006)}, {131071, doubleword(0x250BFFFD, 0x250BFFFC)}, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLdpc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_ldpc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } int64_t run_bc(int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label continue_1, stop_execution; __ push(ra); __ li(v0, 0l); __ li(t8, 0l); __ li(t9, 2); // Condition for the stopping execution. for (int32_t i = -100; i <= -11; ++i) { __ addiu(v0, v0, 1); } __ addiu(t8, t8, 1); // -10 __ beq(t8, t9, &stop_execution); // -9 __ nop(); // -8 __ beq(t8, t8, &continue_1); // -7 __ nop(); // -6 __ bind(&stop_execution); __ pop(ra); // -5, -4 __ jr(ra); // -3 __ nop(); // -2 __ bind(&continue_1); __ bc(offset); // -1 for (int32_t i = 0; i <= 99; ++i) { __ addiu(v0, v0, 1); } __ pop(ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_bc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseBc { int32_t offset; int64_t expected_res; }; struct TestCaseBc tc[] = { // offset, expected_result { -100, (abs(-100) - 10) * 2 }, { -11, (abs(-100) - 10 + 1) }, { 0, (abs(-100) - 10 + 1 + 99) }, { 1, (abs(-100) - 10 + 99) }, { 99, (abs(-100) - 10 + 1) }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc); for (size_t i = 0; i < nr_test_cases; ++i) { int64_t res = run_bc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } int64_t run_balc(int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label continue_1, stop_execution; __ push(ra); __ li(v0, 0l); __ li(t8, 0l); __ li(t9, 2); // Condition for stopping execution. __ beq(t8, t8, &continue_1); __ nop(); uint32_t instruction_addiu = 0x24420001; // addiu v0, v0, 1 for (int32_t i = -117; i <= -57; ++i) { __ dd(instruction_addiu); } __ jr(ra); // -56 __ nop(); // -55 for (int32_t i = -54; i <= -4; ++i) { __ dd(instruction_addiu); } __ jr(ra); // -3 __ nop(); // -2 __ bind(&continue_1); __ balc(offset); // -1 __ pop(ra); // 0, 1 __ jr(ra); // 2 __ nop(); // 3 for (int32_t i = 4; i <= 44; ++i) { __ dd(instruction_addiu); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(r6_balc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseBalc { int32_t offset; int64_t expected_res; }; struct TestCaseBalc tc[] = { // offset, expected_result { -117, 61 }, { -54, 51 }, { 0, 0 }, { 4, 41 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc); for (size_t i = 0; i < nr_test_cases; ++i) { int64_t res = run_balc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_dsll(uint64_t rt_value, uint16_t sa_value) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ dsll(v0, a0, sa_value); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(rt_value, 0, 0, 0, 0)); return res; } TEST(dsll) { CcTest::InitializeVM(); struct TestCaseDsll { uint64_t rt_value; uint16_t sa_value; uint64_t expected_res; }; // clang-format off struct TestCaseDsll tc[] = { // rt_value, sa_value, expected_res { 0xFFFFFFFFFFFFFFFF, 0, 0xFFFFFFFFFFFFFFFF }, { 0xFFFFFFFFFFFFFFFF, 16, 0xFFFFFFFFFFFF0000 }, { 0xFFFFFFFFFFFFFFFF, 31, 0xFFFFFFFF80000000 }, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsll); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_dsll(tc[i].rt_value, tc[i].sa_value)); } } uint64_t run_bal(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ mov(t0, ra); __ bal(offset); // Equivalent for "BGEZAL zero_reg, offset". __ nop(); __ mov(ra, t0); __ jr(ra); __ nop(); __ li(v0, 1); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(bal) { CcTest::InitializeVM(); struct TestCaseBal { int16_t offset; uint64_t expected_res; }; // clang-format off struct TestCaseBal tc[] = { // offset, expected_res { 4, 1 }, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset)); } } TEST(Trampoline) { // Private member of Assembler class. static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label done; size_t nr_calls = kMaxBranchOffset / (2 * kInstrSize) + 2; for (size_t i = 0; i < nr_calls; ++i) { __ BranchShort(&done, eq, a0, Operand(a1)); } __ bind(&done); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(42, 42, 0, 0, 0)); CHECK_EQ(0, res); } template struct TestCaseMaddMsub { T fr, fs, ft, fd_add, fd_sub; }; template void helper_madd_msub_maddf_msubf(F func) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); T x = std::sqrt(static_cast(2.0)); T y = std::sqrt(static_cast(3.0)); T z = std::sqrt(static_cast(5.0)); T x2 = 11.11, y2 = 22.22, z2 = 33.33; TestCaseMaddMsub test_cases[] = { {x, y, z, 0.0, 0.0}, {x, y, -z, 0.0, 0.0}, {x, -y, z, 0.0, 0.0}, {x, -y, -z, 0.0, 0.0}, {-x, y, z, 0.0, 0.0}, {-x, y, -z, 0.0, 0.0}, {-x, -y, z, 0.0, 0.0}, {-x, -y, -z, 0.0, 0.0}, {-3.14, 0.2345, -123.000056, 0.0, 0.0}, {7.3, -23.257, -357.1357, 0.0, 0.0}, {x2, y2, z2, 0.0, 0.0}, {x2, y2, -z2, 0.0, 0.0}, {x2, -y2, z2, 0.0, 0.0}, {x2, -y2, -z2, 0.0, 0.0}, {-x2, y2, z2, 0.0, 0.0}, {-x2, y2, -z2, 0.0, 0.0}, {-x2, -y2, z2, 0.0, 0.0}, {-x2, -y2, -z2, 0.0, 0.0}, }; if (std::is_same::value) { __ Lwc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); __ Lwc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub, fs))); __ Lwc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub, ft))); __ Lwc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); } else if (std::is_same::value) { __ Ldc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); __ Ldc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub, fs))); __ Ldc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub, ft))); __ Ldc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); } else { UNREACHABLE(); } func(assm); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); const size_t kTableLength = sizeof(test_cases) / sizeof(TestCaseMaddMsub); TestCaseMaddMsub tc; for (size_t i = 0; i < kTableLength; i++) { tc.fr = test_cases[i].fr; tc.fs = test_cases[i].fs; tc.ft = test_cases[i].ft; f.Call(&tc, 0, 0, 0, 0); T res_sub; T res_add; if (kArchVariant != kMips64r6) { res_add = tc.fr + (tc.fs * tc.ft); res_sub = (tc.fs * tc.ft) - tc.fr; } else { res_add = std::fma(tc.fs, tc.ft, tc.fr); res_sub = std::fma(-tc.fs, tc.ft, tc.fr); } CHECK_EQ(tc.fd_add, res_add); CHECK_EQ(tc.fd_sub, res_sub); } } TEST(madd_msub_s) { if (kArchVariant == kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ Madd_s(f10, f4, f6, f8, f12); __ Swc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ Msub_s(f16, f4, f6, f8, f12); __ Swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } TEST(madd_msub_d) { if (kArchVariant == kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ Madd_d(f10, f4, f6, f8, f12); __ Sdc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ Msub_d(f16, f4, f6, f8, f12); __ Sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } TEST(maddf_msubf_s) { if (kArchVariant != kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ maddf_s(f4, f6, f8); __ Swc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ msubf_s(f16, f6, f8); __ Swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } TEST(maddf_msubf_d) { if (kArchVariant != kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ maddf_d(f4, f6, f8); __ Sdc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ msubf_d(f16, f6, f8); __ Sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } uint64_t run_Subu(uint64_t imm, int32_t num_instr) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label code_start; __ bind(&code_start); __ Subu(v0, zero_reg, Operand(imm)); CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(Subu) { CcTest::InitializeVM(); // Test Subu macro-instruction for min_int16 and max_int16 border cases. // For subtracting int16 immediate values we use addiu. struct TestCaseSubu { uint64_t imm; uint64_t expected_res; int32_t num_instr; }; // We call Subu(v0, zero_reg, imm) to test cases listed below. // 0 - imm = expected_res // clang-format off struct TestCaseSubu tc[] = { // imm, expected_res, num_instr {0xFFFFFFFFFFFF8000, 0x8000, 2}, // min_int16 // The test case above generates ori + addu instruction sequence. // We can't have just addiu because -min_int16 > max_int16 so use // register. We can load min_int16 to at register with addiu and then // subtract at with subu, but now we use ori + addu because -min_int16 can // be loaded using ori. {0x8000, 0xFFFFFFFFFFFF8000, 1}, // max_int16 + 1 // Generates addiu // max_int16 + 1 is not int16 but -(max_int16 + 1) is, just use addiu. {0xFFFFFFFFFFFF7FFF, 0x8001, 2}, // min_int16 - 1 // Generates ori + addu // To load this value to at we need two instructions and another one to // subtract, lui + ori + subu. But we can load -value to at using just // ori and then add at register with addu. {0x8001, 0xFFFFFFFFFFFF7FFF, 2}, // max_int16 + 2 // Generates ori + subu // Not int16 but is uint16, load value to at with ori and subtract with // subu. {0x00010000, 0xFFFFFFFFFFFF0000, 2}, // Generates lui + subu // Load value using lui to at and subtract with subu. {0x00010001, 0xFFFFFFFFFFFEFFFF, 3}, // Generates lui + ori + subu // We have to generate three instructions in this case. {0x7FFFFFFF, 0xFFFFFFFF80000001, 3}, // max_int32 // Generates lui + ori + subu {0xFFFFFFFF80000000, 0xFFFFFFFF80000000, 2}, // min_int32 // The test case above generates lui + subu intruction sequence. // The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to // min_int32 again. }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSubu); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Subu(tc[i].imm, tc[i].num_instr)); } } uint64_t run_Dsubu(uint64_t imm, int32_t num_instr) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label code_start; __ bind(&code_start); __ Dsubu(v0, zero_reg, Operand(imm)); CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(Dsubu) { CcTest::InitializeVM(); // Test Dsubu macro-instruction for min_int16 and max_int16 border cases. // For subtracting int16 immediate values we use daddiu. struct TestCaseDsubu { uint64_t imm; uint64_t expected_res; int32_t num_instr; }; // We call Dsubu(v0, zero_reg, imm) to test cases listed below. // 0 - imm = expected_res // clang-format off struct TestCaseDsubu tc[] = { // imm, expected_res, num_instr {0xFFFFFFFFFFFF8000, 0x8000, 2}, // min_int16 // The test case above generates daddiu + dsubu instruction sequence. // We can't have just daddiu because -min_int16 > max_int16 so use // register, but we can load min_int16 to at register with daddiu and then // subtract at with dsubu. {0x8000, 0xFFFFFFFFFFFF8000, 1}, // max_int16 + 1 // Generates daddiu // max_int16 + 1 is not int16 but -(max_int16 + 1) is, just use daddiu. {0xFFFFFFFFFFFF7FFF, 0x8001, 2}, // min_int16 - 1 // Generates ori + daddu // To load this value to at we need two instructions and another one to // subtract, lui + ori + dsubu. But we can load -value to at using just // ori and then dadd at register with daddu. {0x8001, 0xFFFFFFFFFFFF7FFF, 2}, // max_int16 + 2 // Generates ori + dsubu // Not int16 but is uint16, load value to at with ori and subtract with // dsubu. {0x00010000, 0xFFFFFFFFFFFF0000, 2}, // Generates lui + dsubu // Load value using lui to at and subtract with dsubu. {0x00010001, 0xFFFFFFFFFFFEFFFF, 3}, // Generates lui + ori + dsubu // We have to generate three instructions in this case. {0x7FFFFFFF, 0xFFFFFFFF80000001, 3}, // max_int32 // Generates lui + ori + dsubu {0xFFFFFFFF80000000, 0x0000000080000000, 2}, // min_int32 // Generates lui + dsubu // The result of 0 - min_int32 eqauls max_int32 + 1, which fits into a 64 // bit register, Dsubu gives a different result here. {0x7FFFFFFFFFFFFFFF, 0x8000000000000001, 3}, // max_int64 // r2 - Generates daddiu + dsrl + dsubu // r6 - Generates daddiu + dati + dsubu {0x8000000000000000, 0x8000000000000000, 3}, // min_int64 // The test case above generates: // r2 - daddiu + dsll32 + dsubu instruction sequence, // r6 - ori + dati + dsubu. // The result of 0 - min_int64 eqauls max_int64 + 1, which wraps around to // min_int64 again. {0xFFFF0000FFFFFFFF, 0x0000FFFF00000001, 4}, // The test case above generates: // r2 - ori + dsll32 + ori + daddu instruction sequence, // r6 - daddiu + dahi + dati + dsubu. // For r2 loading imm would take more instructions than loading -imm so we // can load -imm and add with daddu. }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsubu); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Dsubu(tc[i].imm, tc[i].num_instr)); } } uint64_t run_Dins(uint64_t imm, uint64_t source, uint16_t pos, uint16_t size) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, imm); __ li(t0, source); __ Dins(v0, t0, pos, size); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(Dins) { CcTest::InitializeVM(); // Test Dins macro-instruction. struct TestCaseDins { uint64_t imm; uint64_t source; uint16_t pos; uint16_t size; uint64_t expected_res; }; // We load imm to v0 and source to t0 and then call // Dins(v0, t0, pos, size) to test cases listed below. // clang-format off struct TestCaseDins tc[] = { // imm, source, pos, size, expected_res {0x5555555555555555, 0x1ABCDEF01, 31, 1, 0x55555555D5555555}, {0x5555555555555555, 0x1ABCDEF02, 30, 2, 0x5555555595555555}, {0x201234567, 0x1FABCDEFF, 0, 32, 0x2FABCDEFF}, {0x201234567, 0x7FABCDEFF, 31, 2, 0x381234567}, {0x800000000, 0x7FABCDEFF, 0, 33, 0x9FABCDEFF}, {0x1234, 0xABCDABCDABCDABCD, 0, 64, 0xABCDABCDABCDABCD}, {0xABCD, 0xABCEABCF, 32, 1, 0x10000ABCD}, {0xABCD, 0xABCEABCF, 63, 1, 0x800000000000ABCD}, {0x10000ABCD, 0xABC1ABC2ABC3ABC4, 32, 32, 0xABC3ABC40000ABCD}, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDins); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Dins(tc[i].imm, tc[i].source, tc[i].pos, tc[i].size)); } } uint64_t run_Ins(uint64_t imm, uint64_t source, uint16_t pos, uint16_t size) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, imm); __ li(t0, source); __ Ins(v0, t0, pos, size); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(Ins) { CcTest::InitializeVM(); // run_Ins(rt_value, rs_value, pos, size), // expected_result CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFFABCDEF01, 31, 1), 0xFFFFFFFFD5555555); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFFABCDEF02, 30, 2), 0xFFFFFFFF95555555); CHECK_EQ(run_Ins(0x0000000001234567, 0xFFFFFFFFFABCDEFF, 0, 32), 0xFFFFFFFFFABCDEFF); // Results with positive sign. CHECK_EQ(run_Ins(0x0000000055555550, 0xFFFFFFFF80000001, 0, 1), 0x0000000055555551); CHECK_EQ(run_Ins(0x0000000055555555, 0x0000000040000001, 0, 32), 0x0000000040000001); CHECK_EQ(run_Ins(0x0000000055555555, 0x0000000020000001, 1, 31), 0x0000000040000003); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80700001, 8, 24), 0x0000000070000155); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80007001, 16, 16), 0x0000000070015555); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80000071, 24, 8), 0x0000000071555555); CHECK_EQ(run_Ins(0x0000000075555555, 0x0000000040000000, 31, 1), 0x0000000075555555); // Results with negative sign. CHECK_EQ(run_Ins(0xFFFFFFFF85555550, 0xFFFFFFFF80000001, 0, 1), 0xFFFFFFFF85555551); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80000001, 0, 32), 0xFFFFFFFF80000001); CHECK_EQ(run_Ins(0x0000000055555555, 0x0000000040000001, 1, 31), 0xFFFFFFFF80000003); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80800001, 8, 24), 0xFFFFFFFF80000155); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80008001, 16, 16), 0xFFFFFFFF80015555); CHECK_EQ(run_Ins(0x0000000055555555, 0xFFFFFFFF80000081, 24, 8), 0xFFFFFFFF81555555); CHECK_EQ(run_Ins(0x0000000075555555, 0x0000000000000001, 31, 1), 0xFFFFFFFFF5555555); } uint64_t run_Ext(uint64_t source, uint16_t pos, uint16_t size) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, 0xFFFFFFFFFFFFFFFF); __ li(t0, source); __ Ext(v0, t0, pos, size); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(Ext) { CcTest::InitializeVM(); // Source values with negative sign. // run_Ext(rs_value, pos, size), expected_result CHECK_EQ(run_Ext(0xFFFFFFFF80000001, 0, 1), 0x0000000000000001); CHECK_EQ(run_Ext(0xFFFFFFFF80000001, 0, 32), 0xFFFFFFFF80000001); CHECK_EQ(run_Ext(0xFFFFFFFF80000002, 1, 31), 0x0000000040000001); CHECK_EQ(run_Ext(0xFFFFFFFF80000100, 8, 24), 0x0000000000800001); CHECK_EQ(run_Ext(0xFFFFFFFF80010000, 16, 16), 0x0000000000008001); CHECK_EQ(run_Ext(0xFFFFFFFF81000000, 24, 8), 0x0000000000000081); CHECK_EQ(run_Ext(0xFFFFFFFF80000000, 31, 1), 0x0000000000000001); // Source values with positive sign. CHECK_EQ(run_Ext(0x0000000000000001, 0, 1), 0x0000000000000001); CHECK_EQ(run_Ext(0x0000000040000001, 0, 32), 0x0000000040000001); CHECK_EQ(run_Ext(0x0000000040000002, 1, 31), 0x0000000020000001); CHECK_EQ(run_Ext(0x0000000040000100, 8, 24), 0x0000000000400001); CHECK_EQ(run_Ext(0x0000000040010000, 16, 16), 0x0000000000004001); CHECK_EQ(run_Ext(0x0000000041000000, 24, 8), 0x0000000000000041); CHECK_EQ(run_Ext(0x0000000040000000, 31, 1), 0x0000000000000000); } TEST(MSA_fill_copy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t u8; uint64_t u16; uint64_t u32; uint64_t s8; uint64_t s16; uint64_t s32; uint64_t s64; } T; T t; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; { CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, 0x9E7689ACA512B683); __ fill_b(w0, t0); __ fill_h(w2, t0); __ fill_w(w4, t0); __ fill_d(w6, t0); __ copy_u_b(t1, w0, 11); __ sd(t1, MemOperand(a0, offsetof(T, u8))); __ copy_u_h(t1, w2, 6); __ sd(t1, MemOperand(a0, offsetof(T, u16))); __ copy_u_w(t1, w4, 3); __ sd(t1, MemOperand(a0, offsetof(T, u32))); __ copy_s_b(t1, w0, 8); __ sd(t1, MemOperand(a0, offsetof(T, s8))); __ copy_s_h(t1, w2, 5); __ sd(t1, MemOperand(a0, offsetof(T, s16))); __ copy_s_w(t1, w4, 1); __ sd(t1, MemOperand(a0, offsetof(T, s32))); __ copy_s_d(t1, w6, 0); __ sd(t1, MemOperand(a0, offsetof(T, s64))); __ jr(ra); __ nop(); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&t, 0, 0, 0, 0); CHECK_EQ(0x83u, t.u8); CHECK_EQ(0xB683u, t.u16); CHECK_EQ(0xA512B683u, t.u32); CHECK_EQ(0xFFFFFFFFFFFFFF83u, t.s8); CHECK_EQ(0xFFFFFFFFFFFFB683u, t.s16); CHECK_EQ(0xFFFFFFFFA512B683u, t.s32); CHECK_EQ(0x9E7689ACA512B683u, t.s64); } TEST(MSA_fill_copy_2) { // Similar to MSA_fill_copy test, but also check overlaping between MSA and // FPU registers with same numbers CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t d0; uint64_t d1; } T; T t[2]; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; { CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, 0xAAAAAAAAAAAAAAAA); __ li(t1, 0x5555555555555555); __ fill_d(w0, t0); __ fill_d(w2, t0); __ Move(f0, t1); __ Move(f2, t1); #define STORE_MSA_REG(w_reg, base, scratch) \ __ copy_s_d(scratch, w_reg, 0); \ __ sd(scratch, MemOperand(base, offsetof(T, d0))); \ __ copy_s_d(scratch, w_reg, 1); \ __ sd(scratch, MemOperand(base, offsetof(T, d1))); STORE_MSA_REG(w0, a0, t2) STORE_MSA_REG(w2, a1, t2) #undef STORE_MSA_REG __ jr(ra); __ nop(); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&t[0], &t[1], 0, 0, 0); CHECK_EQ(0x5555555555555555, t[0].d0); CHECK_EQ(0xAAAAAAAAAAAAAAAA, t[0].d1); CHECK_EQ(0x5555555555555555, t[1].d0); CHECK_EQ(0xAAAAAAAAAAAAAAAA, t[1].d1); } TEST(MSA_fill_copy_3) { // Similar to MSA_fill_copy test, but also check overlaping between MSA and // FPU registers with same numbers CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t d0; uint64_t d1; } T; T t[2]; MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; { CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, 0xAAAAAAAAAAAAAAAA); __ li(t1, 0x5555555555555555); __ Move(f0, t0); __ Move(f2, t0); __ fill_d(w0, t1); __ fill_d(w2, t1); __ Sdc1(f0, MemOperand(a0, offsetof(T, d0))); __ Sdc1(f2, MemOperand(a1, offsetof(T, d0))); __ jr(ra); __ nop(); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&t[0], &t[1], 0, 0, 0); CHECK_EQ(0x5555555555555555, t[0].d0); CHECK_EQ(0x5555555555555555, t[1].d0); } template void run_msa_insert(int64_t rs_value, int n, msa_reg_t* w) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, -1); __ li(t1, rs_value); __ fill_w(w0, t0); if (std::is_same::value) { DCHECK_LT(n, 16); __ insert_b(w0, n, t1); } else if (std::is_same::value) { DCHECK_LT(n, 8); __ insert_h(w0, n, t1); } else if (std::is_same::value) { DCHECK_LT(n, 4); __ insert_w(w0, n, t1); } else if (std::is_same::value) { DCHECK_LT(n, 2); __ insert_d(w0, n, t1); } else { UNREACHABLE(); } store_elements_of_vector(assm, w0, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(w, 0, 0, 0, 0); } TEST(MSA_insert) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseInsert { uint64_t input; int n; uint64_t exp_res_lo; uint64_t exp_res_hi; }; // clang-format off struct TestCaseInsert tc_b[] = { // input, n, exp_res_lo, exp_res_hi { 0xA2, 13, 0xFFFFFFFFFFFFFFFFu, 0xFFFFA2FFFFFFFFFFu}, { 0x73, 10, 0xFFFFFFFFFFFFFFFFu, 0xFFFFFFFFFF73FFFFu}, {0x3494, 5, 0xFFFF94FFFFFFFFFFu, 0xFFFFFFFFFFFFFFFFu}, {0xA6B8, 1, 0xFFFFFFFFFFFFB8FFu, 0xFFFFFFFFFFFFFFFFu} }; // clang-format off for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_b[i].input, tc_b[i].n, &res); CHECK_EQ(tc_b[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_b[i].exp_res_hi, res.d[1]); } // clang-format off struct TestCaseInsert tc_h[] = { // input, n, exp_res_lo, exp_res_hi {0x85A2, 7, 0xFFFFFFFFFFFFFFFFu, 0x85A2FFFFFFFFFFFFu}, {0xE873, 5, 0xFFFFFFFFFFFFFFFFu, 0xFFFFFFFFE873FFFFu}, {0x3494, 3, 0x3494FFFFFFFFFFFFu, 0xFFFFFFFFFFFFFFFFu}, {0xA6B8, 1, 0xFFFFFFFFA6B8FFFFu, 0xFFFFFFFFFFFFFFFFu} }; // clang-format on for (size_t i = 0; i < sizeof(tc_h) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_h[i].input, tc_h[i].n, &res); CHECK_EQ(tc_h[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_h[i].exp_res_hi, res.d[1]); } // clang-format off struct TestCaseInsert tc_w[] = { // input, n, exp_res_lo, exp_res_hi {0xD2F085A2u, 3, 0xFFFFFFFFFFFFFFFFu, 0xD2F085A2FFFFFFFFu}, {0x4567E873u, 2, 0xFFFFFFFFFFFFFFFFu, 0xFFFFFFFF4567E873u}, {0xACDB3494u, 1, 0xACDB3494FFFFFFFFu, 0xFFFFFFFFFFFFFFFFu}, {0x89ABA6B8u, 0, 0xFFFFFFFF89ABA6B8u, 0xFFFFFFFFFFFFFFFFu} }; // clang-format on for (size_t i = 0; i < sizeof(tc_w) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_w[i].input, tc_w[i].n, &res); CHECK_EQ(tc_w[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_w[i].exp_res_hi, res.d[1]); } // clang-format off struct TestCaseInsert tc_d[] = { // input, n, exp_res_lo, exp_res_hi {0xF35862E13E38F8B0, 1, 0xFFFFFFFFFFFFFFFFu, 0xF35862E13E38F8B0}, {0x4F41FFDEF2BFE636, 0, 0x4F41FFDEF2BFE636, 0xFFFFFFFFFFFFFFFFu} }; // clang-format on for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_d[i].input, tc_d[i].n, &res); CHECK_EQ(tc_d[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_d[i].exp_res_hi, res.d[1]); } } void run_msa_ctc_cfc(uint64_t value) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, value); __ li(t2, 0l); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ cfcmsa(t2, msareg); __ ctcmsa(msareg, t1); __ sd(t2, MemOperand(a0, 0)); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); uint64_t res; f.Call(&res, 0, 0, 0, 0); CHECK_EQ(bit_cast(static_cast( bit_cast(static_cast(value & 0x0167FFFF)))), res); } TEST(MSA_move_v) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t ws_lo; uint64_t ws_hi; uint64_t wd_lo; uint64_t wd_hi; } T; T t[] = {{0x20B9CC4F1A83E0C5, 0xA27E1B5F2F5BB18A, 0x1E86678B52F8E1FF, 0x706E51290AC76FB9}, {0x4414AED7883FFD18, 0x047D183A06B67016, 0x4EF258CF8D822870, 0x2686B73484C2E843}, {0xD38FF9D048884FFC, 0x6DC63A57C0943CA7, 0x8520CA2F3E97C426, 0xA9913868FB819C59}}; for (unsigned i = 0; i < arraysize(t); ++i) { MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); load_elements_of_vector(assm, &t[i].ws_lo, w0, t0, t1); load_elements_of_vector(assm, &t[i].wd_lo, w2, t0, t1); __ move_v(w2, w0); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&t[i].wd_lo, 0, 0, 0, 0); CHECK_EQ(t[i].ws_lo, t[i].wd_lo); CHECK_EQ(t[i].ws_hi, t[i].wd_hi); } } template void run_msa_sldi(OperFunc GenerateOperation, ExpectFunc GenerateExpectedResult) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t ws_lo; uint64_t ws_hi; uint64_t wd_lo; uint64_t wd_hi; } T; T t[] = {{0x20B9CC4F1A83E0C5, 0xA27E1B5F2F5BB18A, 0x1E86678B52F8E1FF, 0x706E51290AC76FB9}, {0x4414AED7883FFD18, 0x047D183A06B67016, 0x4EF258CF8D822870, 0x2686B73484C2E843}, {0xD38FF9D048884FFC, 0x6DC63A57C0943CA7, 0x8520CA2F3E97C426, 0xA9913868FB819C59}}; uint64_t res[2]; for (unsigned i = 0; i < arraysize(t); ++i) { MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); load_elements_of_vector(assm, &t[i].ws_lo, w0, t0, t1); load_elements_of_vector(assm, &t[i].wd_lo, w2, t0, t1); GenerateOperation(assm); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res[0], 0, 0, 0, 0); GenerateExpectedResult(reinterpret_cast(&t[i].ws_lo), reinterpret_cast(&t[i].wd_lo)); CHECK_EQ(res[0], t[i].wd_lo); CHECK_EQ(res[1], t[i].wd_hi); } } TEST(MSA_sldi) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); #define SLDI_DF(s, k) \ uint8_t v[32]; \ for (unsigned i = 0; i < s; i++) { \ v[i] = ws[s * k + i]; \ v[i + s] = wd[s * k + i]; \ } \ for (unsigned i = 0; i < s; i++) { \ wd[s * k + i] = v[i + n]; \ } for (int n = 0; n < 16; ++n) { run_msa_sldi([n](MacroAssembler& assm) { __ sldi_b(w2, w0, n); }, [n](uint8_t* ws, uint8_t* wd) { SLDI_DF(kMSARegSize / sizeof(int8_t) / kBitsPerByte, 0) }); } for (int n = 0; n < 8; ++n) { run_msa_sldi([n](MacroAssembler& assm) { __ sldi_h(w2, w0, n); }, [n](uint8_t* ws, uint8_t* wd) { for (int k = 0; k < 2; ++k) { SLDI_DF(kMSARegSize / sizeof(int16_t) / kBitsPerByte, k) } }); } for (int n = 0; n < 4; ++n) { run_msa_sldi([n](MacroAssembler& assm) { __ sldi_w(w2, w0, n); }, [n](uint8_t* ws, uint8_t* wd) { for (int k = 0; k < 4; ++k) { SLDI_DF(kMSARegSize / sizeof(int32_t) / kBitsPerByte, k) } }); } for (int n = 0; n < 2; ++n) { run_msa_sldi([n](MacroAssembler& assm) { __ sldi_d(w2, w0, n); }, [n](uint8_t* ws, uint8_t* wd) { for (int k = 0; k < 8; ++k) { SLDI_DF(kMSARegSize / sizeof(int64_t) / kBitsPerByte, k) } }); } #undef SLDI_DF } TEST(MSA_cfc_ctc) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const uint64_t mask_without_cause = 0xFFFFFFFFFF9C0FFF; const uint64_t mask_always_zero = 0x0167FFFF; const uint64_t mask_enables = 0x0000000000000F80; uint64_t test_case[] = {0x30C6F6352D5EDE31, 0xEFC9FED507955425, 0x64F2A3FF15B7DBE3, 0x6AA069352BF8BC37, 0x7EA7AB2AE6AAE923, 0xA10F5D4C24D0F68D, 0x6DD14C9441AFA84C, 0xC366373B2D6BF64F, 0x6B35FB04925014BD, 0x9E3EA39A4DBA7E61}; for (unsigned i = 0; i < arraysize(test_case); i++) { // Setting enable bits and corresponding cause bits could result in // exception raised and this prevents that from happening test_case[i] = (~test_case[i] & mask_enables) << 5 | (test_case[i] & mask_without_cause); run_msa_ctc_cfc(test_case[i] & mask_always_zero); } } struct ExpResShf { uint8_t i8; uint64_t lo; uint64_t hi; }; void run_msa_i8(SecondaryField opcode, uint64_t ws_lo, uint64_t ws_hi, uint8_t i8) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; uint64_t wd_lo = 0xF35862E13E38F8B0; uint64_t wd_hi = 0x4F41FFDEF2BFE636; #define LOAD_W_REG(lo, hi, w_reg) \ __ li(t0, lo); \ __ li(t1, hi); \ __ insert_d(w_reg, 0, t0); \ __ insert_d(w_reg, 1, t1); LOAD_W_REG(ws_lo, ws_hi, w0) switch (opcode) { case ANDI_B: __ andi_b(w2, w0, i8); break; case ORI_B: __ ori_b(w2, w0, i8); break; case NORI_B: __ nori_b(w2, w0, i8); break; case XORI_B: __ xori_b(w2, w0, i8); break; case BMNZI_B: LOAD_W_REG(wd_lo, wd_hi, w2); __ bmnzi_b(w2, w0, i8); break; case BMZI_B: LOAD_W_REG(wd_lo, wd_hi, w2); __ bmzi_b(w2, w0, i8); break; case BSELI_B: LOAD_W_REG(wd_lo, wd_hi, w2); __ bseli_b(w2, w0, i8); break; case SHF_B: __ shf_b(w2, w0, i8); break; case SHF_H: __ shf_h(w2, w0, i8); break; case SHF_W: __ shf_w(w2, w0, i8); break; default: UNREACHABLE(); } store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); #undef LOAD_W_REG CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); uint64_t mask = i8 * 0x0101010101010101ull; switch (opcode) { case ANDI_B: CHECK_EQ(ws_lo & mask, res.d[0]); CHECK_EQ(ws_hi & mask, res.d[1]); break; case ORI_B: CHECK_EQ(ws_lo | mask, res.d[0]); CHECK_EQ(ws_hi | mask, res.d[1]); break; case NORI_B: CHECK_EQ(~(ws_lo | mask), res.d[0]); CHECK_EQ(~(ws_hi | mask), res.d[1]); break; case XORI_B: CHECK_EQ(ws_lo ^ mask, res.d[0]); CHECK_EQ(ws_hi ^ mask, res.d[1]); break; case BMNZI_B: CHECK_EQ((ws_lo & mask) | (wd_lo & ~mask), res.d[0]); CHECK_EQ((ws_hi & mask) | (wd_hi & ~mask), res.d[1]); break; case BMZI_B: CHECK_EQ((ws_lo & ~mask) | (wd_lo & mask), res.d[0]); CHECK_EQ((ws_hi & ~mask) | (wd_hi & mask), res.d[1]); break; case BSELI_B: CHECK_EQ((ws_lo & ~wd_lo) | (mask & wd_lo), res.d[0]); CHECK_EQ((ws_hi & ~wd_hi) | (mask & wd_hi), res.d[1]); break; case SHF_B: { struct ExpResShf exp_b[] = { // i8, exp_lo, exp_hi {0xFFu, 0x11111111B9B9B9B9, 0xF7F7F7F7C8C8C8C8}, {0x0u, 0x62626262DFDFDFDF, 0xD6D6D6D6C8C8C8C8}, {0xE4u, 0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636}, {0x1Bu, 0x1B756911C3D9A7B9, 0xAE94A5F79C8AEFC8}, {0xB1u, 0x662B6253E8C4DF12, 0x0D3AD6803F8BC88B}, {0x4Eu, 0x62E1F358F8B03E38, 0xFFDE4F41E636F2BF}, {0x27u, 0x1B697511C3A7D9B9, 0xAEA594F79CEF8AC8}}; for (size_t i = 0; i < sizeof(exp_b) / sizeof(ExpResShf); ++i) { if (exp_b[i].i8 == i8) { CHECK_EQ(exp_b[i].lo, res.d[0]); CHECK_EQ(exp_b[i].hi, res.d[1]); } } } break; case SHF_H: { struct ExpResShf exp_h[] = { // i8, exp_lo, exp_hi {0xFFu, 0x1169116911691169, 0xF7A5F7A5F7A5F7A5}, {0x0u, 0x12DF12DF12DF12DF, 0x8BC88BC88BC88BC8}, {0xE4u, 0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636}, {0x1Bu, 0xD9C3B9A7751B1169, 0x8A9CC8EF94AEF7A5}, {0xB1u, 0x53622B6612DFC4E8, 0x80D63A0D8BC88B3F}, {0x4Eu, 0x3E38F8B0F35862E1, 0xF2BFE6364F41FFDE}, {0x27u, 0xD9C3751BB9A71169, 0x8A9C94AEC8EFF7A5}}; for (size_t i = 0; i < sizeof(exp_h) / sizeof(ExpResShf); ++i) { if (exp_h[i].i8 == i8) { CHECK_EQ(exp_h[i].lo, res.d[0]); CHECK_EQ(exp_h[i].hi, res.d[1]); } } } break; case SHF_W: { struct ExpResShf exp_w[] = { // i8, exp_lo, exp_hi {0xFFu, 0xF7A594AEF7A594AE, 0xF7A594AEF7A594AE}, {0x0u, 0xC4E812DFC4E812DF, 0xC4E812DFC4E812DF}, {0xE4u, 0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636}, {0x1Bu, 0xC8EF8A9CF7A594AE, 0xB9A7D9C31169751B}, {0xB1u, 0xC4E812DF2B665362, 0x8B3F8BC83A0D80D6}, {0x4Eu, 0x4F41FFDEF2BFE636, 0xF35862E13E38F8B0}, {0x27u, 0x1169751BF7A594AE, 0xB9A7D9C3C8EF8A9C}}; for (size_t i = 0; i < sizeof(exp_w) / sizeof(ExpResShf); ++i) { if (exp_w[i].i8 == i8) { CHECK_EQ(exp_w[i].lo, res.d[0]); CHECK_EQ(exp_w[i].hi, res.d[1]); } } } break; default: UNREACHABLE(); } } struct TestCaseMsaI8 { uint64_t input_lo; uint64_t input_hi; uint8_t i8; }; TEST(MSA_andi_ori_nori_xori) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); // clang-format off struct TestCaseMsaI8 tc[] = { // input_lo, input_hi, i8 {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0xFFu}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0u}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x3Bu}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0xD9u} }; // clang-format on for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) { run_msa_i8(ANDI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(ORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(NORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(XORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); } } TEST(MSA_bmnzi_bmzi_bseli) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); // clang-format off struct TestCaseMsaI8 tc[] = { // input_lo, input_hi, i8 {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0xFFu}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0u}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x3Bu}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0xD9u} }; // clang-format on for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) { run_msa_i8(BMNZI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(BMZI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(BSELI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); } } TEST(MSA_shf) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); // clang-format off struct TestCaseMsaI8 tc[] = { // input_lo, input_hi, i8 {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0xFFu}, // 3333 {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0u}, // 0000 {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0xE4u}, // 3210 {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x1Bu}, // 0123 {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0xB1u}, // 2301 {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x4Eu}, // 1032 {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x27u} // 0213 }; // clang-format on for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) { run_msa_i8(SHF_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(SHF_H, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(SHF_W, tc[i].input_lo, tc[i].input_hi, tc[i].i8); } } struct TestCaseMsaI5 { uint64_t ws_lo; uint64_t ws_hi; uint32_t i5; }; template void run_msa_i5(struct TestCaseMsaI5* input, bool i5_sign_ext, InstFunc GenerateI5InstructionFunc, OperFunc GenerateOperationFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; int32_t i5 = i5_sign_ext ? static_cast(input->i5 << 27) >> 27 : input->i5; load_elements_of_vector(assm, &(input->ws_lo), w0, t0, t1); GenerateI5InstructionFunc(assm, i5); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); CHECK_EQ(GenerateOperationFunc(input->ws_lo, input->i5), res.d[0]); CHECK_EQ(GenerateOperationFunc(input->ws_hi, input->i5), res.d[1]); } TEST(MSA_addvi_subvi) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); // clang-format off struct TestCaseMsaI5 tc[] = { // ws_lo, ws_hi, i5 {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x0000001F}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0000000F}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x00000005}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x00000010}, {0xFFAB807F807FFFCD, 0x7F23FF80FF567F80, 0x0000000F}, {0x80FFEFFF7F12807F, 0x807F80FF7FDEFF78, 0x00000010} }; // clang-format on #define ADDVI_DF(lanes, mask) \ uint64_t res = 0; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = (kMSARegSize / lanes) * i; \ res |= ((((ws >> shift) & mask) + i5) & mask) << shift; \ } \ return res #define SUBVI_DF(lanes, mask) \ uint64_t res = 0; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = (kMSARegSize / lanes) * i; \ res |= ((((ws >> shift) & mask) - i5) & mask) << shift; \ } \ return res