// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include "src/api/api-inl.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/compilation-cache.h" #include "src/codegen/macro-assembler-inl.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/execution.h" #include "src/handles/global-handles.h" #include "src/heap/combined-heap.h" #include "src/heap/factory.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-inl.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact.h" #include "src/heap/memory-reducer.h" #include "src/heap/remembered-set.h" #include "src/ic/ic.h" #include "src/numbers/hash-seed-inl.h" #include "src/objects/elements.h" #include "src/objects/field-type.h" #include "src/objects/frame-array-inl.h" #include "src/objects/heap-number-inl.h" #include "src/objects/js-array-inl.h" #include "src/objects/js-collection-inl.h" #include "src/objects/managed.h" #include "src/objects/objects-inl.h" #include "src/objects/slots.h" #include "src/objects/transitions.h" #include "src/regexp/regexp.h" #include "src/snapshot/snapshot.h" #include "src/utils/ostreams.h" #include "test/cctest/cctest.h" #include "test/cctest/heap/heap-tester.h" #include "test/cctest/heap/heap-utils.h" #include "test/cctest/test-feedback-vector.h" #include "test/cctest/test-transitions.h" namespace v8 { namespace internal { namespace heap { // We only start allocation-site tracking with the second instantiation. static const int kPretenureCreationCount = AllocationSite::kPretenureMinimumCreated + 1; static void CheckMap(Map map, int type, int instance_size) { CHECK(map.IsHeapObject()); DCHECK(IsValidHeapObject(CcTest::heap(), map)); CHECK_EQ(ReadOnlyRoots(CcTest::heap()).meta_map(), map.map()); CHECK_EQ(type, map.instance_type()); CHECK_EQ(instance_size, map.instance_size()); } TEST(HeapMaps) { CcTest::InitializeVM(); ReadOnlyRoots roots(CcTest::heap()); CheckMap(roots.meta_map(), MAP_TYPE, Map::kSize); CheckMap(roots.heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize); CheckMap(roots.fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel); CheckMap(roots.hash_table_map(), HASH_TABLE_TYPE, kVariableSizeSentinel); CheckMap(roots.string_map(), STRING_TYPE, kVariableSizeSentinel); } static void VerifyStoredPrototypeMap(Isolate* isolate, int stored_map_context_index, int stored_ctor_context_index) { Handle context = isolate->native_context(); Handle this_map(Map::cast(context->get(stored_map_context_index)), isolate); Handle fun( JSFunction::cast(context->get(stored_ctor_context_index)), isolate); Handle proto(JSObject::cast(fun->initial_map().prototype()), isolate); Handle that_map(proto->map(), isolate); CHECK(proto->HasFastProperties()); CHECK_EQ(*this_map, *that_map); } // Checks that critical maps stored on the context (mostly used for fast-path // checks) are unchanged after initialization. TEST(ContextMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handle_scope(isolate); VerifyStoredPrototypeMap(isolate, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX, Context::STRING_FUNCTION_INDEX); VerifyStoredPrototypeMap(isolate, Context::REGEXP_PROTOTYPE_MAP_INDEX, Context::REGEXP_FUNCTION_INDEX); } TEST(InitialObjects) { LocalContext env; HandleScope scope(CcTest::i_isolate()); Handle context = v8::Utils::OpenHandle(*env); // Initial ArrayIterator prototype. CHECK_EQ( context->initial_array_iterator_prototype(), *v8::Utils::OpenHandle(*CompileRun("[][Symbol.iterator]().__proto__"))); // Initial Array prototype. CHECK_EQ(context->initial_array_prototype(), *v8::Utils::OpenHandle(*CompileRun("Array.prototype"))); // Initial Generator prototype. CHECK_EQ(context->initial_generator_prototype(), *v8::Utils::OpenHandle( *CompileRun("(function*(){}).__proto__.prototype"))); // Initial Iterator prototype. CHECK_EQ(context->initial_iterator_prototype(), *v8::Utils::OpenHandle( *CompileRun("[][Symbol.iterator]().__proto__.__proto__"))); // Initial Object prototype. CHECK_EQ(context->initial_object_prototype(), *v8::Utils::OpenHandle(*CompileRun("Object.prototype"))); } static void CheckOddball(Isolate* isolate, Object obj, const char* string) { CHECK(obj.IsOddball()); Handle handle(obj, isolate); Object print_string = *Object::ToString(isolate, handle).ToHandleChecked(); CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string))); } static void CheckSmi(Isolate* isolate, int value, const char* string) { Handle handle(Smi::FromInt(value), isolate); Object print_string = *Object::ToString(isolate, handle).ToHandleChecked(); CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string))); } static void CheckNumber(Isolate* isolate, double value, const char* string) { Handle number = isolate->factory()->NewNumber(value); CHECK(number->IsNumber()); Handle print_string = Object::ToString(isolate, number).ToHandleChecked(); CHECK(String::cast(*print_string).IsOneByteEqualTo(CStrVector(string))); } void CheckEmbeddedObjectsAreEqual(Handle lhs, Handle rhs) { int mode_mask = RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT); RelocIterator lhs_it(*lhs, mode_mask); RelocIterator rhs_it(*rhs, mode_mask); while (!lhs_it.done() && !rhs_it.done()) { CHECK(lhs_it.rinfo()->target_object() == rhs_it.rinfo()->target_object()); lhs_it.next(); rhs_it.next(); } CHECK(lhs_it.done() == rhs_it.done()); } HEAP_TEST(TestNewSpaceRefsInCopiedCode) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope sc(isolate); Handle value = factory->NewHeapNumber(1.000123); CHECK(Heap::InYoungGeneration(*value)); i::byte buffer[i::Assembler::kMinimalBufferSize]; MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, ExternalAssemblerBuffer(buffer, sizeof(buffer))); // Add a new-space reference to the code. masm.Push(value); CodeDesc desc; masm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); Handle copy; { CodeSpaceMemoryModificationScope modification_scope(isolate->heap()); copy = factory->CopyCode(code); } CheckEmbeddedObjectsAreEqual(code, copy); CcTest::CollectAllAvailableGarbage(); CheckEmbeddedObjectsAreEqual(code, copy); } static void CheckFindCodeObject(Isolate* isolate) { // Test FindCodeObject #define __ assm. Assembler assm(AssemblerOptions{}); __ nop(); // supported on all architectures CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); CHECK(code->IsCode()); HeapObject obj = HeapObject::cast(*code); Address obj_addr = obj.address(); for (int i = 0; i < obj.Size(); i += kTaggedSize) { Object found = isolate->FindCodeObject(obj_addr + i); CHECK_EQ(*code, found); } Handle copy = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); HeapObject obj_copy = HeapObject::cast(*copy); Object not_right = isolate->FindCodeObject(obj_copy.address() + obj_copy.Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(Object(0), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_64_BIT) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticChars("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global(CcTest::i_isolate()->context().global_object(), isolate); CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string)); // Check ToString for oddballs ReadOnlyRoots roots(heap); CheckOddball(isolate, roots.true_value(), "true"); CheckOddball(isolate, roots.false_value(), "false"); CheckOddball(isolate, roots.null_value(), "null"); CheckOddball(isolate, roots.undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42).IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue).IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue).IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. CcTest::CollectGarbage(NEW_SPACE); Handle global(CcTest::i_isolate()->context().global_object(), isolate); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunctionForTest(name); Object::SetProperty(isolate, global, name, function).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); Object::SetProperty(isolate, obj, prop_namex, twenty_four).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(isolate, obj, prop_namex).ToHandleChecked()); } CcTest::CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name)); // Check function is retained. Handle func_value = Object::GetProperty(isolate, global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); Object::SetProperty(isolate, global, obj_name, obj).Check(); Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); } // After gc, it should survive. CcTest::CollectGarbage(NEW_SPACE); CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name)); Handle obj = Object::GetProperty(isolate, global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(strlen(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(strlen(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive CcTest::CollectGarbage(NEW_SPACE); CHECK((*h1).IsString()); CHECK((*h2).IsHeapNumber()); CHECK((*h3).IsString()); CHECK((*h4).IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackInfo& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalUnmodifiedApiHandlesScavenge) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); LocalContext context; Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); // Create an Api object that is unmodified. Local function = FunctionTemplate::New(context->GetIsolate()) ->GetFunction(context.local()) .ToLocalChecked(); Local i = function->NewInstance(context.local()).ToLocalChecked(); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*u); h2 = global_handles->Create(*(reinterpret_cast(*i))); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak( h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); CcTest::CollectGarbage(NEW_SPACE); CHECK((*h1).IsHeapNumber()); CHECK(WeakPointerCleared); GlobalHandles::Destroy(h1.location()); } TEST(WeakGlobalHandlesMark) { FLAG_stress_incremental_marking = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. CcTest::CollectGarbage(OLD_SPACE); CcTest::CollectGarbage(NEW_SPACE); CHECK(!Heap::InYoungGeneration(*h1) && !Heap::InYoungGeneration(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak( h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); // Incremental marking potentially marked handles before they turned weak. CcTest::CollectAllGarbage(); CHECK((*h1).IsString()); CHECK(WeakPointerCleared); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); CHECK(!WeakPointerCleared); CcTest::CollectGarbage(OLD_SPACE); CHECK(WeakPointerCleared); } TEST(BytecodeArray) { if (FLAG_never_compact) return; static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A}; static const int kRawBytesSize = sizeof(kRawBytes); static const int32_t kFrameSize = 32; static const int32_t kParameterCount = 2; ManualGCScope manual_gc_scope; FLAG_manual_evacuation_candidates_selection = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope scope(isolate); heap::SimulateFullSpace(heap->old_space()); Handle constant_pool = factory->NewFixedArray(5, AllocationType::kOld); for (int i = 0; i < 5; i++) { Handle number = factory->NewHeapNumber(i); constant_pool->set(i, *number); } // Allocate and initialize BytecodeArray Handle array = factory->NewBytecodeArray( kRawBytesSize, kRawBytes, kFrameSize, kParameterCount, constant_pool); CHECK(array->IsBytecodeArray()); CHECK_EQ(array->length(), (int)sizeof(kRawBytes)); CHECK_EQ(array->frame_size(), kFrameSize); CHECK_EQ(array->parameter_count(), kParameterCount); CHECK_EQ(array->constant_pool(), *constant_pool); CHECK_LE(array->address(), array->GetFirstBytecodeAddress()); CHECK_GE(array->address() + array->BytecodeArraySize(), array->GetFirstBytecodeAddress() + array->length()); for (int i = 0; i < kRawBytesSize; i++) { CHECK_EQ(Memory(array->GetFirstBytecodeAddress() + i), kRawBytes[i]); CHECK_EQ(array->get(i), kRawBytes[i]); } FixedArray old_constant_pool_address = *constant_pool; // Perform a full garbage collection and force the constant pool to be on an // evacuation candidate. Page* evac_page = Page::FromHeapObject(*constant_pool); heap::ForceEvacuationCandidate(evac_page); CcTest::CollectAllGarbage(); // BytecodeArray should survive. CHECK_EQ(array->length(), kRawBytesSize); CHECK_EQ(array->frame_size(), kFrameSize); for (int i = 0; i < kRawBytesSize; i++) { CHECK_EQ(array->get(i), kRawBytes[i]); CHECK_EQ(Memory(array->GetFirstBytecodeAddress() + i), kRawBytes[i]); } // Constant pool should have been migrated. CHECK_EQ(array->constant_pool(), *constant_pool); CHECK_NE(array->constant_pool(), old_constant_pool_address); } TEST(BytecodeArrayAging) { static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A}; static const int kRawBytesSize = sizeof(kRawBytes); static const int32_t kFrameSize = 32; static const int32_t kParameterCount = 2; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); Handle array = factory->NewBytecodeArray(kRawBytesSize, kRawBytes, kFrameSize, kParameterCount, factory->empty_fixed_array()); CHECK_EQ(BytecodeArray::kFirstBytecodeAge, array->bytecode_age()); array->MakeOlder(); CHECK_EQ(BytecodeArray::kQuadragenarianBytecodeAge, array->bytecode_age()); array->set_bytecode_age(BytecodeArray::kLastBytecodeAge); array->MakeOlder(); CHECK_EQ(BytecodeArray::kLastBytecodeAge, array->bytecode_age()); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", nullptr }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != nullptr; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsOneByteEqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsOneByteEqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunctionForTest(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. Object::SetProperty(isolate, function, prop_name, twenty_four).Check(); CHECK_EQ( Smi::FromInt(24), *Object::GetProperty(isolate, function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string( String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate); Handle object = Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), object_string) .ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); // add first Object::SetProperty(isolate, obj, first, one).Check(); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); // delete first CHECK(Just(true) == JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); // add first and then second Object::SetProperty(isolate, obj, first, one).Check(); Object::SetProperty(isolate, obj, second, two).Check(); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); // delete first and then second CHECK(Just(true) == JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); CHECK(Just(true) == JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second)); // add first and then second Object::SetProperty(isolate, obj, first, one).Check(); Object::SetProperty(isolate, obj, second, two).Check(); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); // delete second and then first CHECK(Just(true) == JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(true) == JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); Object::SetProperty(isolate, obj, s1, one).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); Object::SetProperty(isolate, obj, s2_string, one).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2)); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunctionForTest(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map(), isolate); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), name) .ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetLength(array, 0); CHECK_EQ(Smi::kZero, array->length()); // Must be in fast mode. CHECK(array->HasSmiOrObjectElements()); // array[length] = name. Object::SetElement(isolate, array, 0, name, ShouldThrow::kDontThrow).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. JSArray::SetLength(array, static_cast(Smi::kMaxValue) + 1); uint32_t int_length = 0; CHECK(array->length().ToArrayIndex(&int_length)); CHECK_EQ(static_cast(Smi::kMaxValue) + 1, int_length); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. Object::SetElement(isolate, array, int_length, name, ShouldThrow::kDontThrow) .Check(); uint32_t new_int_length = 0; CHECK(array->length().ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string( String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate); Handle object = Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), object_string) .ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); Object::SetProperty(isolate, obj, first, one).Check(); Object::SetProperty(isolate, obj, second, two).Check(); Object::SetElement(isolate, obj, 0, first, ShouldThrow::kDontThrow).Check(); Object::SetElement(isolate, obj, 1, second, ShouldThrow::kDontThrow).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked(); value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked(); value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. Object::SetProperty(isolate, clone, first, two).Check(); Object::SetProperty(isolate, clone, second, one).Check(); Object::SetElement(isolate, clone, 0, second, ShouldThrow::kDontThrow) .Check(); Object::SetElement(isolate, clone, 1, first, ShouldThrow::kDontThrow).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked(); value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked(); value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = {0xE5, 0xA4, 0xA7}; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_one_byte = NewArray(3 * length + 1); char* one_byte = NewArray(length + 1); non_one_byte[3 * length] = 0; one_byte[length] = 0; for (int i = 0; i < length; i++) { one_byte[i] = 'a'; non_one_byte[3 * i] = chars[0]; non_one_byte[3 * i + 1] = chars[1]; non_one_byte[3 * i + 2] = chars[2]; } Handle non_one_byte_sym = factory->InternalizeUtf8String( Vector(non_one_byte, 3 * length)); CHECK_EQ(length, non_one_byte_sym->length()); Handle one_byte_sym = factory->InternalizeString(OneByteVector(one_byte, length)); CHECK_EQ(length, one_byte_sym->length()); Handle non_one_byte_str = factory->NewStringFromUtf8(Vector(non_one_byte, 3 * length)) .ToHandleChecked(); non_one_byte_str->Hash(); CHECK_EQ(length, non_one_byte_str->length()); Handle one_byte_str = factory->NewStringFromUtf8(Vector(one_byte, length)) .ToHandleChecked(); one_byte_str->Hash(); CHECK_EQ(length, one_byte_str->length()); DeleteArray(non_one_byte); DeleteArray(one_byte); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapObjectIterator iterator(heap); for (HeapObject obj = iterator.Next(); !obj.is_null(); obj = iterator.Next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, HOLEY_ELEMENTS, AllocationType::kOld); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij", AllocationType::kOld); // Allocate a large string (for large object space). int large_size = kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, AllocationType::kOld); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0]).map(), isolate); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } TEST(TestBytecodeFlushing) { #ifndef V8_LITE_MODE FLAG_opt = false; FLAG_always_opt = false; i::FLAG_optimize_for_size = false; #endif // V8_LITE_MODE i::FLAG_flush_bytecode = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); Isolate* i_isolate = CcTest::i_isolate(); Factory* factory = i_isolate->factory(); { v8::HandleScope scope(isolate); v8::Context::New(isolate)->Enter(); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(isolate); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name) .ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared().is_compiled()); // The code will survive at least two GCs. CcTest::CollectAllGarbage(); CcTest::CollectAllGarbage(); CHECK(function->shared().is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::CollectAllGarbage(); } // foo should no longer be in the compilation cache CHECK(!function->shared().is_compiled()); CHECK(!function->is_compiled()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared().is_compiled()); CHECK(function->is_compiled()); } } #ifndef V8_LITE_MODE TEST(TestOptimizeAfterBytecodeFlushingCandidate) { FLAG_opt = true; FLAG_always_opt = false; i::FLAG_optimize_for_size = false; i::FLAG_incremental_marking = true; i::FLAG_flush_bytecode = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate, isolate->global_object(), foo_name) .ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared().is_compiled()); // The code will survive at least two GCs. CcTest::CollectAllGarbage(); CcTest::CollectAllGarbage(); CHECK(function->shared().is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); } CHECK(!function->shared().is_compiled()); CHECK(!function->is_compiled()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { heap::SimulateIncrementalMarking(CcTest::heap()); if (function->shared().GetBytecodeArray().IsOld()) break; CcTest::CollectAllGarbage(); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun( "%PrepareFunctionForOptimization(foo);" "%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC and make sure the candidate wasn't flushed. CcTest::CollectAllGarbage(); CHECK(function->shared().is_compiled()); CHECK(function->is_compiled()); } #endif // V8_LITE_MODE TEST(TestUseOfIncrementalBarrierOnCompileLazy) { if (!FLAG_incremental_marking) return; // Turn off always_opt because it interferes with running the built-in for // the last call to g(). FLAG_always_opt = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function make_closure(x) {" " return function() { return x + 3 };" "}" "var f = make_closure(5);" "%PrepareFunctionForOptimization(f); f();" "var g = make_closure(5);"); // Check f is compiled. Handle f_name = factory->InternalizeUtf8String("f"); Handle f_value = Object::GetProperty(isolate, isolate->global_object(), f_name) .ToHandleChecked(); Handle f_function = Handle::cast(f_value); CHECK(f_function->is_compiled()); // Check g is not compiled. Handle g_name = factory->InternalizeUtf8String("g"); Handle g_value = Object::GetProperty(isolate, isolate->global_object(), g_name) .ToHandleChecked(); Handle g_function = Handle::cast(g_value); CHECK(!g_function->is_compiled()); heap::SimulateIncrementalMarking(heap); CompileRun("%OptimizeFunctionOnNextCall(f); f();"); // g should now have available an optimized function, unmarked by gc. The // CompileLazy built-in will discover it and install it in the closure, and // the incremental write barrier should be used. CompileRun("g();"); CHECK(g_function->is_compiled()); } TEST(CompilationCacheCachingBehavior) { // If we do not have the compilation cache turned off, this test is invalid. if (!FLAG_compilation_cache) { return; } CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); CompilationCache* compilation_cache = isolate->compilation_cache(); LanguageMode language_mode = construct_language_mode(FLAG_use_strict); v8::HandleScope scope(CcTest::isolate()); const char* raw_source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();"; Handle source = factory->InternalizeUtf8String(raw_source); Handle native_context = isolate->native_context(); { v8::HandleScope scope(CcTest::isolate()); CompileRun(raw_source); } // The script should be in the cache now. { v8::HandleScope scope(CcTest::isolate()); MaybeHandle cached_script = compilation_cache->LookupScript(source, Handle(), 0, 0, v8::ScriptOriginOptions(true, false), native_context, language_mode); CHECK(!cached_script.is_null()); } // Check that the code cache entry survives at least one GC. { CcTest::CollectAllGarbage(); v8::HandleScope scope(CcTest::isolate()); MaybeHandle cached_script = compilation_cache->LookupScript(source, Handle(), 0, 0, v8::ScriptOriginOptions(true, false), native_context, language_mode); CHECK(!cached_script.is_null()); // Progress code age until it's old and ready for GC. Handle shared = cached_script.ToHandleChecked(); CHECK(shared->HasBytecodeArray()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { shared->GetBytecodeArray().MakeOlder(); } } CcTest::CollectAllGarbage(); { v8::HandleScope scope(CcTest::isolate()); // Ensure code aging cleared the entry from the cache. MaybeHandle cached_script = compilation_cache->LookupScript(source, Handle(), 0, 0, v8::ScriptOriginOptions(true, false), native_context, language_mode); CHECK(cached_script.is_null()); } } static void OptimizeEmptyFunction(const char* name) { HandleScope scope(CcTest::i_isolate()); EmbeddedVector source; SNPrintF(source, "function %s() { return 0; }" "%%PrepareFunctionForOptimization(%s);" "%s(); %s();" "%%OptimizeFunctionOnNextCall(%s);" "%s();", name, name, name, name, name, name); CompileRun(source.begin()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object object = CcTest::heap()->native_contexts_list(); while (!object.IsUndefined(CcTest::i_isolate())) { count++; object = Context::cast(object).next_context_link(); } return count; } TEST(TestInternalWeakLists) { FLAG_always_opt = false; FLAG_allow_natives_syntax = true; v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; FLAG_retain_maps_for_n_gc = 0; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); v8::Local ctx[kNumTestContexts]; if (!isolate->use_optimizer()) return; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); CcTest::CollectAllGarbage(); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuck in the outer // handle scope. HandleScope scope(isolate); OptimizeEmptyFunction("f1"); OptimizeEmptyFunction("f2"); OptimizeEmptyFunction("f3"); OptimizeEmptyFunction("f4"); OptimizeEmptyFunction("f5"); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::CollectGarbage(NEW_SPACE); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); CcTest::CollectAllGarbage(); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::CollectGarbage(NEW_SPACE); } CcTest::CollectAllGarbage(); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::CollectGarbage(NEW_SPACE); } CcTest::CollectAllGarbage(); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(true); CcTest::CollectAllGarbage(); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Address* unsafe = reinterpret_cast(*ctx[i]); *unsafe = ReadOnlyRoots(CcTest::heap()).undefined_value().ptr(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::CollectAllGarbage(); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } TEST(TestSizeOfRegExpCode) { if (!FLAG_regexp_optimization) return; v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); LocalContext context; // Adjust source below and this check to match // RegExp::kRegExpTooLargeToOptimize. CHECK_EQ(i::RegExp::kRegExpTooLargeToOptimize, 20 * KB); // Compile a regexp that is much larger if we are using regexp optimizations. CompileRun( "var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';" "var half_size_reg_exp;" "while (reg_exp_source.length < 20 * 1024) {" " half_size_reg_exp = reg_exp_source;" " reg_exp_source = reg_exp_source + reg_exp_source;" "}" // Flatten string. "reg_exp_source.match(/f/);"); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::CollectAllAvailableGarbage(); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); CompileRun("'foo'.match(reg_exp_source);"); CcTest::CollectAllAvailableGarbage(); int size_with_regexp = static_cast(CcTest::heap()->SizeOfObjects()); CompileRun("'foo'.match(half_size_reg_exp);"); CcTest::CollectAllAvailableGarbage(); int size_with_optimized_regexp = static_cast(CcTest::heap()->SizeOfObjects()); int size_of_regexp_code = size_with_regexp - initial_size; // On some platforms the debug-code flag causes huge amounts of regexp code // to be emitted, breaking this test. if (!FLAG_debug_code) { CHECK_LE(size_of_regexp_code, 1 * MB); } // Small regexp is half the size, but compiles to more than twice the code // due to the optimization steps. CHECK_GE(size_with_optimized_regexp, size_with_regexp + size_of_regexp_code * 2); } HEAP_TEST(TestSizeOfObjects) { v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = CcTest::heap(); MarkCompactCollector* collector = heap->mark_compact_collector(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::CollectAllAvailableGarbage(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } int initial_size = static_cast(heap->SizeOfObjects()); { HandleScope scope(isolate); // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { isolate->factory()->NewFixedArray(8192, AllocationType::kOld); CHECK_EQ(initial_size + i * filler_size, static_cast(heap->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. CcTest::CollectAllGarbage(); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(heap->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(heap->SizeOfObjects())); } TEST(TestAlignmentCalculations) { // Maximum fill amounts are consistent. int maximum_double_misalignment = kDoubleSize - kTaggedSize; int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned); CHECK_EQ(0, max_word_fill); int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned); CHECK_EQ(maximum_double_misalignment, max_double_fill); int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned); CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill); Address base = kNullAddress; int fill = 0; // Word alignment never requires fill. fill = Heap::GetFillToAlign(base, kWordAligned); CHECK_EQ(0, fill); fill = Heap::GetFillToAlign(base + kTaggedSize, kWordAligned); CHECK_EQ(0, fill); // No fill is required when address is double aligned. fill = Heap::GetFillToAlign(base, kDoubleAligned); CHECK_EQ(0, fill); // Fill is required if address is not double aligned. fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleAligned); CHECK_EQ(maximum_double_misalignment, fill); // kDoubleUnaligned has the opposite fill amounts. fill = Heap::GetFillToAlign(base, kDoubleUnaligned); CHECK_EQ(maximum_double_misalignment, fill); fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleUnaligned); CHECK_EQ(0, fill); } static HeapObject NewSpaceAllocateAligned(int size, AllocationAlignment alignment) { Heap* heap = CcTest::heap(); AllocationResult allocation = heap->new_space()->AllocateRawAligned(size, alignment); HeapObject obj; allocation.To(&obj); heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo); return obj; } // Get new space allocation into the desired alignment. static Address AlignNewSpace(AllocationAlignment alignment, int offset) { Address* top_addr = CcTest::heap()->new_space()->allocation_top_address(); int fill = Heap::GetFillToAlign(*top_addr, alignment); int allocation = fill + offset; if (allocation) { NewSpaceAllocateAligned(allocation, kWordAligned); } return *top_addr; } TEST(TestAlignedAllocation) { // Double misalignment is 4 on 32-bit platforms or when pointer compression // is enabled, 0 on 64-bit ones when pointer compression is disabled. const intptr_t double_misalignment = kDoubleSize - kTaggedSize; Address* top_addr = CcTest::heap()->new_space()->allocation_top_address(); Address start; HeapObject obj; HeapObject filler; if (double_misalignment) { // Allocate a pointer sized object that must be double aligned at an // aligned address. start = AlignNewSpace(kDoubleAligned, 0); obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned); CHECK(IsAligned(obj.address(), kDoubleAlignment)); // There is no filler. CHECK_EQ(kTaggedSize, *top_addr - start); // Allocate a second pointer sized object that must be double aligned at an // unaligned address. start = AlignNewSpace(kDoubleAligned, kTaggedSize); obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned); CHECK(IsAligned(obj.address(), kDoubleAlignment)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize); CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start); // Similarly for kDoubleUnaligned. start = AlignNewSpace(kDoubleUnaligned, 0); obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); CHECK_EQ(kTaggedSize, *top_addr - start); start = AlignNewSpace(kDoubleUnaligned, kTaggedSize); obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize); CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start); } } static HeapObject OldSpaceAllocateAligned(int size, AllocationAlignment alignment) { Heap* heap = CcTest::heap(); AllocationResult allocation = heap->old_space()->AllocateRawAligned(size, alignment); HeapObject obj; allocation.To(&obj); heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo); return obj; } // Get old space allocation into the desired alignment. static Address AlignOldSpace(AllocationAlignment alignment, int offset) { Address* top_addr = CcTest::heap()->old_space()->allocation_top_address(); int fill = Heap::GetFillToAlign(*top_addr, alignment); int allocation = fill + offset; if (allocation) { OldSpaceAllocateAligned(allocation, kWordAligned); } Address top = *top_addr; // Now force the remaining allocation onto the free list. CcTest::heap()->old_space()->FreeLinearAllocationArea(); return top; } // Test the case where allocation must be done from the free list, so filler // may precede or follow the object. TEST(TestAlignedOverAllocation) { Heap* heap = CcTest::heap(); // Test checks for fillers before and behind objects and requires a fresh // page and empty free list. heap::AbandonCurrentlyFreeMemory(heap->old_space()); // Allocate a dummy object to properly set up the linear allocation info. AllocationResult dummy = heap->old_space()->AllocateRawUnaligned(kTaggedSize); CHECK(!dummy.IsRetry()); heap->CreateFillerObjectAt(dummy.ToObjectChecked().address(), kTaggedSize, ClearRecordedSlots::kNo); // Double misalignment is 4 on 32-bit platforms or when pointer compression // is enabled, 0 on 64-bit ones when pointer compression is disabled. const intptr_t double_misalignment = kDoubleSize - kTaggedSize; Address start; HeapObject obj; HeapObject filler; if (double_misalignment) { start = AlignOldSpace(kDoubleAligned, 0); obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned); // The object is aligned. CHECK(IsAligned(obj.address(), kDoubleAlignment)); // Try the opposite alignment case. start = AlignOldSpace(kDoubleAligned, kTaggedSize); obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned); CHECK(IsAligned(obj.address(), kDoubleAlignment)); filler = HeapObject::FromAddress(start); CHECK(obj != filler); CHECK(filler.IsFiller()); CHECK_EQ(kTaggedSize, filler.Size()); CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize); // Similarly for kDoubleUnaligned. start = AlignOldSpace(kDoubleUnaligned, 0); obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); // The object is aligned. CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); // Try the opposite alignment case. start = AlignOldSpace(kDoubleUnaligned, kTaggedSize); obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize); } } TEST(HeapNumberAlignment) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); const auto required_alignment = HeapObject::RequiredAlignment(*factory->heap_number_map()); const int maximum_misalignment = Heap::GetMaximumFillToAlign(required_alignment); for (int offset = 0; offset <= maximum_misalignment; offset += kTaggedSize) { AlignNewSpace(required_alignment, offset); Handle number_new = factory->NewNumber(1.000123); CHECK(number_new->IsHeapNumber()); CHECK(Heap::InYoungGeneration(*number_new)); CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_new).address(), required_alignment)); AlignOldSpace(required_alignment, offset); Handle number_old = factory->NewNumber(1.000321); CHECK(number_old->IsHeapNumber()); CHECK(heap->InOldSpace(*number_old)); CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_old).address(), required_alignment)); } } TEST(TestSizeOfObjectsVsHeapObjectIteratorPrecision) { CcTest::InitializeVM(); HeapObjectIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject obj = iterator.Next(); !obj.is_null(); obj = iterator.Next()) { if (!obj.IsFreeSpace()) { size_of_objects_2 += obj.Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8PRIdPTR ", " "Iterator: %" V8PRIdPTR ", " "delta: %" V8PRIdPTR "\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8PRIdPTR ", " "Iterator: %" V8PRIdPTR ", " "delta: %" V8PRIdPTR "\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } TEST(GrowAndShrinkNewSpace) { // Avoid shrinking new space in GC epilogue. This can happen if allocation // throughput samples have been taken while executing the benchmark. FLAG_predictable = true; CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { return; } // Make sure we're in a consistent state to start out. CcTest::CollectAllGarbage(); CcTest::CollectAllGarbage(); new_space->Shrink(); // Explicitly growing should double the space capacity. size_t old_capacity, new_capacity; old_capacity = new_space->TotalCapacity(); new_space->Grow(); new_capacity = new_space->TotalCapacity(); CHECK_EQ(2 * old_capacity, new_capacity); old_capacity = new_space->TotalCapacity(); { v8::HandleScope temporary_scope(CcTest::isolate()); heap::SimulateFullSpace(new_space); } new_capacity = new_space->TotalCapacity(); CHECK_EQ(old_capacity, new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK_EQ(old_capacity, new_capacity); // Let the scavenger empty the new space. CcTest::CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK_EQ(old_capacity, 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK_EQ(old_capacity, new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); size_t old_capacity, new_capacity; old_capacity = new_space->TotalCapacity(); new_space->Grow(); new_capacity = new_space->TotalCapacity(); CHECK_EQ(2 * old_capacity, new_capacity); { v8::HandleScope temporary_scope(CcTest::isolate()); heap::SimulateFullSpace(new_space); } CcTest::CollectAllAvailableGarbage(); new_capacity = new_space->TotalCapacity(); CHECK_EQ(old_capacity, new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapObjectIterator iterator(CcTest::heap()); for (HeapObject obj = iterator.Next(); !obj.is_null(); obj = iterator.Next()) { if (obj.IsJSGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f() { return o.x; }" "%PrepareFunctionForOptimization(f);" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f(x) { return x(); }" "%PrepareFunctionForOptimization(f);" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f() { return o[0]; }" "%PrepareFunctionForOptimization(f);" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "%PrepareFunctionForOptimization(f);" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { if (!FLAG_incremental_marking) return; ManualGCScope manual_gc_scope; FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer()) return; if (FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "%PrepareFunctionForOptimization(f);" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Stop(); CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); i::Handle f = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CHECK(f->IsOptimized()); IncrementalMarking::MarkingState* marking_state = marking->marking_state(); const double kStepSizeInMs = 100; while (!marking_state->IsBlack(f->code()) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->V8Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD, StepOrigin::kV8); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Local global = CcTest::global(); v8::Local g = v8::Local::Cast( global->Get(ctx, v8_str("g")).ToLocalChecked()); g->Call(ctx, global, 0, nullptr).ToLocalChecked(); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::CollectGarbage(OLD_SPACE); } HEAP_TEST(GCFlags) { if (!FLAG_incremental_marking) return; CcTest::InitializeVM(); Heap* heap = CcTest::heap(); heap->set_current_gc_flags(Heap::kNoGCFlags); CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); // Check whether we appropriately reset flags after GC. CcTest::heap()->CollectAllGarbage(Heap::kReduceMemoryFootprintMask, GarbageCollectionReason::kTesting); CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); MarkCompactCollector* collector = heap->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } IncrementalMarking* marking = heap->incremental_marking(); marking->Stop(); heap->StartIncrementalMarking(Heap::kReduceMemoryFootprintMask, i::GarbageCollectionReason::kTesting); CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask); CcTest::CollectGarbage(NEW_SPACE); // NewSpace scavenges should not overwrite the flags. CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask); CcTest::CollectAllGarbage(); CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); } HEAP_TEST(Regress845060) { // Regression test for crbug.com/845060, where a raw pointer to a string's // data was kept across an allocation. If the allocation causes GC and // moves the string, such raw pointers become invalid. FLAG_allow_natives_syntax = true; FLAG_stress_incremental_marking = false; FLAG_stress_compaction = false; CcTest::InitializeVM(); LocalContext context; v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); // Preparation: create a string in new space. Local str = CompileRun("var str = (new Array(10000)).join('x'); str"); CHECK(Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str))); // Idle incremental marking sets the "kReduceMemoryFootprint" flag, which // causes from_space to be unmapped after scavenging. heap->StartIdleIncrementalMarking(GarbageCollectionReason::kTesting); CHECK(heap->ShouldReduceMemory()); // Run the test (which allocates results) until the original string was // promoted to old space. Unmapping of from_space causes accesses to any // stale raw pointers to crash. CompileRun("while (%InYoungGeneration(str)) { str.split(''); }"); CHECK(!Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str))); } TEST(IdleNotificationFinishMarking) { if (!FLAG_incremental_marking) return; ManualGCScope manual_gc_scope; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); const int initial_gc_count = CcTest::heap()->gc_count(); heap::SimulateFullSpace(CcTest::heap()->old_space()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Stop(); CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count); const double kStepSizeInMs = 100; do { marking->V8Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD, StepOrigin::kV8); } while ( !CcTest::heap()->mark_compact_collector()->marking_worklist()->IsEmpty()); marking->SetWeakClosureWasOverApproximatedForTesting(true); // The next idle notification has to finish incremental marking. const double kLongIdleTime = 1000.0; CcTest::isolate()->IdleNotificationDeadline( (v8::base::TimeTicks::HighResolutionNow().ToInternalValue() / static_cast(v8::base::Time::kMicrosecondsPerSecond)) + kLongIdleTime); CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count + 1); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); heap::SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "%PrepareFunctionForOptimization(f);" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res.As() ->GetRealNamedProperty(ctx, v8_str("x")) .ToLocalChecked() ->Int32Value(ctx) .FromJust()); i::Handle o = v8::Utils::OpenHandle(*v8::Local::Cast(res)); CHECK(Heap::InYoungGeneration(*o)); } TEST(OptimizedPretenuringAllocationFolding) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); v8::Local int_array = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); i::Handle int_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array))); v8::Local double_array = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); i::Handle double_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array))); i::Handle o = v8::Utils::OpenHandle(*v8::Local::Cast(res)); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) { return; } v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(o->elements())); CHECK(CcTest::heap()->InOldSpace(*o)); } TEST(OptimizedPretenuringNestedInObjectProperties) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) { return; } v8::HandleScope scope(CcTest::isolate()); // Grow new space until maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } // Keep the nested literal alive while its root is freed i::ScopedVector source(1024); i::SNPrintF(source, "let number_elements = %d;" "let elements = new Array(number_elements);" "function f() {" " for (let i = 0; i < number_elements; i++) {" " let l = {a: {c: 2.2, d: {e: 3.3}}, b: 1.1}; " " elements[i] = l.a;" " }" " return elements[number_elements-1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); // Nested literal sites are only pretenured if the top level // literal is pretenured CHECK(Heap::InYoungGeneration(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1))); if (!o->IsUnboxedDoubleField(idx2)) { CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2))); } else { CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2)); } JSObject inner_object = JSObject::cast(o->RawFastPropertyAt(idx1)); CHECK(CcTest::heap()->InOldSpace(inner_object)); if (!inner_object.IsUnboxedDoubleField(idx1)) { CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx1))); } else { CHECK_EQ(2.2, inner_object.RawFastDoublePropertyAt(idx1)); } CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx2))); } TEST(OptimizedPretenuringDoubleArrayProperties) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space until maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: 1.1, b: 2.2};" " }" " return elements[i - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK_EQ(o->property_array(), ReadOnlyRoots(CcTest::heap()).empty_property_array()); } TEST(OptimizedPretenuringdoubleArrayLiterals) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [1.1, 2.2, 3.3];" " }" " return elements[number_elements - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(o->elements())); CHECK(CcTest::heap()->InOldSpace(*o)); } TEST(OptimizedPretenuringNestedMixedArrayLiterals) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];" " }" " return elements[number_elements - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); v8::Local int_array = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); i::Handle int_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array))); v8::Local double_array = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); i::Handle double_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array))); Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringNestedObjectLiterals) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}, {}, {}],[{}, {}, {}]];" " }" " return elements[number_elements - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); v8::Local int_array_1 = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); Handle int_array_handle_1 = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array_1))); v8::Local int_array_2 = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); Handle int_array_handle_2 = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array_2))); Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*int_array_handle_1)); CHECK(CcTest::heap()->InOldSpace(int_array_handle_1->elements())); CHECK(CcTest::heap()->InOldSpace(*int_array_handle_2)); CHECK(CcTest::heap()->InOldSpace(int_array_handle_2->elements())); } TEST(OptimizedPretenuringNestedDoubleLiterals) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF(source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];" " }" " return elements[number_elements - 1];" "};" "%%PrepareFunctionForOptimization(f);" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", kPretenureCreationCount); v8::Local res = CompileRun(source.begin()); v8::Local double_array_1 = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); i::Handle double_array_handle_1 = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array_1))); v8::Local double_array_2 = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); i::Handle double_array_handle_2 = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array_2))); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*double_array_handle_1)); CHECK(CcTest::heap()->InOldSpace(double_array_handle_1->elements())); CHECK(CcTest::heap()->InOldSpace(*double_array_handle_2)); CHECK(CcTest::heap()->InOldSpace(double_array_handle_2->elements())); } // Test regular array literals allocation. TEST(OptimizedAllocationArrayLiterals) { FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); v8::Local res = CompileRun( "function f() {" " var numbers = new Array(1, 2, 3);" " numbers[0] = 3.14;" " return numbers;" "};" "%PrepareFunctionForOptimization(f);" "f(); f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(static_cast(3.14), v8::Object::Cast(*res) ->Get(ctx, v8_str("0")) .ToLocalChecked() ->Int32Value(ctx) .FromJust()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(Heap::InYoungGeneration(o->elements())); } static int CountMapTransitions(i::Isolate* isolate, Map map) { DisallowHeapAllocation