for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) { run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_b(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesByte, UINT8_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_h(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesHalf, UINT16_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_w(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesWord, UINT32_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_d(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesDword, UINT64_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_b(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesByte, UINT8_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_h(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesHalf, UINT16_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_w(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesWord, UINT32_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_d(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesDword, UINT64_MAX); }); } #undef ADDVI_DF #undef SUBVI_DF } TEST(MSA_maxi_mini) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); // clang-format off struct TestCaseMsaI5 tc[] = { // ws_lo, ws_hi, i5 {0x7F80FF3480FF7F00, 0x8D7FFF80FF7F6780, 0x0000001F}, {0x7F80FF3480FF7F00, 0x8D7FFF80FF7F6780, 0x0000000F}, {0x7F80FF3480FF7F00, 0x8D7FFF80FF7F6780, 0x00000010}, {0x80007FFF91DAFFFF, 0x7FFF8000FFFF5678, 0x0000001F}, {0x80007FFF91DAFFFF, 0x7FFF8000FFFF5678, 0x0000000F}, {0x80007FFF91DAFFFF, 0x7FFF8000FFFF5678, 0x00000010}, {0x7FFFFFFF80000000, 0x12345678FFFFFFFF, 0x0000001F}, {0x7FFFFFFF80000000, 0x12345678FFFFFFFF, 0x0000000F}, {0x7FFFFFFF80000000, 0x12345678FFFFFFFF, 0x00000010}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x0000001F}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0000000F}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x00000010}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x00000015}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x00000009}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x00000003} }; // clang-format on #define MAXI_MINI_S_DF(lanes, mask, func) \ [](uint64_t ws, uint32_t ui5) { \ uint64_t res = 0; \ int64_t i5 = ArithmeticShiftRight(static_cast(ui5) << 59, 59); \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ int64_t elem = \ static_cast(((ws >> shift) & mask) << (64 - elem_size)) >> \ (64 - elem_size); \ res |= static_cast(func(elem, i5) & mask) << shift; \ } \ return res; \ } #define MAXI_MINI_U_DF(lanes, mask, func) \ [](uint64_t ws, uint32_t ui5) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem = (ws >> shift) & mask; \ res |= (func(elem, static_cast(ui5)) & mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) { run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_b(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesByte, UINT8_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_h(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesHalf, UINT16_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_w(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesWord, UINT32_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_d(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesDword, UINT64_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_b(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesByte, UINT8_MAX, Min)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_h(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesHalf, UINT16_MAX, Min)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_w(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesWord, UINT32_MAX, Min)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_d(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesDword, UINT64_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_b(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesByte, UINT8_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_h(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesHalf, UINT16_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_w(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesWord, UINT32_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_d(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesDword, UINT64_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_b(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesByte, UINT8_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_h(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesHalf, UINT16_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_w(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesWord, UINT32_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_d(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesDword, UINT64_MAX, Min)); } #undef MAXI_MINI_S_DF #undef MAXI_MINI_U_DF } TEST(MSA_ceqi_clti_clei) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI5 tc[] = { {0xFF69751BB9A7D9C3, 0xF7A594AEC8FF8A9C, 0x0000001F}, {0xE669FFFFB9A7D9C3, 0xF7A594AEFFFF8A9C, 0x0000001F}, {0xFFFFFFFFB9A7D9C3, 0xF7A594AEFFFFFFFF, 0x0000001F}, {0x2B0B5362C4E812DF, 0x3A0D80D68B3F0BC8, 0x0000000B}, {0x2B66000BC4E812DF, 0x3A0D000B8B3F8BC8, 0x0000000B}, {0x0000000BC4E812DF, 0x3A0D80D60000000B, 0x0000000B}, {0xF38062E13E38F8B0, 0x8041FFDEF2BFE636, 0x00000010}, {0xF35880003E38F8B0, 0x4F41FFDEF2BF8000, 0x00000010}, {0xF35862E180000000, 0x80000000F2BFE636, 0x00000010}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x00000015}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x00000009}, {0xF30062E13E38F800, 0x4F00FFDEF2BF0036, 0x00000000}}; #define CEQI_CLTI_CLEI_S_DF(lanes, mask, func) \ [](uint64_t ws, uint32_t ui5) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ int64_t i5 = ArithmeticShiftRight(static_cast(ui5) << 59, 59); \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ int64_t elem = \ static_cast(((ws >> shift) & mask) << (64 - elem_size)) >> \ (64 - elem_size); \ res |= static_cast((func)&mask) << shift; \ } \ return res; \ } #define CEQI_CLTI_CLEI_U_DF(lanes, mask, func) \ [](uint64_t ws, uint64_t ui5) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem = (ws >> shift) & mask; \ res |= ((func)&mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) { run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_b(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_h(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_w(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_d(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_b(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, i5) == -1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_h(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, i5) == -1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_w(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, i5) == -1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_d(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, i5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_b(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, i5) != 1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_h(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, i5) != 1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_w(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, i5) != 1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_d(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, i5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_b(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_h(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_w(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_d(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_b(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_h(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_w(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_d(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); } #undef CEQI_CLTI_CLEI_S_DF #undef CEQI_CLTI_CLEI_U_DF } struct TestCaseMsa2R { uint64_t ws_lo; uint64_t ws_hi; uint64_t exp_res_lo; uint64_t exp_res_hi; }; template void run_msa_2r(const struct TestCaseMsa2R* input, Func Generate2RInstructionFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; load_elements_of_vector(assm, reinterpret_cast(input), w0, t0, t1); Generate2RInstructionFunc(assm); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); CHECK_EQ(input->exp_res_lo, res.d[0]); CHECK_EQ(input->exp_res_hi, res.d[1]); } TEST(MSA_pcnt) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2R tc_b[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0808080808080808, 0x0808080808080808}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x0204050405050504, 0x0704030503070304}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0404040303040207, 0x0403010504060403}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x0603030405030503, 0x0502080605070504}}; struct TestCaseMsa2R tc_h[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0010001000100010, 0x0010001000100010}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x00060009000A0009, 0x000B0008000A0007}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0008000700070009, 0x00070006000A0007}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x0009000700080008, 0x0007000E000C0009}}; struct TestCaseMsa2R tc_w[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0000002000000020, 0x0000002000000020}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x0000000F00000013, 0x0000001300000011}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x0000000F00000010, 0x0000000D00000011}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x0000001000000010, 0x0000001500000015}}; struct TestCaseMsa2R tc_d[] = { // ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x40, 0x40}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x22, 0x24}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x1F, 0x1E}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x20, 0x2A}}; for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseMsa2R); ++i) { run_msa_2r(&tc_b[i], [](MacroAssembler& assm) { __ pcnt_b(w2, w0); }); run_msa_2r(&tc_h[i], [](MacroAssembler& assm) { __ pcnt_h(w2, w0); }); run_msa_2r(&tc_w[i], [](MacroAssembler& assm) { __ pcnt_w(w2, w0); }); run_msa_2r(&tc_d[i], [](MacroAssembler& assm) { __ pcnt_d(w2, w0); }); } } TEST(MSA_nlzc) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2R tc_b[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0x0808080808080808, 0x0808080808080808}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0, 0}, {0x1169350B07030100, 0x7F011402381F0A6C, 0x0301020405060708, 0x0107030602030401}, {0x010806003478121F, 0x03013016073F7B08, 0x0704050802010303, 0x0607020305020104}, {0x0168321100083803, 0x07113F03013F1676, 0x0701020308040206, 0x0503020607020301}}; struct TestCaseMsa2R tc_h[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0x0010001000100010, 0x0010001000100010}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0, 0}, {0x00010007000A003C, 0x37A5001E00010002, 0x000F000D000C000A, 0x0002000B000F000E}, {0x0026066200780EDF, 0x003D0003000F00C8, 0x000A000500090004, 0x000A000E000C0008}, {0x335807E100480030, 0x01410FDE12BF5636, 0x000200050009000A, 0x0007000400030001}}; struct TestCaseMsa2R tc_w[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0x0000002000000020, 0x0000002000000020}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0, 0}, {0x00000005000007C3, 0x000014AE00006A9C, 0x0000001D00000015, 0x0000001300000011}, {0x00009362000112DF, 0x000380D6003F8BC8, 0x000000100000000F, 0x0000000E0000000A}, {0x135862E17E38F8B0, 0x0061FFDE03BFE636, 0x0000000300000001, 0x0000000900000006}}; struct TestCaseMsa2R tc_d[] = { // ws_lo, ws_hi, exp_res_lo, exp_res_hi {0x0000000000000000, 0x0000000000000000, 0x40, 0x40}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0, 0}, {0x000000000000014E, 0x00000000000176DA, 0x37, 0x2F}, {0x00000062C4E812DF, 0x000065D68B3F8BC8, 0x19, 0x11}, {0x00000000E338F8B0, 0x0754534ACAB32654, 0x20, 0x5}}; for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseMsa2R); ++i) { run_msa_2r(&tc_b[i], [](MacroAssembler& assm) { __ nlzc_b(w2, w0); }); run_msa_2r(&tc_h[i], [](MacroAssembler& assm) { __ nlzc_h(w2, w0); }); run_msa_2r(&tc_w[i], [](MacroAssembler& assm) { __ nlzc_w(w2, w0); }); run_msa_2r(&tc_d[i], [](MacroAssembler& assm) { __ nlzc_d(w2, w0); }); } } TEST(MSA_nloc) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2R tc_b[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0808080808080808, 0x0808080808080808}, {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xEE96CAF4F8FCFEFF, 0x80FEEBFDC7E0F593, 0x0301020405060708, 0x0107030602030401}, {0xFEF7F9FFCB87EDE0, 0xFCFECFE9F8C084F7, 0x0704050802010303, 0x0607020305020104}, {0xFE97CDEEFFF7C7FC, 0xF8EEC0FCFEC0E989, 0x0701020308040206, 0x0503020607020301}}; struct TestCaseMsa2R tc_h[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0010001000100010, 0x0010001000100010}, {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFEFFF8FFF5FFC3, 0xC85AFFE1FFFEFFFD, 0x000F000D000C000A, 0x0002000B000F000E}, {0xFFD9F99DFF87F120, 0xFFC2FFFCFFF0FF37, 0x000A000500090004, 0x000A000E000C0008}, {0xCCA7F81EFFB7FFCF, 0xFEBEF021ED40A9C9, 0x000200050009000A, 0x0007000400030001}}; struct TestCaseMsa2R tc_w[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0000002000000020, 0x0000002000000020}, {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFFFFFAFFFFF83C, 0xFFFFEB51FFFF9563, 0x0000001D00000015, 0x0000001300000011}, {0xFFFF6C9DFFFEED20, 0xFFFC7F29FFC07437, 0x000000100000000F, 0x0000000E0000000A}, {0xECA79D1E81C7074F, 0xFF9E0021FC4019C9, 0x0000000300000001, 0x0000000900000006}}; struct TestCaseMsa2R tc_d[] = { // ws_lo, ws_hi, exp_res_lo, exp_res_hi {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x40, 0x40}, {0x0000000000000000, 0x0000000000000000, 0, 0}, {0xFFFFFFFFFFFFFEB1, 0xFFFFFFFFFFFE8925, 0x37, 0x2F}, {0xFFFFFF9D3B17ED20, 0xFFFF9A2974C07437, 0x19, 0x11}, {0xFFFFFFFF1CC7074F, 0xF8ABACB5354CD9AB, 0x20, 0x5}}; for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseMsa2R); ++i) { run_msa_2r(&tc_b[i], [](MacroAssembler& assm) { __ nloc_b(w2, w0); }); run_msa_2r(&tc_h[i], [](MacroAssembler& assm) { __ nloc_h(w2, w0); }); run_msa_2r(&tc_w[i], [](MacroAssembler& assm) { __ nloc_w(w2, w0); }); run_msa_2r(&tc_d[i], [](MacroAssembler& assm) { __ nloc_d(w2, w0); }); } } struct TestCaseMsa2RF_F_U { float ws1; float ws2; float ws3; float ws4; uint32_t exp_res_1; uint32_t exp_res_2; uint32_t exp_res_3; uint32_t exp_res_4; }; struct TestCaseMsa2RF_D_U { double ws1; double ws2; uint64_t exp_res_1; uint64_t exp_res_2; }; TEST(MSA_fclass) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); #define BIT(n) (0x1 << n) #define SNAN_BIT BIT(0) #define QNAN_BIT BIT(1) #define NEG_INFINITY_BIT BIT((2)) #define NEG_NORMAL_BIT BIT(3) #define NEG_SUBNORMAL_BIT BIT(4) #define NEG_ZERO_BIT BIT(5) #define POS_INFINITY_BIT BIT(6) #define POS_NORMAL_BIT BIT(7) #define POS_SUBNORMAL_BIT BIT(8) #define POS_ZERO_BIT BIT(9) const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); const struct TestCaseMsa2RF_F_U tc_s[] = { {1.f, -0.00001, 208e10f, -34.8e-30f, POS_NORMAL_BIT, NEG_NORMAL_BIT, POS_NORMAL_BIT, NEG_NORMAL_BIT}, {inf_float, -inf_float, 0, -0.f, POS_INFINITY_BIT, NEG_INFINITY_BIT, POS_ZERO_BIT, NEG_ZERO_BIT}, {3.036e-40f, -6.392e-43f, 1.41e-45f, -1.17e-38f, POS_SUBNORMAL_BIT, NEG_SUBNORMAL_BIT, POS_SUBNORMAL_BIT, NEG_SUBNORMAL_BIT}}; const struct TestCaseMsa2RF_D_U tc_d[] = { {1., -0.00000001, POS_NORMAL_BIT, NEG_NORMAL_BIT}, {208e10, -34.8e-300, POS_NORMAL_BIT, NEG_NORMAL_BIT}, {inf_double, -inf_double, POS_INFINITY_BIT, NEG_INFINITY_BIT}, {0, -0., POS_ZERO_BIT, NEG_ZERO_BIT}, {1.036e-308, -6.392e-309, POS_SUBNORMAL_BIT, NEG_SUBNORMAL_BIT}, {1.41e-323, -3.17e208, POS_SUBNORMAL_BIT, NEG_NORMAL_BIT}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_U); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ fclass_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_U); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ fclass_d(w2, w0); }); } #undef BIT #undef SNAN_BIT #undef QNAN_BIT #undef NEG_INFINITY_BIT #undef NEG_NORMAL_BIT #undef NEG_SUBNORMAL_BIT #undef NEG_ZERO_BIT #undef POS_INFINITY_BIT #undef POS_NORMAL_BIT #undef POS_SUBNORMAL_BIT #undef POS_ZERO_BIT } struct TestCaseMsa2RF_F_I { float ws1; float ws2; float ws3; float ws4; int32_t exp_res_1; int32_t exp_res_2; int32_t exp_res_3; int32_t exp_res_4; }; struct TestCaseMsa2RF_D_I { double ws1; double ws2; int64_t exp_res_1; int64_t exp_res_2; }; TEST(MSA_ftrunc_s) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const float qNaN_float = std::numeric_limits::quiet_NaN(); const double inf_double = std::numeric_limits::infinity(); const double qNaN_double = std::numeric_limits::quiet_NaN(); const int32_t max_int32 = std::numeric_limits::max(); const int32_t min_int32 = std::numeric_limits::min(); const int64_t max_int64 = std::numeric_limits::max(); const int64_t min_int64 = std::numeric_limits::min(); const struct TestCaseMsa2RF_F_I tc_s[] = { {inf_float, 2.345f, -324.9235f, 30004.51f, max_int32, 2, -324, 30004}, {-inf_float, -0.983f, 0.0832f, static_cast(max_int32) * 3.f, min_int32, 0, 0, max_int32}, {-23.125f, qNaN_float, 2 * static_cast(min_int32), -0.f, -23, 0, min_int32, 0}}; const struct TestCaseMsa2RF_D_I tc_d[] = { {inf_double, 2.345, max_int64, 2}, {-324.9235, 246569139.51, -324, 246569139}, {-inf_double, -0.983, min_int64, 0}, {0.0832, 6 * static_cast(max_int64), 0, max_int64}, {-21453889872.94, qNaN_double, -21453889872, 0}, {2 * static_cast(min_int64), -0., min_int64, 0}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_I); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ ftrunc_s_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_I); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ ftrunc_s_d(w2, w0); }); } } TEST(MSA_ftrunc_u) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const float qNaN_float = std::numeric_limits::quiet_NaN(); const double inf_double = std::numeric_limits::infinity(); const double qNaN_double = std::numeric_limits::quiet_NaN(); const uint32_t max_uint32 = std::numeric_limits::max(); const uint64_t max_uint64 = std::numeric_limits::max(); const struct TestCaseMsa2RF_F_U tc_s[] = { {inf_float, 2.345f, -324.9235f, 30004.51f, max_uint32, 2, 0, 30004}, {-inf_float, 0.983f, 0.0832f, static_cast(max_uint32) * 3., 0, 0, 0, max_uint32}, {23.125f, qNaN_float, -0.982, -0.f, 23, 0, 0, 0}}; const struct TestCaseMsa2RF_D_U tc_d[] = { {inf_double, 2.345, max_uint64, 2}, {-324.9235, 246569139.51, 0, 246569139}, {-inf_double, -0.983, 0, 0}, {0.0832, 6 * static_cast(max_uint64), 0, max_uint64}, {21453889872.94, qNaN_double, 21453889872, 0}, {0.9889, -0., 0, 0}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_U); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ ftrunc_u_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_U); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ ftrunc_u_d(w2, w0); }); } } struct TestCaseMsa2RF_F_F { float ws1; float ws2; float ws3; float ws4; float exp_res_1; float exp_res_2; float exp_res_3; float exp_res_4; }; struct TestCaseMsa2RF_D_D { double ws1; double ws2; double exp_res_1; double exp_res_2; }; TEST(MSA_fsqrt) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); const struct TestCaseMsa2RF_F_F tc_s[] = { {81.f, 576.f, inf_float, -0.f, 9.f, 24.f, inf_float, -0.f}}; const struct TestCaseMsa2RF_D_D tc_d[] = {{81., inf_double, 9., inf_double}, {331776., -0., 576, -0.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ fsqrt_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ fsqrt_d(w2, w0); }); } } TEST(MSA_frsqrt) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); const struct TestCaseMsa2RF_F_F tc_s[] = { {81.f, 576.f, inf_float, -0.f, 1.f / 9.f, 1.f / 24.f, 0.f, -inf_float}, {0.f, 1.f / 576.f, 1.f / 81.f, 1.f / 4.f, inf_float, 24.f, 9.f, 2.f}}; const struct TestCaseMsa2RF_D_D tc_d[] = { {81., inf_double, 1. / 9., 0.}, {331776., -0., 1. / 576., -inf_double}, {0., 1. / 81, inf_double, 9.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ frsqrt_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ frsqrt_d(w2, w0); }); } } TEST(MSA_frcp) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); const struct TestCaseMsa2RF_F_F tc_s[] = { {12.f, 576.f, inf_float, -0.f, 1.f / 12.f, 1.f / 576.f, 0.f, -inf_float}, {0.f, 1.f / 576.f, -inf_float, 1.f / 400.f, inf_float, 576.f, -0.f, 400.f}}; const struct TestCaseMsa2RF_D_D tc_d[] = { {81., inf_double, 1. / 81., 0.}, {331777., -0., 1. / 331777., -inf_double}, {0., 1. / 80, inf_double, 80.}, {1. / 40000., -inf_double, 40000., -0.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ frcp_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ frcp_d(w2, w0); }); } } void test_frint_s(size_t data_size, TestCaseMsa2RF_F_F tc_d[], int rounding_mode) { for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_F_F); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [&rounding_mode](MacroAssembler& assm) { MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, static_cast(rounding_mode)); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ frint_w(w2, w0); __ ctcmsa(msareg, t1); }); } } void test_frint_d(size_t data_size, TestCaseMsa2RF_D_D tc_d[], int rounding_mode) { for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_D_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [&rounding_mode](MacroAssembler& assm) { MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, static_cast(rounding_mode)); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ frint_d(w2, w0); __ ctcmsa(msareg, t1); }); } } TEST(MSA_frint) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2RF_F_F tc_s1[] = { {0.f, 4.51f, 1.49f, -12.51f, 0.f, 5.f, 1.f, -13.f}, {-1.32f, -23.38f, 2.8f, -32.6f, -1.f, -23.f, 3.f, -33.f}}; struct TestCaseMsa2RF_D_D tc_d1[] = {{0., 4.51, 0., 5.}, {1.49, -12.51, 1., -13.}, {-1.32, -23.38, -1., -23.}, {2.8, -32.6, 3., -33.}}; test_frint_s(sizeof(tc_s1), tc_s1, kRoundToNearest); test_frint_d(sizeof(tc_d1), tc_d1, kRoundToNearest); struct TestCaseMsa2RF_F_F tc_s2[] = { {0.f, 4.5f, 1.49f, -12.51f, 0.f, 4.f, 1.f, -12.f}, {-1.f, -23.38f, 2.8f, -32.6f, -1.f, -23.f, 2.f, -32.f}}; struct TestCaseMsa2RF_D_D tc_d2[] = {{0., 4.5, 0., 4.}, {1.49, -12.51, 1., -12.}, {-1., -23.38, -1., -23.}, {2.8, -32.6, 2., -32.}}; test_frint_s(sizeof(tc_s2), tc_s2, kRoundToZero); test_frint_d(sizeof(tc_d2), tc_d2, kRoundToZero); struct TestCaseMsa2RF_F_F tc_s3[] = { {0.f, 4.5f, 1.49f, -12.51f, 0.f, 5.f, 2.f, -12.f}, {-1.f, -23.38f, 2.8f, -32.6f, -1.f, -23.f, 3.f, -32.f}}; struct TestCaseMsa2RF_D_D tc_d3[] = {{0., 4.5, 0., 5.}, {1.49, -12.51, 2., -12.}, {-1., -23.38, -1., -23.}, {2.8, -32.6, 3., -32.}}; test_frint_s(sizeof(tc_s3), tc_s3, kRoundToPlusInf); test_frint_d(sizeof(tc_d3), tc_d3, kRoundToPlusInf); struct TestCaseMsa2RF_F_F tc_s4[] = { {0.f, 4.5f, 1.49f, -12.51f, 0.f, 4.f, 1.f, -13.f}, {-1.f, -23.38f, 2.8f, -32.6f, -1.f, -24.f, 2.f, -33.f}}; struct TestCaseMsa2RF_D_D tc_d4[] = {{0., 4.5, 0., 4.}, {1.49, -12.51, 1., -13.}, {-1., -23.38, -1., -24.}, {2.8, -32.6, 2., -33.}}; test_frint_s(sizeof(tc_s4), tc_s4, kRoundToMinusInf); test_frint_d(sizeof(tc_d4), tc_d4, kRoundToMinusInf); } TEST(MSA_flog2) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); struct TestCaseMsa2RF_F_F tc_s[] = { {std::ldexp(0.58f, -48), std::ldexp(0.5f, 110), std::ldexp(1.11f, -130), inf_float, -49.f, 109.f, -130.f, inf_float}, {0.f, -0.f, std::ldexp(0.89f, -12), std::ldexp(0.32f, 126), -inf_float, -inf_float, -13.f, 124.f}}; struct TestCaseMsa2RF_D_D tc_d[] = { {std::ldexp(0.58, -48), std::ldexp(0.5, 110), -49., 109.}, {std::ldexp(1.11, -1050), inf_double, -1050., inf_double}, {0., -0., -inf_double, -inf_double}, {std::ldexp(0.32, 1021), std::ldexp(1.23, -123), 1019., -123.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ flog2_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ flog2_d(w2, w0); }); } } void test_ftint_s_s(size_t data_size, TestCaseMsa2RF_F_I tc_d[], int rounding_mode) { for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_F_I); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [&rounding_mode](MacroAssembler& assm) { MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, static_cast(rounding_mode)); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ ftint_s_w(w2, w0); __ ctcmsa(msareg, t1); }); } } void test_ftint_s_d(size_t data_size, TestCaseMsa2RF_D_I tc_d[], int rounding_mode) { for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_D_I); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [&rounding_mode](MacroAssembler& assm) { MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, static_cast(rounding_mode)); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ ftint_s_d(w2, w0); __ ctcmsa(msareg, t1); }); } } TEST(MSA_ftint_s) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); const int32_t int32_max = std::numeric_limits::max(); const int32_t int32_min = std::numeric_limits::min(); const int64_t int64_max = std::numeric_limits::max(); const int64_t int64_min = std::numeric_limits::min(); struct TestCaseMsa2RF_F_I tc_s1[] = { {0.f, 4.51f, 1.49f, -12.51f, 0, 5, 1, -13}, {-0.32f, -23.38f, 2.8f, -32.6f, 0, -23, 3, -33}, {inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max, int32_min, int32_min, int32_max}}; struct TestCaseMsa2RF_D_I tc_d1[] = { {0., 4.51, 0, 5}, {1.49, -12.51, 1, -13}, {-0.32, -23.38, 0, -23}, {2.8, -32.6, 3, -33}, {inf_double, -inf_double, int64_max, int64_min}, {33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}}; test_ftint_s_s(sizeof(tc_s1), tc_s1, kRoundToNearest); test_ftint_s_d(sizeof(tc_d1), tc_d1, kRoundToNearest); struct TestCaseMsa2RF_F_I tc_s2[] = { {0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, -12}, {-0.f, -23.38f, 2.8f, -32.6f, -0, -23, 2, -32}, {inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max, int32_min, int32_min, int32_max}}; struct TestCaseMsa2RF_D_I tc_d2[] = { {0., 4.5, 0, 4}, {1.49, -12.51, 1, -12}, {-0., -23.38, -0, -23}, {2.8, -32.6, 2, -32}, {inf_double, -inf_double, int64_max, int64_min}, {33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}}; test_ftint_s_s(sizeof(tc_s2), tc_s2, kRoundToZero); test_ftint_s_d(sizeof(tc_d2), tc_d2, kRoundToZero); struct TestCaseMsa2RF_F_I tc_s3[] = { {0.f, 4.5f, 1.49f, -12.51f, 0, 5, 2, -12}, {-0.f, -23.38f, 2.8f, -32.6f, -0, -23, 3, -32}, {inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max, int32_min, int32_min, int32_max}}; struct TestCaseMsa2RF_D_I tc_d3[] = { {0., 4.5, 0, 5}, {1.49, -12.51, 2, -12}, {-0., -23.38, -0, -23}, {2.8, -32.6, 3, -32}, {inf_double, -inf_double, int64_max, int64_min}, {33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}}; test_ftint_s_s(sizeof(tc_s3), tc_s3, kRoundToPlusInf); test_ftint_s_d(sizeof(tc_d3), tc_d3, kRoundToPlusInf); struct TestCaseMsa2RF_F_I tc_s4[] = { {0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, -13}, {-0.f, -23.38f, 2.8f, -32.6f, -0, -24, 2, -33}, {inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max, int32_min, int32_min, int32_max}}; struct TestCaseMsa2RF_D_I tc_d4[] = { {0., 4.5, 0, 4}, {1.49, -12.51, 1, -13}, {-0., -23.38, -0, -24}, {2.8, -32.6, 2, -33}, {inf_double, -inf_double, int64_max, int64_min}, {33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}}; test_ftint_s_s(sizeof(tc_s4), tc_s4, kRoundToMinusInf); test_ftint_s_d(sizeof(tc_d4), tc_d4, kRoundToMinusInf); } void test_ftint_u_s(size_t data_size, TestCaseMsa2RF_F_U tc_d[], int rounding_mode) { for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_F_U); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [&rounding_mode](MacroAssembler& assm) { MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, static_cast(rounding_mode)); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ ftint_u_w(w2, w0); __ ctcmsa(msareg, t1); }); } } void test_ftint_u_d(size_t data_size, TestCaseMsa2RF_D_U tc_d[], int rounding_mode) { for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_D_U); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [&rounding_mode](MacroAssembler& assm) { MSAControlRegister msareg = {kMSACSRRegister}; __ li(t0, static_cast(rounding_mode)); __ cfcmsa(t1, msareg); __ ctcmsa(msareg, t0); __ ftint_u_d(w2, w0); __ ctcmsa(msareg, t1); }); } } TEST(MSA_ftint_u) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); const uint32_t uint32_max = std::numeric_limits::max(); const uint64_t uint64_max = std::numeric_limits::max(); struct TestCaseMsa2RF_F_U tc_s1[] = { {0.f, 4.51f, 1.49f, -12.51f, 0, 5, 1, 0}, {-0.32f, 23.38f, 2.8f, 32.6f, 0, 23, 3, 33}, {inf_float, -inf_float, 0, 4.f * uint32_max, uint32_max, 0, 0, uint32_max}}; struct TestCaseMsa2RF_D_U tc_d1[] = { {0., 4.51, 0, 5}, {1.49, -12.51, 1, 0}, {-0.32, 23.38, 0, 23}, {2.8, 32.6, 3, 33}, {inf_double, -inf_double, uint64_max, 0}, {-0., 4000. * uint64_max, 0, uint64_max}}; test_ftint_u_s(sizeof(tc_s1), tc_s1, kRoundToNearest); test_ftint_u_d(sizeof(tc_d1), tc_d1, kRoundToNearest); struct TestCaseMsa2RF_F_U tc_s2[] = { {0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, 0}, {-0.f, 23.38f, 2.8f, 32.6f, 0, 23, 2, 32}, {inf_float, -inf_float, 0., 4.f * uint32_max, uint32_max, 0, 0, uint32_max}}; struct TestCaseMsa2RF_D_U tc_d2[] = { {0., 4.5, 0, 4}, {1.49, -12.51, 1, 0}, {-0., 23.38, 0, 23}, {2.8, 32.6, 2, 32}, {inf_double, -inf_double, uint64_max, 0}, {-0.2345, 4000. * uint64_max, 0, uint64_max}}; test_ftint_u_s(sizeof(tc_s2), tc_s2, kRoundToZero); test_ftint_u_d(sizeof(tc_d2), tc_d2, kRoundToZero); struct TestCaseMsa2RF_F_U tc_s3[] = { {0.f, 4.5f, 1.49f, -12.51f, 0, 5, 2, 0}, {-0.f, 23.38f, 2.8f, 32.6f, 0, 24, 3, 33}, {inf_float, -inf_float, 0, 4.f * uint32_max, uint32_max, 0, 0, uint32_max}}; struct TestCaseMsa2RF_D_U tc_d3[] = { {0., 4.5, 0, 5}, {1.49, -12.51, 2, 0}, {-0., 23.38, -0, 24}, {2.8, 32.6, 3, 33}, {inf_double, -inf_double, uint64_max, 0}, {-0.5252, 4000. * uint64_max, 0, uint64_max}}; test_ftint_u_s(sizeof(tc_s3), tc_s3, kRoundToPlusInf); test_ftint_u_d(sizeof(tc_d3), tc_d3, kRoundToPlusInf); struct TestCaseMsa2RF_F_U tc_s4[] = { {0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, 0}, {-0.f, 23.38f, 2.8f, 32.6f, 0, 23, 2, 32}, {inf_float, -inf_float, 0, 4.f * uint32_max, uint32_max, 0, 0, uint32_max}}; struct TestCaseMsa2RF_D_U tc_d4[] = { {0., 4.5, 0, 4}, {1.49, -12.51, 1, 0}, {-0., 23.38, -0, 23}, {2.8, 32.6, 2, 32}, {inf_double, -inf_double, uint64_max, 0}, {-0.098797, 4000. * uint64_max, 0, uint64_max}}; test_ftint_u_s(sizeof(tc_s4), tc_s4, kRoundToMinusInf); test_ftint_u_d(sizeof(tc_d4), tc_d4, kRoundToMinusInf); } struct TestCaseMsa2RF_U_F { uint32_t ws1; uint32_t ws2; uint32_t ws3; uint32_t ws4; float exp_res_1; float exp_res_2; float exp_res_3; float exp_res_4; }; struct TestCaseMsa2RF_U_D { uint64_t ws1; uint64_t ws2; double exp_res_1; double exp_res_2; }; TEST(MSA_ffint_u) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2RF_U_F tc_s[] = { {0, 345, 234, 1000, 0.f, 345.f, 234.f, 1000.f}}; struct TestCaseMsa2RF_U_D tc_d[] = {{0, 345, 0., 345.}, {234, 1000, 234., 1000.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ ffint_u_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_U_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ ffint_u_d(w2, w0); }); } } struct TestCaseMsa2RF_I_F { int32_t ws1; int32_t ws2; int32_t ws3; int32_t ws4; float exp_res_1; float exp_res_2; float exp_res_3; float exp_res_4; }; struct TestCaseMsa2RF_I_D { int64_t ws1; int64_t ws2; double exp_res_1; double exp_res_2; }; TEST(MSA_ffint_s) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2RF_I_F tc_s[] = { {0, 345, -234, 1000, 0.f, 345.f, -234.f, 1000.f}}; struct TestCaseMsa2RF_I_D tc_d[] = {{0, 345, 0., 345.}, {-234, 1000, -234., 1000.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_I_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ ffint_s_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_I_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ ffint_s_d(w2, w0); }); } } struct TestCaseMsa2RF_U16_F { uint16_t ws1; uint16_t ws2; uint16_t ws3; uint16_t ws4; uint16_t ws5; uint16_t ws6; uint16_t ws7; uint16_t ws8; float exp_res_1; float exp_res_2; float exp_res_3; float exp_res_4; }; struct TestCaseMsa2RF_F_D { float ws1; float ws2; float ws3; float ws4; double exp_res_1; double exp_res_2; }; TEST(MSA_fexupl) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); struct TestCaseMsa2RF_U16_F tc_s[] = { {1, 2, 0x7C00, 0x0C00, 0, 0x7C00, 0xFC00, 0x8000, 0.f, inf_float, -inf_float, -0.f}, {0xFC00, 0xFFFF, 0x00FF, 0x8000, 0x81FE, 0x8000, 0x0345, 0xAAAA, -3.0398368835e-5f, -0.f, 4.9889088e-5f, -5.2062988281e-2f}, {3, 4, 0x5555, 6, 0x2AAA, 0x8700, 0x7777, 0x6A8B, 5.2062988281e-2f, -1.06811523458e-4f, 3.0576e4f, 3.35e3f}}; struct TestCaseMsa2RF_F_D tc_d[] = { {0.f, 123.456f, inf_float, -0.f, inf_double, -0.}, {-inf_float, -3.f, 0.f, -inf_float, 0., -inf_double}, {2.3f, 3., 1.37747639043129518071e-41f, -3.22084585277826e35f, 1.37747639043129518071e-41, -3.22084585277826e35}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ fexupl_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_F_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ fexupl_d(w2, w0); }); } } TEST(MSA_fexupr) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const double inf_double = std::numeric_limits::infinity(); struct TestCaseMsa2RF_U16_F tc_s[] = { {0, 0x7C00, 0xFC00, 0x8000, 1, 2, 0x7C00, 0x0C00, 0.f, inf_float, -inf_float, -0.f}, {0x81FE, 0x8000, 0x0345, 0xAAAA, 0xFC00, 0xFFFF, 0x00FF, 0x8000, -3.0398368835e-5f, -0.f, 4.9889088e-5f, -5.2062988281e-2f}, {0x2AAA, 0x8700, 0x7777, 0x6A8B, 3, 4, 0x5555, 6, 5.2062988281e-2f, -1.06811523458e-4f, 3.0576e4f, 3.35e3f}}; struct TestCaseMsa2RF_F_D tc_d[] = { {inf_float, -0.f, 0.f, 123.456f, inf_double, -0.}, {0.f, -inf_float, -inf_float, -3.f, 0., -inf_double}, {1.37747639043129518071e-41f, -3.22084585277826e35f, 2.3f, 3., 1.37747639043129518071e-41, -3.22084585277826e35}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ fexupr_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_F_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ fexupr_d(w2, w0); }); } } struct TestCaseMsa2RF_U32_D { uint32_t ws1; uint32_t ws2; uint32_t ws3; uint32_t ws4; double exp_res_1; double exp_res_2; }; TEST(MSA_ffql) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2RF_U16_F tc_s[] = {{0, 3, 0xFFFF, 0x8000, 0x8000, 0xE000, 0x0FF0, 0, -1.f, -0.25f, 0.12451171875f, 0.f}}; struct TestCaseMsa2RF_U32_D tc_d[] = { {0, 45, 0x80000000, 0xE0000000, -1., -0.25}, {0x28379, 0xAAAA5555, 0x024903D3, 0, 17.853239085525274277e-3, 0.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ ffql_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_U32_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ ffql_d(w2, w0); }); } } TEST(MSA_ffqr) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa2RF_U16_F tc_s[] = {{0x8000, 0xE000, 0x0FF0, 0, 0, 3, 0xFFFF, 0x8000, -1.f, -0.25f, 0.12451171875f, 0.f}}; struct TestCaseMsa2RF_U32_D tc_d[] = { {0x80000000, 0xE0000000, 0, 45, -1., -0.25}, {0x024903D3, 0, 0x28379, 0xAAAA5555, 17.853239085525274277e-3, 0.}}; for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) { run_msa_2r(reinterpret_cast(&tc_s[i]), [](MacroAssembler& assm) { __ ffqr_w(w2, w0); }); } for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_U32_D); ++i) { run_msa_2r(reinterpret_cast(&tc_d[i]), [](MacroAssembler& assm) { __ ffqr_d(w2, w0); }); } } struct TestCaseMsaVector { uint64_t wd_lo; uint64_t wd_hi; uint64_t ws_lo; uint64_t ws_hi; uint64_t wt_lo; uint64_t wt_hi; }; template void run_msa_vector(struct TestCaseMsaVector* input, InstFunc GenerateVectorInstructionFunc, OperFunc GenerateOperationFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; load_elements_of_vector(assm, &(input->ws_lo), w0, t0, t1); load_elements_of_vector(assm, &(input->wt_lo), w2, t0, t1); load_elements_of_vector(assm, &(input->wd_lo), w4, t0, t1); GenerateVectorInstructionFunc(assm); store_elements_of_vector(assm, w4, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); CHECK_EQ(GenerateOperationFunc(input->wd_lo, input->ws_lo, input->wt_lo), res.d[0]); CHECK_EQ(GenerateOperationFunc(input->wd_hi, input->ws_hi, input->wt_hi), res.d[1]); } TEST(MSA_vector) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaVector tc[] = { // wd_lo, wd_hi, ws_lo, ws_hi, wt_lo, wt_hi {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0xDCD39D91F9057627, 0x64BE4F6DBE9CAA51, 0x6B23DE1A687D9CB9, 0x49547AAD691DA4CA}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0x401614523D830549, 0xD7C46D613F50EDDD, 0x52284CBC60A1562B, 0x1756ED510D8849CD}, {0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 0xD6E2D2EBCB40D72F, 0x13A619AFCE67B079, 0x36CCE284343E40F9, 0xB4E8F44FD148BF7F}}; for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaVector); ++i) { run_msa_vector( &tc[i], [](MacroAssembler& assm) { __ and_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return ws & wt; }); run_msa_vector( &tc[i], [](MacroAssembler& assm) { __ or_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return ws | wt; }); run_msa_vector( &tc[i], [](MacroAssembler& assm) { __ nor_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return ~(ws | wt); }); run_msa_vector( &tc[i], [](MacroAssembler& assm) { __ xor_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return ws ^ wt; }); run_msa_vector(&tc[i], [](MacroAssembler& assm) { __ bmnz_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return (ws & wt) | (wd & ~wt); }); run_msa_vector(&tc[i], [](MacroAssembler& assm) { __ bmz_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return (ws & ~wt) | (wd & wt); }); run_msa_vector(&tc[i], [](MacroAssembler& assm) { __ bsel_v(w4, w0, w2); }, [](uint64_t wd, uint64_t ws, uint64_t wt) { return (ws & ~wd) | (wt & wd); }); } } struct TestCaseMsaBit { uint64_t wd_lo; uint64_t wd_hi; uint64_t ws_lo; uint64_t ws_hi; uint32_t m; }; template void run_msa_bit(struct TestCaseMsaBit* input, InstFunc GenerateInstructionFunc, OperFunc GenerateOperationFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; load_elements_of_vector(assm, &(input->ws_lo), w0, t0, t1); load_elements_of_vector(assm, &(input->wd_lo), w2, t0, t1); GenerateInstructionFunc(assm, input->m); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); CHECK_EQ(GenerateOperationFunc(input->wd_lo, input->ws_lo, input->m), res.d[0]); CHECK_EQ(GenerateOperationFunc(input->wd_hi, input->ws_hi, input->m), res.d[1]); } TEST(MSA_slli_srai_srli) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaBit tc[] = { // wd_lo, wd_hi ws_lo, ws_hi, m {0, 0, 0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 3}, {0, 0, 0x64BE4F6DBE9CAA51, 0x6B23DE1A687D9CB9, 5}, {0, 0, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 9}, {0, 0, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 13}, {0, 0, 0x566BE7BA4365B70A, 0x01EBBC1937D76CB4, 21}, {0, 0, 0x380E2DEB9D3F8AAE, 0x017E0DE0BCC6CA42, 30}, {0, 0, 0xA46A3A9BCB43F4E5, 0x1C62C8473BDFCFFB, 45}, {0, 0, 0xF6759D85F23B5A2B, 0x5C042AE42C6D12C1, 61}}; #define SLLI_SRLI_DF(lanes, mask, func) \ [](uint64_t wd, uint64_t ws, uint32_t m) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem = (ws >> shift) & mask; \ res |= ((func)&mask) << shift; \ } \ return res; \ } #define SRAI_DF(lanes, mask, func) \ [](uint64_t wd, uint64_t ws, uint32_t m) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ int64_t elem = \ static_cast(((ws >> shift) & mask) << (64 - elem_size)) >> \ (64 - elem_size); \ res |= static_cast((func)&mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) { run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ slli_b(w2, w0, m % 8); }, SLLI_SRLI_DF(kMSALanesByte, UINT8_MAX, (elem << (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ slli_h(w2, w0, m % 16); }, SLLI_SRLI_DF(kMSALanesHalf, UINT16_MAX, (elem << (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ slli_w(w2, w0, m % 32); }, SLLI_SRLI_DF(kMSALanesWord, UINT32_MAX, (elem << (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ slli_d(w2, w0, m % 64); }, SLLI_SRLI_DF(kMSALanesDword, UINT64_MAX, (elem << (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srli_b(w2, w0, m % 8); }, SLLI_SRLI_DF(kMSALanesByte, UINT8_MAX, (elem >> (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srli_h(w2, w0, m % 16); }, SLLI_SRLI_DF(kMSALanesHalf, UINT16_MAX, (elem >> (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srli_w(w2, w0, m % 32); }, SLLI_SRLI_DF(kMSALanesWord, UINT32_MAX, (elem >> (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srli_d(w2, w0, m % 64); }, SLLI_SRLI_DF(kMSALanesDword, UINT64_MAX, (elem >> (m % elem_size)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srlri_b(w2, w0, m % 8); }, SLLI_SRLI_DF( kMSALanesByte, UINT8_MAX, (elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srlri_h(w2, w0, m % 16); }, SLLI_SRLI_DF( kMSALanesHalf, UINT16_MAX, (elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srlri_w(w2, w0, m % 32); }, SLLI_SRLI_DF( kMSALanesWord, UINT32_MAX, (elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srlri_d(w2, w0, m % 64); }, SLLI_SRLI_DF( kMSALanesDword, UINT64_MAX, (elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srai_b(w2, w0, m % 8); }, SRAI_DF(kMSALanesByte, UINT8_MAX, ArithmeticShiftRight(elem, m % elem_size))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srai_h(w2, w0, m % 16); }, SRAI_DF(kMSALanesHalf, UINT16_MAX, ArithmeticShiftRight(elem, m % elem_size))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srai_w(w2, w0, m % 32); }, SRAI_DF(kMSALanesWord, UINT32_MAX, ArithmeticShiftRight(elem, m % elem_size))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srai_d(w2, w0, m % 64); }, SRAI_DF(kMSALanesDword, UINT64_MAX, ArithmeticShiftRight(elem, m % elem_size))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srari_b(w2, w0, m % 8); }, SRAI_DF(kMSALanesByte, UINT8_MAX, ArithmeticShiftRight(elem, m % elem_size) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srari_h(w2, w0, m % 16); }, SRAI_DF(kMSALanesHalf, UINT16_MAX, ArithmeticShiftRight(elem, m % elem_size) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srari_w(w2, w0, m % 32); }, SRAI_DF(kMSALanesWord, UINT32_MAX, ArithmeticShiftRight(elem, m % elem_size) + ((elem >> (m % elem_size - 1)) & 0x1))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ srari_d(w2, w0, m % 64); }, SRAI_DF(kMSALanesDword, UINT64_MAX, ArithmeticShiftRight(elem, m % elem_size) + ((elem >> (m % elem_size - 1)) & 0x1))); } #undef SLLI_SRLI_DF #undef SRAI_DF } TEST(MSA_bclri_bseti_bnegi) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaBit tc[] = { // wd_lo, wd_hi, ws_lo, ws_hi, m {0, 0, 0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 3}, {0, 0, 0x64BE4F6DBE9CAA51, 0x6B23DE1A687D9CB9, 5}, {0, 0, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 9}, {0, 0, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 13}, {0, 0, 0x566BE7BA4365B70A, 0x01EBBC1937D76CB4, 21}, {0, 0, 0x380E2DEB9D3F8AAE, 0x017E0DE0BCC6CA42, 30}, {0, 0, 0xA46A3A9BCB43F4E5, 0x1C62C8473BDFCFFB, 45}, {0, 0, 0xF6759D85F23B5A2B, 0x5C042AE42C6D12C1, 61}}; #define BCLRI_BSETI_BNEGI_DF(lanes, mask, func) \ [](uint64_t wd, uint64_t ws, uint32_t m) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem = (ws >> shift) & mask; \ res |= ((func)&mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) { run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bclri_b(w2, w0, m % 8); }, BCLRI_BSETI_BNEGI_DF(kMSALanesByte, UINT8_MAX, (~(1ull << (m % elem_size)) & elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bclri_h(w2, w0, m % 16); }, BCLRI_BSETI_BNEGI_DF(kMSALanesHalf, UINT16_MAX, (~(1ull << (m % elem_size)) & elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bclri_w(w2, w0, m % 32); }, BCLRI_BSETI_BNEGI_DF(kMSALanesWord, UINT32_MAX, (~(1ull << (m % elem_size)) & elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bclri_d(w2, w0, m % 64); }, BCLRI_BSETI_BNEGI_DF(kMSALanesDword, UINT64_MAX, (~(1ull << (m % elem_size)) & elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bseti_b(w2, w0, m % 8); }, BCLRI_BSETI_BNEGI_DF(kMSALanesByte, UINT8_MAX, ((1ull << (m % elem_size)) | elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bseti_h(w2, w0, m % 16); }, BCLRI_BSETI_BNEGI_DF(kMSALanesHalf, UINT16_MAX, ((1ull << (m % elem_size)) | elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bseti_w(w2, w0, m % 32); }, BCLRI_BSETI_BNEGI_DF(kMSALanesWord, UINT32_MAX, ((1ull << (m % elem_size)) | elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bseti_d(w2, w0, m % 64); }, BCLRI_BSETI_BNEGI_DF(kMSALanesDword, UINT64_MAX, ((1ull << (m % elem_size)) | elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bnegi_b(w2, w0, m % 8); }, BCLRI_BSETI_BNEGI_DF(kMSALanesByte, UINT8_MAX, ((1ull << (m % elem_size)) ^ elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bnegi_h(w2, w0, m % 16); }, BCLRI_BSETI_BNEGI_DF(kMSALanesHalf, UINT16_MAX, ((1ull << (m % elem_size)) ^ elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bnegi_w(w2, w0, m % 32); }, BCLRI_BSETI_BNEGI_DF(kMSALanesWord, UINT32_MAX, ((1ull << (m % elem_size)) ^ elem))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ bnegi_d(w2, w0, m % 64); }, BCLRI_BSETI_BNEGI_DF(kMSALanesDword, UINT64_MAX, ((1ull << (m % elem_size)) ^ elem))); } #undef BCLRI_BSETI_BNEGI_DF } TEST(MSA_binsli_binsri) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaBit tc[] = {// wd_lo, wd_hi, ws_lo, ws_hi, m {0x53F4457553BBD5B4, 0x5FB8250EACC296B2, 0xF35862E13E38F8B0, 0x4F41FFDEF2BFE636, 3}, {0xF61BFDB0F312E6FC, 0xC9437568DD1EA925, 0x64BE4F6DBE9CAA51, 0x6B23DE1A687D9CB9, 5}, {0x53F4457553BBD5B4, 0x5FB8250EACC296B2, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 9}, {0xF61BFDB0F312E6FC, 0xC9437568DD1EA925, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 13}, {0x53F4457553BBD5B4, 0x5FB8250EACC296B2, 0x566BE7BA4365B70A, 0x01EBBC1937D76CB4, 21}, {0xF61BFDB0F312E6FC, 0xC9437568DD1EA925, 0x380E2DEB9D3F8AAE, 0x017E0DE0BCC6CA42, 30}, {0x53F4457553BBD5B4, 0x5FB8250EACC296B2, 0xA46A3A9BCB43F4E5, 0x1C62C8473BDFCFFB, 45}, {0xF61BFDB0F312E6FC, 0xC9437568DD1EA925, 0xF6759D85F23B5A2B, 0x5C042AE42C6D12C1, 61}}; #define BINSLI_BINSRI_DF(lanes, mask, func) \ [](uint64_t wd, uint64_t ws, uint32_t m) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ int bits = m % elem_size + 1; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t ws_elem = (ws >> shift) & mask; \ if (bits == elem_size) { \ res |= (ws_elem & mask) << shift; \ } else { \ uint64_t r_mask = (1ull << bits) - 1; \ uint64_t l_mask = r_mask << (elem_size - bits); \ USE(l_mask); \ uint64_t wd_elem = (wd >> shift) & mask; \ res |= ((func)&mask) << shift; \ } \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) { run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsli_b(w2, w0, m % 8); }, BINSLI_BINSRI_DF(kMSALanesByte, UINT8_MAX, ((ws_elem & l_mask) | (wd_elem & ~l_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsli_h(w2, w0, m % 16); }, BINSLI_BINSRI_DF(kMSALanesHalf, UINT16_MAX, ((ws_elem & l_mask) | (wd_elem & ~l_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsli_w(w2, w0, m % 32); }, BINSLI_BINSRI_DF(kMSALanesWord, UINT32_MAX, ((ws_elem & l_mask) | (wd_elem & ~l_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsli_d(w2, w0, m % 64); }, BINSLI_BINSRI_DF(kMSALanesDword, UINT64_MAX, ((ws_elem & l_mask) | (wd_elem & ~l_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsri_b(w2, w0, m % 8); }, BINSLI_BINSRI_DF(kMSALanesByte, UINT8_MAX, ((ws_elem & r_mask) | (wd_elem & ~r_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsri_h(w2, w0, m % 16); }, BINSLI_BINSRI_DF(kMSALanesHalf, UINT16_MAX, ((ws_elem & r_mask) | (wd_elem & ~r_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsri_w(w2, w0, m % 32); }, BINSLI_BINSRI_DF(kMSALanesWord, UINT32_MAX, ((ws_elem & r_mask) | (wd_elem & ~r_mask)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ binsri_d(w2, w0, m % 64); }, BINSLI_BINSRI_DF(kMSALanesDword, UINT64_MAX, ((ws_elem & r_mask) | (wd_elem & ~r_mask)))); } #undef BINSLI_BINSRI_DF } TEST(MSA_sat_s_sat_u) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaBit tc[] = { // wd_lo, wd_hi, ws_lo, ws_hi, m {0, 0, 0xF35862E13E3808B0, 0x4F41FFDEF2BFE636, 3}, {0, 0, 0x64BE4F6DBE9CAA51, 0x6B23DE1A687D9CB9, 5}, {0, 0, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 9}, {0, 0, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 13}, {0, 0, 0x566BE7BA4365B70A, 0x01EBBC1937D76CB4, 21}, {0, 0, 0x380E2DEB9D3F8AAE, 0x017E0DE0BCC6CA42, 30}, {0, 0, 0xA46A3A9BCB43F4E5, 0x1C62C8473BDFCFFB, 45}, {0, 0, 0xF6759D85F23B5A2B, 0x5C042AE42C6D12C1, 61}}; #define SAT_DF(lanes, mask, func) \ [](uint64_t wd, uint64_t ws, uint32_t m) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ m %= elem_size; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem_u64 = (ws >> shift) & mask; \ int64_t elem_i64 = static_cast(elem_u64 << (64 - elem_size)) >> \ (64 - elem_size); \ USE(elem_i64); \ res |= ((func)&mask) << shift; \ } \ return res; \ } #define M_MAX_INT(x) static_cast((1LL << ((x)-1)) - 1) #define M_MIN_INT(x) static_cast(-(1LL << ((x)-1))) #define M_MAX_UINT(x) static_cast(-1ULL >> (64 - (x))) for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) { run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_u_b(w2, w0, m % 8); }, SAT_DF(kMSALanesByte, UINT8_MAX, (elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_u_h(w2, w0, m % 16); }, SAT_DF(kMSALanesHalf, UINT16_MAX, (elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_u_w(w2, w0, m % 32); }, SAT_DF(kMSALanesWord, UINT32_MAX, (elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_u_d(w2, w0, m % 64); }, SAT_DF(kMSALanesDword, UINT64_MAX, (elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1)))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_s_b(w2, w0, m % 8); }, SAT_DF( kMSALanesByte, UINT8_MAX, (elem_i64 < M_MIN_INT(m + 1) ? M_MIN_INT(m + 1) : elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_s_h(w2, w0, m % 16); }, SAT_DF( kMSALanesHalf, UINT16_MAX, (elem_i64 < M_MIN_INT(m + 1) ? M_MIN_INT(m + 1) : elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_s_w(w2, w0, m % 32); }, SAT_DF( kMSALanesWord, UINT32_MAX, (elem_i64 < M_MIN_INT(m + 1) ? M_MIN_INT(m + 1) : elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64))); run_msa_bit( &tc[i], [](MacroAssembler& assm, uint32_t m) { __ sat_s_d(w2, w0, m % 64); }, SAT_DF( kMSALanesDword, UINT64_MAX, (elem_i64 < M_MIN_INT(m + 1) ? M_MIN_INT(m + 1) : elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64))); } #undef SAT_DF #undef M_MAX_INT #undef M_MIN_INT #undef M_MAX_UINT } template void run_msa_i10(int32_t input, InstFunc GenerateVectorInstructionFunc, OperFunc GenerateOperationFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; GenerateVectorInstructionFunc(assm, input); store_elements_of_vector(assm, w0, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); CHECK_EQ(GenerateOperationFunc(input), res.d[0]); CHECK_EQ(GenerateOperationFunc(input), res.d[1]); } TEST(MSA_ldi) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); // signed 10bit integers: -512 .. 511 int32_t tc[] = {0, -1, 1, 256, -256, -178, 352, -512, 511}; #define LDI_DF(lanes, mask) \ [](int32_t s10) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ int64_t s10_64 = \ ArithmeticShiftRight(static_cast(s10) << 54, 54); \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ res |= static_cast(s10_64 & mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(int32_t); ++i) { run_msa_i10(tc[i], [](MacroAssembler& assm, int32_t s10) { __ ldi_b(w0, s10); }, LDI_DF(kMSALanesByte, UINT8_MAX)); run_msa_i10(tc[i], [](MacroAssembler& assm, int32_t s10) { __ ldi_h(w0, s10); }, LDI_DF(kMSALanesHalf, UINT16_MAX)); run_msa_i10(tc[i], [](MacroAssembler& assm, int32_t s10) { __ ldi_w(w0, s10); }, LDI_DF(kMSALanesWord, UINT32_MAX)); run_msa_i10(tc[i], [](MacroAssembler& assm, int32_t s10) { __ ldi_d(w0, s10); }, LDI_DF(kMSALanesDword, UINT64_MAX)); } #undef LDI_DF } template void run_msa_mi10(InstFunc GenerateVectorInstructionFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); T in_test_vector[1024]; T out_test_vector[1024]; T* in_array_middle = in_test_vector + arraysize(in_test_vector) / 2; T* out_array_middle = out_test_vector + arraysize(out_test_vector) / 2; v8::base::RandomNumberGenerator rand_gen(FLAG_random_seed); for (unsigned int i = 0; i < arraysize(in_test_vector); i++) { in_test_vector[i] = static_cast(rand_gen.NextInt()); out_test_vector[i] = 0; } GenerateVectorInstructionFunc(assm); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(in_array_middle, out_array_middle, 0, 0, 0); CHECK_EQ(memcmp(in_test_vector, out_test_vector, arraysize(in_test_vector)), 0); } TEST(MSA_load_store_vector) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); run_msa_mi10([](MacroAssembler& assm) { for (int i = -512; i < 512; i += 16) { __ ld_b(w0, MemOperand(a0, i)); __ st_b(w0, MemOperand(a1, i)); } }); run_msa_mi10([](MacroAssembler& assm) { for (int i = -512; i < 512; i += 8) { __ ld_h(w0, MemOperand(a0, i)); __ st_h(w0, MemOperand(a1, i)); } }); run_msa_mi10([](MacroAssembler& assm) { for (int i = -512; i < 512; i += 4) { __ ld_w(w0, MemOperand(a0, i)); __ st_w(w0, MemOperand(a1, i)); } }); run_msa_mi10([](MacroAssembler& assm) { for (int i = -512; i < 512; i += 2) { __ ld_d(w0, MemOperand(a0, i)); __ st_d(w0, MemOperand(a1, i)); } }); } struct TestCaseMsa3R { uint64_t ws_lo; uint64_t ws_hi; uint64_t wt_lo; uint64_t wt_hi; uint64_t wd_lo; uint64_t wd_hi; }; static const uint64_t Unpredictable = 0x312014017725ll; template void run_msa_3r(struct TestCaseMsa3R* input, InstFunc GenerateI5InstructionFunc, OperFunc GenerateOperationFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; load_elements_of_vector(assm, &(input->wt_lo), w0, t0, t1); load_elements_of_vector(assm, &(input->ws_lo), w1, t0, t1); load_elements_of_vector(assm, &(input->wd_lo), w2, t0, t1); GenerateI5InstructionFunc(assm); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); GenerateOperationFunc(&input->ws_lo, &input->wt_lo, &input->wd_lo); if (input->wd_lo != Unpredictable) { CHECK_EQ(input->wd_lo, res.d[0]); } if (input->wd_hi != Unpredictable) { CHECK_EQ(input->wd_hi, res.d[1]); } } TEST(MSA_3R_instructions) { if (kArchVariant == kMips64r6 || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsa3R tc[] = { {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8}, {0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C, 0x1169751BB9A7D9C3, 0xF7A594AEC8EF8A9C}, {0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8, 0x2B665362C4E812DF, 0x3A0D80D68B3F8BC8}, {0xFFAB807F807FFFCD, 0x7F23FF80FF567F80, 0xFFAB807F807FFFCD, 0x7F23FF80FF567F80, 0xFFAB807F807FFFCD, 0x7F23FF80FF567F80}, {0x80FFEFFF7F12807F, 0x807F80FF7FDEFF78, 0x80FFEFFF7F12807F, 0x807F80FF7FDEFF78, 0x80FFEFFF7F12807F, 0x807F80FF7FDEFF78}, {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}, {0x0000000000000000, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x0000000000000000, 0x0000000000000000, 0xFFFFFFFFFFFFFFFF}, {0xFFFF0000FFFF0000, 0xFFFF0000FFFF0000, 0xFFFF0000FFFF0000, 0xFFFF0000FFFF0000, 0xFFFF0000FFFF0000, 0xFFFF0000FFFF0000}, {0xFF00FF00FF00FF00, 0xFF00FF00FF00FF00, 0xFF00FF00FF00FF00, 0xFF00FF00FF00FF00, 0xFF00FF00FF00FF00, 0xFF00FF00FF00FF00}, {0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0}, {0xFF0000FFFF0000FF, 0xFF0000FFFF0000FF, 0xFF0000FFFF0000FF, 0xFF0000FFFF0000FF, 0xFF0000FFFF0000FF, 0xFF0000FFFF0000FF}, {0xFFFF00000000FFFF, 0xFFFF00000000FFFF, 0xFFFF00000000FFFF, 0xFFFF00000000FFFF, 0xFFFF00000000FFFF, 0xFFFF00000000FFFF}}; #define SLL_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ T shift_op = static_cast((wt[i] >> shift) & mask) % size_in_bits; \ res |= (static_cast(src_op << shift_op) & mask) << shift; \ } \ wd[i] = res; \ } #define SRA_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ int shift_op = ((wt[i] >> shift) & mask) % size_in_bits; \ res |= (static_cast(ArithmeticShiftRight(src_op, shift_op) & \ mask)) \ << shift; \ } \ wd[i] = res; \ } #define SRL_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ T shift_op = static_cast(((wt[i] >> shift) & mask) % size_in_bits); \ res |= (static_cast(src_op >> shift_op) & mask) << shift; \ } \ wd[i] = res; \ } #define BCRL_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ T shift_op = static_cast(((wt[i] >> shift) & mask) % size_in_bits); \ T r = (static_cast(~(1ull << shift_op)) & src_op) & mask; \ res |= static_cast(r) << shift; \ } \ wd[i] = res; \ } #define BSET_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ T shift_op = static_cast(((wt[i] >> shift) & mask) % size_in_bits); \ T r = (static_cast(1ull << shift_op) | src_op) & mask; \ res |= static_cast(r) << shift; \ } \ wd[i] = res; \ } #define BNEG_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ T shift_op = static_cast(((wt[i] >> shift) & mask) % size_in_bits); \ T r = (static_cast(1ull << shift_op) ^ src_op) & mask; \ res |= static_cast(r) << shift; \ } \ wd[i] = res; \ } #define BINSL_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wd_op = static_cast((wd[i] >> shift) & mask); \ T shift_op = static_cast(((wt[i] >> shift) & mask) % size_in_bits); \ int64_t bits = shift_op + 1; \ T r; \ if (bits == size_in_bits) { \ r = static_cast(ws_op); \ } else { \ uint64_t mask2 = ((1ull << bits) - 1) << (size_in_bits - bits); \ r = static_cast((static_cast(mask2) & ws_op) | \ (static_cast(~mask2) & wd_op)); \ } \ res |= static_cast(r) << shift; \ } \ wd[i] = res; \ } #define BINSR_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wd_op = static_cast((wd[i] >> shift) & mask); \ T shift_op = static_cast(((wt[i] >> shift) & mask) % size_in_bits); \ int64_t bits = shift_op + 1; \ T r; \ if (bits == size_in_bits) { \ r = static_cast(ws_op); \ } else { \ uint64_t mask2 = (1ull << bits) - 1; \ r = static_cast((static_cast(mask2) & ws_op) | \ (static_cast(~mask2) & wd_op)); \ } \ res |= static_cast(r) << shift; \ } \ wd[i] = res; \ } #define ADDV_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(ws_op + wt_op) & mask) << shift; \ } \ wd[i] = res; \ } #define SUBV_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(ws_op - wt_op) & mask) << shift; \ } \ wd[i] = res; \ } #define MAX_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(Max(ws_op, wt_op)) & mask) << shift; \ } \ wd[i] = res; \ } #define MIN_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(Min(ws_op, wt_op)) & mask) << shift; \ } \ wd[i] = res; \ } #define MAXA_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= \ (static_cast(Nabs(ws_op) < Nabs(wt_op) ? ws_op : wt_op) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define MINA_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= \ (static_cast(Nabs(ws_op) > Nabs(wt_op) ? ws_op : wt_op) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define CEQ_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(!Compare(ws_op, wt_op) ? -1ull : 0ull) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define CLT_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast((Compare(ws_op, wt_op) == -1) ? -1ull \ : 0ull) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define CLE_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast((Compare(ws_op, wt_op) != 1) ? -1ull \ : 0ull) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define ADD_A_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(Abs(ws_op) + Abs(wt_op)) & mask) << shift; \ } \ wd[i] = res; \ } #define ADDS_A_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = Nabs(static_cast((ws[i] >> shift) & mask)); \ T wt_op = Nabs(static_cast((wt[i] >> shift) & mask)); \ T r; \ if (ws_op < -std::numeric_limits::max() - wt_op) { \ r = std::numeric_limits::max(); \ } else { \ r = -(ws_op + wt_op); \ } \ res |= (static_cast(r) & mask) << shift; \ } \ wd[i] = res; \ } #define ADDS_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(SaturateAdd(ws_op, wt_op)) & mask) \ << shift; \ } \ wd[i] = res; \ } #define AVE_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast( \ ((wt_op & ws_op) + ((ws_op ^ wt_op) >> 1)) & mask)) \ << shift; \ } \ wd[i] = res; \ } #define AVER_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast( \ ((wt_op | ws_op) - ((ws_op ^ wt_op) >> 1)) & mask)) \ << shift; \ } \ wd[i] = res; \ } #define SUBS_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(SaturateSub(ws_op, wt_op)) & mask) \ << shift; \ } \ wd[i] = res; \ } #define SUBSUS_U_DF(T, lanes, mask) \ typedef typename std::make_unsigned::type uT; \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ uT ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ T r; \ if (wt_op > 0) { \ uT wtu = static_cast(wt_op); \ if (wtu > ws_op) { \ r = 0; \ } else { \ r = static_cast(ws_op - wtu); \ } \ } else { \ if (ws_op > std::numeric_limits::max() + wt_op) { \ r = static_cast(std::numeric_limits::max()); \ } else { \ r = static_cast(ws_op - wt_op); \ } \ } \ res |= (static_cast(r) & mask) << shift; \ } \ wd[i] = res; \ } #define SUBSUU_S_DF(T, lanes, mask) \ typedef typename std::make_unsigned::type uT; \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ uT ws_op = static_cast((ws[i] >> shift) & mask); \ uT wt_op = static_cast((wt[i] >> shift) & mask); \ uT wdu; \ T r; \ if (ws_op > wt_op) { \ wdu = ws_op - wt_op; \ if (wdu > std::numeric_limits::max()) { \ r = std::numeric_limits::max(); \ } else { \ r = static_cast(wdu); \ } \ } else { \ wdu = wt_op - ws_op; \ CHECK(-std::numeric_limits::max() == \ std::numeric_limits::min() + 1); \ if (wdu <= std::numeric_limits::max()) { \ r = -static_cast(wdu); \ } else { \ r = std::numeric_limits::min(); \ } \ } \ res |= (static_cast(r) & mask) << shift; \ } \ wd[i] = res; \ } #define ASUB_S_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(Abs(ws_op - wt_op)) & mask) << shift; \ } \ wd[i] = res; \ } #define ASUB_U_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(ws_op > wt_op ? ws_op - wt_op \ : wt_op - ws_op) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define MULV_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ res |= (static_cast(ws_op * wt_op) & mask) << shift; \ } \ wd[i] = res; \ } #define MADDV_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ T wd_op = static_cast((wd[i] >> shift) & mask); \ res |= (static_cast(wd_op + ws_op * wt_op) & mask) << shift; \ } \ wd[i] = res; \ } #define MSUBV_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ T wd_op = static_cast((wd[i] >> shift) & mask); \ res |= (static_cast(wd_op - ws_op * wt_op) & mask) << shift; \ } \ wd[i] = res; \ } #define DIV_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ if (wt_op == 0) { \ res = Unpredictable; \ break; \ } \ res |= (static_cast(ws_op / wt_op) & mask) << shift; \ } \ wd[i] = res; \ } #define MOD_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T ws_op = static_cast((ws[i] >> shift) & mask); \ T wt_op = static_cast((wt[i] >> shift) & mask); \ if (wt_op == 0) { \ res = Unpredictable; \ break; \ } \ res |= (static_cast(wt_op != 0 ? ws_op % wt_op : 0) & mask) \ << shift; \ } \ wd[i] = res; \ } #define SRAR_DF(T, lanes, mask) \ int size_in_bits = kMSARegSize / lanes; \ for (int i = 0; i < 2; i++) { \ uint64_t res = 0; \ for (int j = 0; j < lanes / 2; ++j) { \ uint64_t shift = size_in_bits * j; \ T src_op = static_cast((ws[i] >> shift) & mask); \ int shift_op = ((wt[i] >> shift) & mask) % size_in_bits; \ uint32_t bit = shift_op == 0 ? 0 : src_op >> (shift_op - 1) & 1; \ res |= (static_cast(ArithmeticShiftRight(src_op, shift_op) + \ bit) & \ mask) \ << shift; \ } \ wd[i] = res; \ } #define PCKEV_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes / 2; ++i) { \ wd_p[i] = wt_p[2 * i]; \ wd_p[i + lanes / 2] = ws_p[2 * i]; \ } #define PCKOD_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes / 2; ++i) { \ wd_p[i] = wt_p[2 * i + 1]; \ wd_p[i + lanes / 2] = ws_p[2 * i + 1]; \ } #define ILVL_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes / 2; ++i) { \ wd_p[2 * i] = wt_p[i + lanes / 2]; \ wd_p[2 * i + 1] = ws_p[i + lanes / 2]; \ } #define ILVR_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes / 2; ++i) { \ wd_p[2 * i] = wt_p[i]; \ wd_p[2 * i + 1] = ws_p[i]; \ } #define ILVEV_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes / 2; ++i) { \ wd_p[2 * i] = wt_p[2 * i]; \ wd_p[2 * i + 1] = ws_p[2 * i]; \ } #define ILVOD_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes / 2; ++i) { \ wd_p[2 * i] = wt_p[2 * i + 1]; \ wd_p[2 * i + 1] = ws_p[2 * i + 1]; \ } #define VSHF_DF(T, lanes, mask) \ T* ws_p = reinterpret_cast(ws); \ T* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ const int mask_not_valid = 0xC0; \ const int mask_6bits = 0x3F; \ for (int i = 0; i < lanes; ++i) { \ if ((wd_p[i] & mask_not_valid)) { \ wd_p[i] = 0; \ } else { \ int k = (wd_p[i] & mask_6bits) % (lanes * 2); \ wd_p[i] = k > lanes ? ws_p[k - lanes] : wt_p[k]; \ } \ } #define HADD_DF(T, T_small, lanes) \ T_small* ws_p = reinterpret_cast(ws); \ T_small* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes; ++i) { \ wd_p[i] = static_cast(ws_p[2 * i + 1]) + static_cast(wt_p[2 * i]); \ } #define HSUB_DF(T, T_small, lanes) \ T_small* ws_p = reinterpret_cast(ws); \ T_small* wt_p = reinterpret_cast(wt); \ T* wd_p = reinterpret_cast(wd); \ for (int i = 0; i < lanes; ++i) { \ wd_p[i] = static_cast(ws_p[2 * i + 1]) - static_cast(wt_p[2 * i]); \ } #define TEST_CASE(V) \ V(sll_b, SLL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(sll_h, SLL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(sll_w, SLL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(sll_d, SLL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(srl_b, SRL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(srl_h, SRL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(srl_w, SRL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(srl_d, SRL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(bclr_b, BCRL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(bclr_h, BCRL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(bclr_w, BCRL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(bclr_d, BCRL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(bset_b, BSET_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(bset_h, BSET_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(bset_w, BSET_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(bset_d, BSET_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(bneg_b, BNEG_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(bneg_h, BNEG_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(bneg_w, BNEG_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(bneg_d, BNEG_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(binsl_b, BINSL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(binsl_h, BINSL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(binsl_w, BINSL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(binsl_d, BINSL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(binsr_b, BINSR_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(binsr_h, BINSR_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(binsr_w, BINSR_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(binsr_d, BINSR_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(addv_b, ADDV_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(addv_h, ADDV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(addv_w, ADDV_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(addv_d, ADDV_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(subv_b, SUBV_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(subv_h, SUBV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(subv_w, SUBV_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(subv_d, SUBV_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(max_s_b, MAX_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(max_s_h, MAX_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(max_s_w, MAX_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(max_s_d, MAX_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(max_u_b, MAX_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(max_u_h, MAX_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(max_u_w, MAX_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(max_u_d, MAX_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(min_s_b, MIN_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(min_s_h, MIN_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(min_s_w, MIN_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(min_s_d, MIN_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(min_u_b, MIN_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(min_u_h, MIN_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(min_u_w, MIN_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(min_u_d, MIN_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(max_a_b, MAXA_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(max_a_h, MAXA_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(max_a_w, MAXA_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(max_a_d, MAXA_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(min_a_b, MINA_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(min_a_h, MINA_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(min_a_w, MINA_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(min_a_d, MINA_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(ceq_b, CEQ_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(ceq_h, CEQ_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(ceq_w, CEQ_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(ceq_d, CEQ_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(clt_s_b, CLT_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(clt_s_h, CLT_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(clt_s_w, CLT_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(clt_s_d, CLT_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(clt_u_b, CLT_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(clt_u_h, CLT_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(clt_u_w, CLT_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(clt_u_d, CLT_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(cle_s_b, CLE_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(cle_s_h, CLE_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(cle_s_w, CLE_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(cle_s_d, CLE_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(cle_u_b, CLE_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(cle_u_h, CLE_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(cle_u_w, CLE_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(cle_u_d, CLE_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(add_a_b, ADD_A_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(add_a_h, ADD_A_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(add_a_w, ADD_A_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(add_a_d, ADD_A_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(adds_a_b, ADDS_A_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(adds_a_h, ADDS_A_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(adds_a_w, ADDS_A_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(adds_a_d, ADDS_A_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(adds_s_b, ADDS_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(adds_s_h, ADDS_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(adds_s_w, ADDS_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(adds_s_d, ADDS_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(adds_u_b, ADDS_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(adds_u_h, ADDS_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(adds_u_w, ADDS_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(adds_u_d, ADDS_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(ave_s_b, AVE_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(ave_s_h, AVE_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(ave_s_w, AVE_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(ave_s_d, AVE_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(ave_u_b, AVE_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(ave_u_h, AVE_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(ave_u_w, AVE_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(ave_u_d, AVE_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(aver_s_b, AVER_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(aver_s_h, AVER_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(aver_s_w, AVER_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(aver_s_d, AVER_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(aver_u_b, AVER_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(aver_u_h, AVER_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(aver_u_w, AVER_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(aver_u_d, AVER_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(subs_s_b, SUBS_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(subs_s_h, SUBS_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(subs_s_w, SUBS_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(subs_s_d, SUBS_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(subs_u_b, SUBS_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(subs_u_h, SUBS_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(subs_u_w, SUBS_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(subs_u_d, SUBS_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(subsus_u_b, SUBSUS_U_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(subsus_u_h, SUBSUS_U_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(subsus_u_w, SUBSUS_U_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(subsus_u_d, SUBSUS_U_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(subsuu_s_b, SUBSUU_S_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(subsuu_s_h, SUBSUU_S_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(subsuu_s_w, SUBSUU_S_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(subsuu_s_d, SUBSUU_S_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(asub_s_b, ASUB_S_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(asub_s_h, ASUB_S_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(asub_s_w, ASUB_S_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(asub_s_d, ASUB_S_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(asub_u_b, ASUB_U_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(asub_u_h, ASUB_U_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(asub_u_w, ASUB_U_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(asub_u_d, ASUB_U_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(mulv_b, MULV_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(mulv_h, MULV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(mulv_w, MULV_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(mulv_d, MULV_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(maddv_b, MADDV_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(maddv_h, MADDV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(maddv_w, MADDV_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(maddv_d, MADDV_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(msubv_b, MSUBV_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(msubv_h, MSUBV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(msubv_w, MSUBV_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(msubv_d, MSUBV_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(div_s_b, DIV_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(div_s_h, DIV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(div_s_w, DIV_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(div_s_d, DIV_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(div_u_b, DIV_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(div_u_h, DIV_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(div_u_w, DIV_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(div_u_d, DIV_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(mod_s_b, MOD_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(mod_s_h, MOD_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(mod_s_w, MOD_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(mod_s_d, MOD_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(mod_u_b, MOD_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(mod_u_h, MOD_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(mod_u_w, MOD_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(mod_u_d, MOD_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(srlr_b, SRAR_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(srlr_h, SRAR_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(srlr_w, SRAR_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(srlr_d, SRAR_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(pckev_b, PCKEV_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(pckev_h, PCKEV_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(pckev_w, PCKEV_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(pckev_d, PCKEV_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(pckod_b, PCKOD_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(pckod_h, PCKOD_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(pckod_w, PCKOD_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(pckod_d, PCKOD_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(ilvl_b, ILVL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(ilvl_h, ILVL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(ilvl_w, ILVL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(ilvl_d, ILVL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(ilvr_b, ILVR_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(ilvr_h, ILVR_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(ilvr_w, ILVR_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(ilvr_d, ILVR_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(ilvev_b, ILVEV_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(ilvev_h, ILVEV_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(ilvev_w, ILVEV_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(ilvev_d, ILVEV_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(ilvod_b, ILVOD_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(ilvod_h, ILVOD_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(ilvod_w, ILVOD_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(ilvod_d, ILVOD_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(vshf_b, VSHF_DF, uint8_t, kMSALanesByte, UINT8_MAX) \ V(vshf_h, VSHF_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \ V(vshf_w, VSHF_DF, uint32_t, kMSALanesWord, UINT32_MAX) \ V(vshf_d, VSHF_DF, uint64_t, kMSALanesDword, UINT64_MAX) \ V(hadd_s_h, HADD_DF, int16_t, int8_t, kMSALanesHalf) \ V(hadd_s_w, HADD_DF, int32_t, int16_t, kMSALanesWord) \ V(hadd_s_d, HADD_DF, int64_t, int32_t, kMSALanesDword) \ V(hadd_u_h, HADD_DF, uint16_t, uint8_t, kMSALanesHalf) \ V(hadd_u_w, HADD_DF, uint32_t, uint16_t, kMSALanesWord) \ V(hadd_u_d, HADD_DF, uint64_t, uint32_t, kMSALanesDword) \ V(hsub_s_h, HSUB_DF, int16_t, int8_t, kMSALanesHalf) \ V(hsub_s_w, HSUB_DF, int32_t, int16_t, kMSALanesWord) \ V(hsub_s_d, HSUB_DF, int64_t, int32_t, kMSALanesDword) \ V(hsub_u_h, HSUB_DF, uint16_t, uint8_t, kMSALanesHalf) \ V(hsub_u_w, HSUB_DF, uint32_t, uint16_t, kMSALanesWord) \ V(hsub_u_d, HSUB_DF, uint64_t, uint32_t, kMSALanesDword) #define RUN_TEST(instr, verify, type, lanes, mask) \ run_msa_3r(&tc[i], [](MacroAssembler& assm) { __ instr(w2, w1, w0); }, \ [](uint64_t* ws, uint64_t* wt, uint64_t* wd) { \ verify(type, lanes, mask); \ }); for (size_t i = 0; i < arraysize(tc); ++i) { TEST_CASE(RUN_TEST) } #define RUN_TEST2(instr, verify, type, lanes, mask) \ for (unsigned i = 0; i < arraysize(tc); i++) { \ for (unsigned j = 0; j < 3; j++) { \ for (unsigned k = 0; k < lanes; k++) { \ type* element = reinterpret_cast(&tc[i]); \ element[k + j * lanes] &= std::numeric_limits::max(); \ } \ } \ } \ run_msa_3r(&tc[i], [](MacroAssembler& assm) { __ instr(w2, w1, w0); }, \ [](uint64_t* ws, uint64_t* wt, uint64_t* wd) { \ verify(type, lanes, mask); \ }); #define TEST_CASE2(V) \ V(sra_b, SRA_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(sra_h, SRA_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(sra_w, SRA_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(sra_d, SRA_DF, int64_t, kMSALanesDword, UINT64_MAX) \ V(srar_b, SRAR_DF, int8_t, kMSALanesByte, UINT8_MAX) \ V(srar_h, SRAR_DF, int16_t, kMSALanesHalf, UINT16_MAX) \ V(srar_w, SRAR_DF, int32_t, kMSALanesWord, UINT32_MAX) \ V(srar_d, SRAR_DF, int64_t, kMSALanesDword, UINT64_MAX) for (size_t i = 0; i < arraysize(tc); ++i) { TEST_CASE2(RUN_TEST2) } #undef TEST_CASE #undef TEST_CASE2 #undef RUN_TEST #undef RUN_TEST2 #undef SLL_DF #undef SRL_DF #undef SRA_DF #undef BCRL_DF #undef BSET_DF #undef BNEG_DF #undef BINSL_DF #undef BINSR_DF #undef ADDV_DF #undef SUBV_DF #undef MAX_DF #undef MIN_DF #undef MAXA_DF #undef MINA_DF #undef CEQ_DF #undef CLT_DF #undef CLE_DF #undef ADD_A_DF #undef ADDS_A_DF #undef ADDS_DF #undef AVE_DF #undef AVER_DF #undef SUBS_DF #undef SUBSUS_U_DF #undef SUBSUU_S_DF #undef ASUB_S_DF #undef ASUB_U_DF #undef MULV_DF #undef MADDV_DF #undef MSUBV_DF #undef DIV_DF #undef MOD_DF #undef SRAR_DF #undef PCKEV_DF #undef PCKOD_DF #undef ILVL_DF #undef ILVR_DF #undef ILVEV_DF #undef ILVOD_DF #undef VSHF_DF #undef HADD_DF #undef HSUB_DF } struct TestCaseMsa3RF { uint64_t ws_lo; uint64_t ws_hi; uint64_t wt_lo; uint64_t wt_hi; uint64_t wd_lo; uint64_t wd_hi; }; struct ExpectedResult_MSA3RF { uint64_t exp_res_lo; uint64_t exp_res_hi; }; template void run_msa_3rf(const struct TestCaseMsa3RF* input, const struct ExpectedResult_MSA3RF* output, Func Generate2RInstructionFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; load_elements_of_vector( assm, reinterpret_cast(&input->ws_lo), w0, t0, t1); load_elements_of_vector( assm, reinterpret_cast(&input->wt_lo), w1, t0, t1); load_elements_of_vector( assm, reinterpret_cast(&input->wd_lo), w2, t0, t1); Generate2RInstructionFunc(assm); store_elements_of_vector(assm, w2, a0); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&res, 0, 0, 0, 0); CHECK_EQ(output->exp_res_lo, res.d[0]); CHECK_EQ(output->exp_res_hi, res.d[1]); } struct TestCaseMsa3RF_F { float ws_1, ws_2, ws_3, ws_4; float wt_1, wt_2, wt_3, wt_4; float wd_1, wd_2, wd_3, wd_4; }; struct ExpRes_32I { int32_t exp_res_1; int32_t exp_res_2; int32_t exp_res_3; int32_t exp_res_4; }; struct TestCaseMsa3RF_D { double ws_lo, ws_hi; double wt_lo, wt_hi; double wd_lo, wd_hi; }; struct ExpRes_64I { int64_t exp_res_lo; int64_t exp_res_hi; }; TEST(MSA_floating_point_quiet_compare) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float qnan_f = std::numeric_limits::quiet_NaN(); const double qnan_d = std::numeric_limits::quiet_NaN(); const float inf_f = std::numeric_limits::infinity(); const double inf_d = std::numeric_limits::infinity(); const int32_t ones = -1; const struct TestCaseMsa3RF_F tc_w[]{ {qnan_f, -qnan_f, inf_f, 2.14e9f, // ws qnan_f, 0.f, qnan_f, -2.14e9f, // wt 0, 0, 0, 0}, // wd {inf_f, -inf_f, -3.4e38f, 1.5e-45f, -inf_f, -inf_f, -inf_f, inf_f, 0, 0, 0, 0}, {0.f, 19.871e24f, -1.5e-45f, -1.5e-45f, -19.871e24f, 19.871e24f, 1.5e-45f, -1.5e-45f, 0, 0, 0, 0}}; const struct TestCaseMsa3RF_D tc_d[]{ // ws_lo, ws_hi, wt_lo, wt_hi, wd_lo, wd_hi {qnan_d, -qnan_d, qnan_f, 0., 0, 0}, {inf_d, 9.22e18, qnan_d, -9.22e18, 0, 0}, {inf_d, inf_d, -inf_d, inf_d, 0, 0}, {-2.3e-308, 5e-324, -inf_d, inf_d, 0, 0}, {0., 24.1e87, -1.6e308, 24.1e87, 0, 0}, {-5e-324, -5e-324, 5e-324, -5e-324, 0, 0}}; const struct ExpectedResult_MSA3RF exp_res_fcaf = {0, 0}; const struct ExpRes_32I exp_res_fcun_w[] = { {ones, ones, ones, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}; const struct ExpRes_64I exp_res_fcun_d[] = {{ones, ones}, {ones, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; const struct ExpRes_32I exp_res_fceq_w[] = { {0, 0, 0, 0}, {0, ones, 0, 0}, {0, ones, 0, ones}}; const struct ExpRes_64I exp_res_fceq_d[] = {{0, 0}, {0, 0}, {0, ones}, {0, 0}, {0, ones}, {0, ones}}; const struct ExpRes_32I exp_res_fcueq_w[] = { {ones, ones, ones, 0}, {0, ones, 0, 0}, {0, ones, 0, ones}}; const struct ExpRes_64I exp_res_fcueq_d[] = { {ones, ones}, {ones, 0}, {0, ones}, {0, 0}, {0, ones}, {0, ones}}; const struct ExpRes_32I exp_res_fclt_w[] = { {0, 0, 0, 0}, {0, 0, 0, ones}, {0, 0, ones, 0}}; const struct ExpRes_64I exp_res_fclt_d[] = {{0, 0}, {0, 0}, {0, 0}, {0, ones}, {0, 0}, {ones, 0}}; const struct ExpRes_32I exp_res_fcult_w[] = { {ones, ones, ones, 0}, {0, 0, 0, ones}, {0, 0, ones, 0}}; const struct ExpRes_64I exp_res_fcult_d[] = { {ones, ones}, {ones, 0}, {0, 0}, {0, ones}, {0, 0}, {ones, 0}}; const struct ExpRes_32I exp_res_fcle_w[] = { {0, 0, 0, 0}, {0, ones, 0, ones}, {0, ones, ones, ones}}; const struct ExpRes_64I exp_res_fcle_d[] = { {0, 0}, {0, 0}, {0, ones}, {0, ones}, {0, ones}, {ones, ones}}; const struct ExpRes_32I exp_res_fcule_w[] = { {ones, ones, ones, 0}, {0, ones, 0, ones}, {0, ones, ones, ones}}; const struct ExpRes_64I exp_res_fcule_d[] = { {ones, ones}, {ones, 0}, {0, ones}, {0, ones}, {0, ones}, {ones, ones}}; const struct ExpRes_32I exp_res_fcor_w[] = { {0, 0, 0, ones}, {ones, ones, ones, ones}, {ones, ones, ones, ones}}; const struct ExpRes_64I exp_res_fcor_d[] = {{0, 0}, {0, ones}, {ones, ones}, {ones, ones}, {ones, ones}, {ones, ones}}; const struct ExpRes_32I exp_res_fcune_w[] = { {ones, ones, ones, ones}, {ones, 0, ones, ones}, {ones, 0, ones, 0}}; const struct ExpRes_64I exp_res_fcune_d[] = {{ones, ones}, {ones, ones}, {ones, 0}, {ones, ones}, {ones, 0}, {ones, 0}}; const struct ExpRes_32I exp_res_fcne_w[] = { {0, 0, 0, ones}, {ones, 0, ones, ones}, {ones, 0, ones, 0}}; const struct ExpRes_64I exp_res_fcne_d[] = { {0, 0}, {0, ones}, {ones, 0}, {ones, ones}, {ones, 0}, {ones, 0}}; #define TEST_FP_QUIET_COMPARE_W(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); #define TEST_FP_QUIET_COMPARE_D(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); for (uint64_t i = 0; i < arraysize(tc_w); i++) { TEST_FP_QUIET_COMPARE_W(fcaf_w, &tc_w[i], &exp_res_fcaf) TEST_FP_QUIET_COMPARE_W(fcun_w, &tc_w[i], &exp_res_fcun_w[i]) TEST_FP_QUIET_COMPARE_W(fceq_w, &tc_w[i], &exp_res_fceq_w[i]) TEST_FP_QUIET_COMPARE_W(fcueq_w, &tc_w[i], &exp_res_fcueq_w[i]) TEST_FP_QUIET_COMPARE_W(fclt_w, &tc_w[i], &exp_res_fclt_w[i]) TEST_FP_QUIET_COMPARE_W(fcult_w, &tc_w[i], &exp_res_fcult_w[i]) TEST_FP_QUIET_COMPARE_W(fcle_w, &tc_w[i], &exp_res_fcle_w[i]) TEST_FP_QUIET_COMPARE_W(fcule_w, &tc_w[i], &exp_res_fcule_w[i]) TEST_FP_QUIET_COMPARE_W(fcor_w, &tc_w[i], &exp_res_fcor_w[i]) TEST_FP_QUIET_COMPARE_W(fcune_w, &tc_w[i], &exp_res_fcune_w[i]) TEST_FP_QUIET_COMPARE_W(fcne_w, &tc_w[i], &exp_res_fcne_w[i]) } for (uint64_t i = 0; i < arraysize(tc_d); i++) { TEST_FP_QUIET_COMPARE_D(fcaf_d, &tc_d[i], &exp_res_fcaf) TEST_FP_QUIET_COMPARE_D(fcun_d, &tc_d[i], &exp_res_fcun_d[i]) TEST_FP_QUIET_COMPARE_D(fceq_d, &tc_d[i], &exp_res_fceq_d[i]) TEST_FP_QUIET_COMPARE_D(fcueq_d, &tc_d[i], &exp_res_fcueq_d[i]) TEST_FP_QUIET_COMPARE_D(fclt_d, &tc_d[i], &exp_res_fclt_d[i]) TEST_FP_QUIET_COMPARE_D(fcult_d, &tc_d[i], &exp_res_fcult_d[i]) TEST_FP_QUIET_COMPARE_D(fcle_d, &tc_d[i], &exp_res_fcle_d[i]) TEST_FP_QUIET_COMPARE_D(fcule_d, &tc_d[i], &exp_res_fcule_d[i]) TEST_FP_QUIET_COMPARE_D(fcor_d, &tc_d[i], &exp_res_fcor_d[i]) TEST_FP_QUIET_COMPARE_D(fcune_d, &tc_d[i], &exp_res_fcune_d[i]) TEST_FP_QUIET_COMPARE_D(fcne_d, &tc_d[i], &exp_res_fcne_d[i]) } #undef TEST_FP_QUIET_COMPARE_W #undef TEST_FP_QUIET_COMPARE_D } template inline const T* fadd_function(const T* src1, const T* src2, const T* src3, T* dst) { for (uint64_t i = 0; i < kMSALanesByte / sizeof(T); i++) { dst[i] = src1[i] + src2[i]; } return dst; } template inline const T* fsub_function(const T* src1, const T* src2, const T* src3, T* dst) { for (uint64_t i = 0; i < kMSALanesByte / sizeof(T); i++) { dst[i] = src1[i] - src2[i]; } return dst; } template inline const T* fmul_function(const T* src1, const T* src2, const T* src3, T* dst) { for (uint64_t i = 0; i < kMSALanesByte / sizeof(T); i++) { dst[i] = src1[i] * src2[i]; } return dst; } template inline const T* fdiv_function(const T* src1, const T* src2, const T* src3, T* dst) { for (uint64_t i = 0; i < kMSALanesByte / sizeof(T); i++) { dst[i] = src1[i] / src2[i]; } return dst; } template inline const T* fmadd_function(const T* src1, const T* src2, const T* src3, T* dst) { for (uint64_t i = 0; i < kMSALanesByte / sizeof(T); i++) { dst[i] = std::fma(src1[i], src2[i], src3[i]); } return dst; } template inline const T* fmsub_function(const T* src1, const T* src2, const T* src3, T* dst) { for (uint64_t i = 0; i < kMSALanesByte / sizeof(T); i++) { dst[i] = std::fma(src1[i], -src2[i], src3[i]); } return dst; } TEST(MSA_floating_point_arithmetic) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_f = std::numeric_limits::infinity(); const double inf_d = std::numeric_limits::infinity(); const struct TestCaseMsa3RF_F tc_w[] = { {0.3, -2.14e13f, inf_f, 0.f, // ws -inf_f, std::sqrt(8.e-26f), -23.e34, -2.14e9f, // wt -1e30f, 4.6e12f, 0, 2.14e9f}, // wd {3.4e38f, -1.2e-38f, 1e19f, -1e19f, 3.4e38f, 1.2e-38f, -1e19f, -1e-19f, 3.4e38f, 1.2e-38f * 3, 3.4e38f, -4e19f}, {-3e-31f, 3e10f, 1e25f, 123.f, 1e-14f, 1e-34f, 4e25f, 321.f, 3e-17f, 2e-24f, 2.f, -123456.f}}; const struct TestCaseMsa3RF_D tc_d[] = { // ws_lo, ws_hi, wt_lo, wt_hi, wd_lo, wd_hi {0.3, -2.14e103, -inf_d, std::sqrt(8.e-206), -1e30, 4.6e102}, {inf_d, 0., -23.e304, -2.104e9, 0, 2.104e9}, {3.4e307, -1.2e-307, 3.4e307, 1.2e-307, 3.4e307, 1.2e-307 * 3}, {1e154, -1e154, -1e154, -1e-154, 2.9e38, -4e19}, {-3e-301, 3e100, 1e-104, 1e-304, 3e-107, 2e-204}, {1e205, 123., 4e205, 321., 2., -123456.}}; struct ExpectedResult_MSA3RF dst_container; #define FP_ARITHMETIC_DF_W(instr, function, src1, src2, src3) \ run_msa_3rf( \ reinterpret_cast(src1), \ reinterpret_cast(function( \ src1, src2, src3, reinterpret_cast(&dst_container))), \ [](MacroAssembler& assm) { __ instr(w2, w0, w1); }); #define FP_ARITHMETIC_DF_D(instr, function, src1, src2, src3) \ run_msa_3rf( \ reinterpret_cast(src1), \ reinterpret_cast(function( \ src1, src2, src3, reinterpret_cast(&dst_container))), \ [](MacroAssembler& assm) { __ instr(w2, w0, w1); }); for (uint64_t i = 0; i < arraysize(tc_w); i++) { FP_ARITHMETIC_DF_W(fadd_w, fadd_function, &tc_w[i].ws_1, &tc_w[i].wt_1, &tc_w[i].wd_1) FP_ARITHMETIC_DF_W(fsub_w, fsub_function, &tc_w[i].ws_1, &tc_w[i].wt_1, &tc_w[i].wd_1) FP_ARITHMETIC_DF_W(fmul_w, fmul_function, &tc_w[i].ws_1, &tc_w[i].wt_1, &tc_w[i].wd_1) FP_ARITHMETIC_DF_W(fdiv_w, fdiv_function, &tc_w[i].ws_1, &tc_w[i].wt_1, &tc_w[i].wd_1) FP_ARITHMETIC_DF_W(fmadd_w, fmadd_function, &tc_w[i].ws_1, &tc_w[i].wt_1, &tc_w[i].wd_1) FP_ARITHMETIC_DF_W(fmsub_w, fmsub_function, &tc_w[i].ws_1, &tc_w[i].wt_1, &tc_w[i].wd_1) } for (uint64_t i = 0; i < arraysize(tc_d); i++) { FP_ARITHMETIC_DF_D(fadd_d, fadd_function, &tc_d[i].ws_lo, &tc_d[i].wt_lo, &tc_d[i].wd_lo) FP_ARITHMETIC_DF_D(fsub_d, fsub_function, &tc_d[i].ws_lo, &tc_d[i].wt_lo, &tc_d[i].wd_lo) FP_ARITHMETIC_DF_D(fmul_d, fmul_function, &tc_d[i].ws_lo, &tc_d[i].wt_lo, &tc_d[i].wd_lo) FP_ARITHMETIC_DF_D(fdiv_d, fdiv_function, &tc_d[i].ws_lo, &tc_d[i].wt_lo, &tc_d[i].wd_lo) FP_ARITHMETIC_DF_D(fmadd_d, fmadd_function, &tc_d[i].ws_lo, &tc_d[i].wt_lo, &tc_d[i].wd_lo) FP_ARITHMETIC_DF_D(fmsub_d, fmsub_function, &tc_d[i].ws_lo, &tc_d[i].wt_lo, &tc_d[i].wd_lo) } #undef FP_ARITHMETIC_DF_W #undef FP_ARITHMETIC_DF_D } struct ExpRes_F { float exp_res_1; float exp_res_2; float exp_res_3; float exp_res_4; }; struct ExpRes_D { double exp_res_1; double exp_res_2; }; TEST(MSA_fmin_fmin_a_fmax_fmax_a) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_f = std::numeric_limits::infinity(); const double inf_d = std::numeric_limits::infinity(); const struct TestCaseMsa3RF_F tc_w[] = { {0.3f, -2.14e13f, inf_f, -0.f, // ws -inf_f, -std::sqrt(8.e26f), -23.e34f, -2.14e9f, // wt 0, 0, 0, 0}, // wd {3.4e38f, 1.2e-41f, 1e19f, 1e19f, // ws 3.4e38f, -1.1e-41f, -1e-42f, -1e29f, // wt 0, 0, 0, 0}}; // wd const struct TestCaseMsa3RF_D tc_d[] = { // ws_lo, ws_hi, wt_lo, wt_hi, wd_lo, wd_hi {0.3, -2.14e103, -inf_d, -std::sqrt(8e206), 0, 0}, {inf_d, -0., -23e304, -2.14e90, 0, 0}, {3.4e307, 1.2e-320, 3.4e307, -1.1e-320, 0, 0}, {1e154, 1e154, -1e-321, -1e174, 0, 0}}; const struct ExpRes_F exp_res_fmax_w[] = {{0.3f, -2.14e13f, inf_f, -0.f}, {3.4e38f, 1.2e-41f, 1e19f, 1e19f}}; const struct ExpRes_F exp_res_fmax_a_w[] = { {-inf_f, -std::sqrt(8e26f), inf_f, -2.14e9f}, {3.4e38f, 1.2e-41f, 1e19f, -1e29f}}; const struct ExpRes_F exp_res_fmin_w[] = { {-inf_f, -std::sqrt(8.e26f), -23e34f, -2.14e9f}, {3.4e38f, -1.1e-41f, -1e-42f, -1e29f}}; const struct ExpRes_F exp_res_fmin_a_w[] = { {0.3, -2.14e13f, -23.e34f, -0.f}, {3.4e38f, -1.1e-41f, -1e-42f, 1e19f}}; const struct ExpRes_D exp_res_fmax_d[] = { {0.3, -2.14e103}, {inf_d, -0.}, {3.4e307, 1.2e-320}, {1e154, 1e154}}; const struct ExpRes_D exp_res_fmax_a_d[] = {{-inf_d, -std::sqrt(8e206)}, {inf_d, -2.14e90}, {3.4e307, 1.2e-320}, {1e154, -1e174}}; const struct ExpRes_D exp_res_fmin_d[] = {{-inf_d, -std::sqrt(8e206)}, {-23e304, -2.14e90}, {3.4e307, -1.1e-320}, {-1e-321, -1e174}}; const struct ExpRes_D exp_res_fmin_a_d[] = { {0.3, -2.14e103}, {-23e304, -0.}, {3.4e307, -1.1e-320}, {-1e-321, 1e154}}; #define TEST_FP_MIN_MAX_W(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); #define TEST_FP_MIN_MAX_D(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); for (uint64_t i = 0; i < arraysize(tc_w); i++) { TEST_FP_MIN_MAX_W(fmax_w, &tc_w[i], &exp_res_fmax_w[i]) TEST_FP_MIN_MAX_W(fmax_a_w, &tc_w[i], &exp_res_fmax_a_w[i]) TEST_FP_MIN_MAX_W(fmin_w, &tc_w[i], &exp_res_fmin_w[i]) TEST_FP_MIN_MAX_W(fmin_a_w, &tc_w[i], &exp_res_fmin_a_w[i]) } for (uint64_t i = 0; i < arraysize(tc_d); i++) { TEST_FP_MIN_MAX_D(fmax_d, &tc_d[i], &exp_res_fmax_d[i]) TEST_FP_MIN_MAX_D(fmax_a_d, &tc_d[i], &exp_res_fmax_a_d[i]) TEST_FP_MIN_MAX_D(fmin_d, &tc_d[i], &exp_res_fmin_d[i]) TEST_FP_MIN_MAX_D(fmin_a_d, &tc_d[i], &exp_res_fmin_a_d[i]) } #undef TEST_FP_MIN_MAX_W #undef TEST_FP_MIN_MAX_D } struct TestCaseMsa3RF_16I { int16_t ws_1, ws_2, ws_3, ws_4, ws_5, ws_6, ws_7, ws_8; int16_t wt_1, wt_2, wt_3, wt_4, wt_5, wt_6, wt_7, wt_8; int16_t wd_1, wd_2, wd_3, wd_4, wd_5, wd_6, wd_7, wd_8; }; struct ExpRes_16I { int16_t exp_res_1; int16_t exp_res_2; int16_t exp_res_3; int16_t exp_res_4; int16_t exp_res_5; int16_t exp_res_6; int16_t exp_res_7; int16_t exp_res_8; }; struct TestCaseMsa3RF_32I { int32_t ws_1, ws_2, ws_3, ws_4; int32_t wt_1, wt_2, wt_3, wt_4; int32_t wd_1, wd_2, wd_3, wd_4; }; TEST(MSA_fixed_point_arithmetic) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const struct TestCaseMsa3RF tc_h[]{ {0x800080007FFF7FFF, 0xE1ED8000FAD3863A, 0x80007FFF00AF7FFF, 0x800015A77FFFA0EB, 0x7FFF800080007FFF, 0x80007FFF1F207364}, {0x800080007FFF006A, 0x002AFFC4329AD87B, 0x80007FFF7FFF00F3, 0xFFECFFB4D0D7F429, 0x80007FFF80007C33, 0x54AC6BBCE53B8C91}}; const struct TestCaseMsa3RF tc_w[]{ {0x8000000080000000, 0x7FFFFFFF7FFFFFFF, 0x800000007FFFFFFF, 0x00001FF37FFFFFFF, 0x7FFFFFFF80000000, 0x800000007FFFFFFF}, {0xE1ED035580000000, 0xFAD3863AED462C0B, 0x8000000015A70AEC, 0x7FFFFFFFA0EBD354, 0x800000007FFFFFFF, 0xD0D7F4291F207364}, {0x8000000080000000, 0x7FFFFFFF0000DA1F, 0x800000007FFFFFFF, 0x7FFFFFFF00F39C3B, 0x800000007FFFFFFF, 0x800000007C33F2FD}, {0x0000AC33FFFF329A, 0x54AC6BBCE53BD87B, 0xFFFFE2B4D0D7F429, 0x0355ED462C0B1FF3, 0xB5DEB625939DD3F9, 0xE642ADFA69519596}}; const struct ExpectedResult_MSA3RF exp_res_mul_q_h[] = { {0x7FFF800100AE7FFE, 0x1E13EA59FAD35A74}, {0x7FFF80017FFE0000, 0xFFFF0000ED5B03A7}}; const struct ExpectedResult_MSA3RF exp_res_madd_q_h[] = { {0x7FFF800080AE7FFF, 0x9E136A5819F37FFF}, {0x00000000FFFE7C33, 0x54AB6BBCD2969038}}; const struct ExpectedResult_MSA3RF exp_res_msub_q_h[] = { {0xFFFFFFFF80000000, 0x80007FFF244C18EF}, {0x80007FFF80007C32, 0x54AC6BBBF7DF88E9}}; const struct ExpectedResult_MSA3RF exp_res_mulr_q_h[] = { {0x7FFF800100AF7FFE, 0x1E13EA59FAD35A75}, {0x7FFF80017FFE0001, 0x00000000ED5B03A8}}; const struct ExpectedResult_MSA3RF exp_res_maddr_q_h[] = { {0x7FFF800080AF7FFF, 0x9E136A5819F37FFF}, {0x00000000FFFE7C34, 0x54AC6BBCD2969039}}; const struct ExpectedResult_MSA3RF exp_res_msubr_q_h[] = { {0xFFFFFFFF80000001, 0x80007FFF244D18EF}, {0x80007FFF80007C32, 0x54AC6BBCF7E088E9}}; const struct ExpectedResult_MSA3RF exp_res_mul_q_w[] = { {0x7FFFFFFF80000001, 0x00001FF27FFFFFFE}, {0x1E12FCABEA58F514, 0xFAD3863A0DE8DEE1}, {0x7FFFFFFF80000001, 0x7FFFFFFE0000019F}, {0xFFFFFFFF00004BAB, 0x0234E1FBF6CA3EE0}}; const struct ExpectedResult_MSA3RF exp_res_madd_q_w[] = { {0x7FFFFFFF80000000, 0x80001FF27FFFFFFF}, {0x9E12FCAB6A58F513, 0xCBAB7A632D095245}, {0x0000000000000000, 0xFFFFFFFE7C33F49C}, {0xB5DEB624939E1FA4, 0xE8778FF5601BD476}}; const struct ExpectedResult_MSA3RF exp_res_msub_q_w[] = { {0xFFFFFFFFFFFFFFFF, 0x8000000000000000}, {0x800000007FFFFFFF, 0xD6046DEE11379482}, {0x800000007FFFFFFF, 0x800000007C33F15D}, {0xB5DEB625939D884D, 0xE40DCBFE728756B5}}; const struct ExpectedResult_MSA3RF exp_res_mulr_q_w[] = { {0x7FFFFFFF80000001, 0x00001FF37FFFFFFE}, {0x1E12FCABEA58F514, 0xFAD3863A0DE8DEE2}, {0x7FFFFFFF80000001, 0x7FFFFFFE0000019F}, {0x0000000000004BAC, 0x0234E1FCF6CA3EE1}}; const struct ExpectedResult_MSA3RF exp_res_maddr_q_w[] = { {0x7FFFFFFF80000000, 0x80001FF37FFFFFFF}, {0x9E12FCAB6A58F513, 0xCBAB7A632D095246}, {0x0000000000000000, 0xFFFFFFFE7C33F49C}, {0xB5DEB625939E1FA5, 0xE8778FF6601BD477}}; const struct ExpectedResult_MSA3RF exp_res_msubr_q_w[] = { {0xFFFFFFFFFFFFFFFF, 0x8000000000000001}, {0x800000007FFFFFFF, 0xD6046DEF11379482}, {0x800000007FFFFFFF, 0x800000007C33F15E}, {0xB5DEB625939D884D, 0xE40DCBFE728756B5}}; #define TEST_FIXED_POINT_DF_H(instruction, src, exp_res) \ run_msa_3rf((src), (exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); #define TEST_FIXED_POINT_DF_W(instruction, src, exp_res) \ run_msa_3rf((src), (exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); for (uint64_t i = 0; i < arraysize(tc_h); i++) { TEST_FIXED_POINT_DF_H(mul_q_h, &tc_h[i], &exp_res_mul_q_h[i]) TEST_FIXED_POINT_DF_H(madd_q_h, &tc_h[i], &exp_res_madd_q_h[i]) TEST_FIXED_POINT_DF_H(msub_q_h, &tc_h[i], &exp_res_msub_q_h[i]) TEST_FIXED_POINT_DF_H(mulr_q_h, &tc_h[i], &exp_res_mulr_q_h[i]) TEST_FIXED_POINT_DF_H(maddr_q_h, &tc_h[i], &exp_res_maddr_q_h[i]) TEST_FIXED_POINT_DF_H(msubr_q_h, &tc_h[i], &exp_res_msubr_q_h[i]) } for (uint64_t i = 0; i < arraysize(tc_w); i++) { TEST_FIXED_POINT_DF_W(mul_q_w, &tc_w[i], &exp_res_mul_q_w[i]) TEST_FIXED_POINT_DF_W(madd_q_w, &tc_w[i], &exp_res_madd_q_w[i]) TEST_FIXED_POINT_DF_W(msub_q_w, &tc_w[i], &exp_res_msub_q_w[i]) TEST_FIXED_POINT_DF_W(mulr_q_w, &tc_w[i], &exp_res_mulr_q_w[i]) TEST_FIXED_POINT_DF_W(maddr_q_w, &tc_w[i], &exp_res_maddr_q_w[i]) TEST_FIXED_POINT_DF_W(msubr_q_w, &tc_w[i], &exp_res_msubr_q_w[i]) } #undef TEST_FIXED_POINT_DF_H #undef TEST_FIXED_POINT_DF_W } TEST(MSA_fexdo) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float inf_float = std::numeric_limits::infinity(); const float nan_float = std::numeric_limits::quiet_NaN(); const double inf_double = std::numeric_limits::infinity(); const struct TestCaseMsa3RF_F tc_w[] = { // ws_1, ws_2, ws_3, ws_4, wt_1, wt_2, wt_3, wt_4, wd_1, wd_2, wd_3, wd_4 {inf_float, nan_float, 66505.f, 65504.f, 6.2e-5f, 5e-5f, -32.42f, -inf_float, 0, 0, 0, 0}, {-0.f, 0.f, 123.567f, -765.321f, -6e-8f, 5.9e-8f, 1e-7f, -1e-20f, 0, 0, 0, 0}, {1e-36f, 1e20f, -1e20f, 2e-20f, 6e-8f, -2.9e-8f, -66505.f, -65504.f, 0, 0, 0, 0}}; const struct TestCaseMsa3RF_D tc_d[] = { // ws_lo, ws_hi, wt_lo, wt_hi, wd_lo, wd_hi {inf_double, -1234., 4e38, 3.4e38, 0, 0}, {1.2e-38, 1.1e-39, -38.92f, -inf_double, 0, 0}, {-0., 0., 123.567e31, -765.321e33, 0, 0}, {-1.5e-45, 1.3e-45, 1e-42, -1e-200, 0, 0}, {1e-202, 1e158, -1e159, 1e14, 0, 0}, {1.5e-42, 1.3e-46, -123.567e31, 765.321e33, 0, 0}}; const struct ExpRes_16I exp_res_fexdo_w[] = { {static_cast(0x0410), static_cast(0x0347), static_cast(0xD00D), static_cast(0xFC00), static_cast(0x7C00), static_cast(0x7DFF), static_cast(0x7C00), static_cast(0x7BFF)}, {static_cast(0x8001), static_cast(0x0001), static_cast(0x0002), static_cast(0x8000), static_cast(0x8000), static_cast(0x0000), static_cast(0x57B9), static_cast(0xE1FB)}, {static_cast(0x0001), static_cast(0x8000), static_cast(0xFC00), static_cast(0xFBFF), static_cast(0x0000), static_cast(0x7C00), static_cast(0xFC00), static_cast(0x0000)}}; const struct ExpRes_32I exp_res_fexdo_d[] = { {bit_cast(0x7F800000), bit_cast(0x7F7FC99E), bit_cast(0x7F800000), bit_cast(0xC49A4000)}, {bit_cast(0xC21BAE14), bit_cast(0xFF800000), bit_cast(0x0082AB1E), bit_cast(0x000BFA5A)}, {bit_cast(0x7673B164), bit_cast(0xFB13653D), bit_cast(0x80000000), bit_cast(0x00000000)}, {bit_cast(0x000002CA), bit_cast(0x80000000), bit_cast(0x80000001), bit_cast(0x00000001)}, {bit_cast(0xFF800000), bit_cast(0x56B5E621), bit_cast(0x00000000), bit_cast(0x7F800000)}, {bit_cast(0xF673B164), bit_cast(0x7B13653D), bit_cast(0x0000042E), bit_cast(0x00000000)}}; #define TEST_FEXDO_H(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); #define TEST_FEXDO_W(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); for (uint64_t i = 0; i < arraysize(tc_w); i++) { TEST_FEXDO_H(fexdo_h, &tc_w[i], &exp_res_fexdo_w[i]) } for (uint64_t i = 0; i < arraysize(tc_d); i++) { TEST_FEXDO_W(fexdo_w, &tc_d[i], &exp_res_fexdo_d[i]) } #undef TEST_FEXDO_H #undef TEST_FEXDO_W } TEST(MSA_ftq) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); const float nan_float = std::numeric_limits::quiet_NaN(); const float inf_float = std::numeric_limits::infinity(); const double nan_double = std::numeric_limits::quiet_NaN(); const double inf_double = std::numeric_limits::infinity(); const struct TestCaseMsa3RF_F tc_w[] = { {1.f, -0.999f, 1.5f, -31e-6, 1e-7, -0.598, 0.0023, -0.f, 0, 0, 0, 0}, {100.f, -102.f, -1.1f, 1.3f, 0.f, -1.f, 0.9999f, -0.000322, 0, 0, 0, 0}, {nan_float, inf_float, -inf_float, -nan_float, -1e-40, 3e-44, 8.3e36, -0.00003, 0, 0, 0, 0}}; const struct TestCaseMsa3RF_D tc_d[] = { {1., -0.999, 1.5, -31e-6, 0, 0}, {1e-7, -0.598, 0.0023, -0.f, 0, 0}, {100.f, -102.f, -1.1f, 1.3f, 0, 0}, {0.f, -1.f, 0.9999f, -0.000322, 0, 0}, {nan_double, inf_double, -inf_double, -nan_double, 0, 0}, {-3e306, 2e-307, 9e307, 2e-307, 0, 0}}; const struct ExpRes_16I exp_res_ftq_w[] = { {static_cast(0x0000), static_cast(0xB375), static_cast(0x004B), static_cast(0x0000), static_cast(0x7FFF), static_cast(0x8021), static_cast(0x7FFF), static_cast(0xFFFF)}, {static_cast(0x0000), static_cast(0x8000), static_cast(0x7FFD), static_cast(0xFFF5), static_cast(0x7FFF), static_cast(0x8000), static_cast(0x8000), static_cast(0x7FFF)}, {static_cast(0x0000), static_cast(0x0000), static_cast(0x7FFF), static_cast(0xFFFF), static_cast(0x0000), static_cast(0x7FFF), static_cast(0x8000), static_cast(0x0000)}}; const struct ExpRes_32I exp_res_ftq_d[] = { {bit_cast(0x7FFFFFFF), bit_cast(0xFFFEFBF4), bit_cast(0x7FFFFFFF), bit_cast(0x8020C49C)}, {bit_cast(0x004B5DCC), bit_cast(0x00000000), bit_cast(0x000000D7), bit_cast(0xB374BC6A)}, {bit_cast(0x80000000), bit_cast(0x7FFFFFFF), bit_cast(0x7FFFFFFF), bit_cast(0x80000000)}, {bit_cast(0x7FFCB900), bit_cast(0xFFF572DE), bit_cast(0x00000000), bit_cast(0x80000000)}, {bit_cast(0x80000000), bit_cast(0x00000000), bit_cast(0x00000000), bit_cast(0x7FFFFFFF)}, {bit_cast(0x7FFFFFFF), bit_cast(0x00000000), bit_cast(0x80000000), bit_cast(0x00000000)}}; #define TEST_FTQ_H(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); #define TEST_FTQ_W(instruction, src, exp_res) \ run_msa_3rf(reinterpret_cast(src), \ reinterpret_cast(exp_res), \ [](MacroAssembler& assm) { __ instruction(w2, w0, w1); }); for (uint64_t i = 0; i < arraysize(tc_w); i++) { TEST_FTQ_H(ftq_h, &tc_w[i], &exp_res_ftq_w[i]) } for (uint64_t i = 0; i < arraysize(tc_d); i++) { TEST_FTQ_W(ftq_w, &tc_d[i], &exp_res_ftq_d[i]) } #undef TEST_FTQ_H #undef TEST_FTQ_W } #undef __ } // namespace internal } // namespace v8