no_gc; return TransitionsAccessor(isolate, map, &no_gc).NumberOfTransitions(); } // Test that map transitions are cleared and maps are collected with // incremental marking as well. TEST(Regress1465) { if (!FLAG_incremental_marking) return; FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; FLAG_allow_natives_syntax = true; FLAG_trace_incremental_marking = true; FLAG_retain_maps_for_n_gc = 0; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); i::Isolate* i_isolate = CcTest::i_isolate(); v8::HandleScope scope(isolate); v8::Local ctx = isolate->GetCurrentContext(); static const int transitions_count = 256; CompileRun("function F() {}"); { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i); CompileRun(buffer.begin()); } CompileRun("var root = new F;"); } i::Handle root = v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("root")).ToLocalChecked())); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(i_isolate, root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(transitions_count, transitions_before); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(i_isolate, root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(1, transitions_after); } static i::Handle GetByName(const char* name) { return i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(CcTest::isolate()->GetCurrentContext(), v8_str(name)) .ToLocalChecked()))); } #ifdef DEBUG static void AddTransitions(int transitions_count) { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i); CompileRun(buffer.begin()); } } static void AddPropertyTo( int gc_count, Handle object, const char* property_name) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Handle prop_name = factory->InternalizeUtf8String(property_name); Handle twenty_three(Smi::FromInt(23), isolate); FLAG_gc_interval = gc_count; FLAG_gc_global = true; FLAG_retain_maps_for_n_gc = 0; CcTest::heap()->set_allocation_timeout(gc_count); Object::SetProperty(isolate, object, prop_name, twenty_three).Check(); } TEST(TransitionArrayShrinksDuringAllocToZero) { FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); i::Isolate* i_isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() { }"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(i_isolate, root->map()); CHECK_EQ(transitions_count, transitions_before); // Get rid of o CompileRun("o = new F;" "root = new F"); root = GetByName("root"); AddPropertyTo(2, root, "funny"); CcTest::CollectGarbage(NEW_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer())); CHECK_EQ(1, transitions_after); } TEST(TransitionArrayShrinksDuringAllocToOne) { FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); i::Isolate* i_isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(i_isolate, root->map()); CHECK_EQ(transitions_count, transitions_before); root = GetByName("root"); AddPropertyTo(2, root, "funny"); CcTest::CollectGarbage(NEW_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer())); CHECK_EQ(2, transitions_after); } TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) { FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); i::Isolate* i_isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(i_isolate, root->map()); CHECK_EQ(transitions_count, transitions_before); root = GetByName("root"); AddPropertyTo(0, root, "prop9"); CcTest::CollectGarbage(OLD_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer())); CHECK_EQ(1, transitions_after); } #endif // DEBUG TEST(ReleaseOverReservedPages) { if (FLAG_never_compact) return; FLAG_trace_gc = true; // The optimizer can allocate stuff, messing up the test. #ifndef V8_LITE_MODE FLAG_opt = false; FLAG_always_opt = false; #endif // V8_LITE_MODE // - Parallel compaction increases fragmentation, depending on how existing // memory is distributed. Since this is non-deterministic because of // concurrent sweeping, we disable it for this test. // - Concurrent sweeping adds non determinism, depending on when memory is // available for further reuse. // - Fast evacuation of pages may result in a different page count in old // space. ManualGCScope manual_gc_scope; FLAG_page_promotion = false; FLAG_parallel_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); // If there's snapshot available, we don't know whether 20 small arrays will // fit on the initial pages. if (!isolate->snapshot_available()) return; Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); // Ensure that the young generation is empty. CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); static const int number_of_test_pages = 20; // Prepare many pages with low live-bytes count. PagedSpace* old_space = heap->old_space(); const int initial_page_count = old_space->CountTotalPages(); const int overall_page_count = number_of_test_pages + initial_page_count; for (int i = 0; i < number_of_test_pages; i++) { AlwaysAllocateScope always_allocate(isolate); heap::SimulateFullSpace(old_space); factory->NewFixedArray(1, AllocationType::kOld); } CHECK_EQ(overall_page_count, old_space->CountTotalPages()); // Triggering one GC will cause a lot of garbage to be discovered but // even spread across all allocated pages. CcTest::CollectAllGarbage(); CHECK_GE(overall_page_count, old_space->CountTotalPages()); // Triggering subsequent GCs should cause at least half of the pages // to be released to the OS after at most two cycles. CcTest::CollectAllGarbage(); CHECK_GE(overall_page_count, old_space->CountTotalPages()); CcTest::CollectAllGarbage(); CHECK_GE(overall_page_count, old_space->CountTotalPages() * 2); // Triggering a last-resort GC should cause all pages to be released to the // OS so that other processes can seize the memory. If we get a failure here // where there are 2 pages left instead of 1, then we should increase the // size of the first page a little in SizeOfFirstPage in spaces.cc. The // first page should be small in order to reduce memory used when the VM // boots, but if the 20 small arrays don't fit on the first page then that's // an indication that it is too small. CcTest::CollectAllAvailableGarbage(); CHECK_GE(initial_page_count, old_space->CountTotalPages()); } static int forced_gc_counter = 0; void MockUseCounterCallback(v8::Isolate* isolate, v8::Isolate::UseCounterFeature feature) { isolate->GetCurrentContext(); if (feature == v8::Isolate::kForcedGC) { forced_gc_counter++; } } TEST(CountForcedGC) { FLAG_expose_gc = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); isolate->SetUseCounterCallback(MockUseCounterCallback); forced_gc_counter = 0; const char* source = "gc();"; CompileRun(source); CHECK_GT(forced_gc_counter, 0); } #ifdef OBJECT_PRINT TEST(PrintSharedFunctionInfo) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); const char* source = "f = function() { return 987654321; }\n" "g = function() { return 123456789; }\n"; CompileRun(source); i::Handle g = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("g")).ToLocalChecked()))); StdoutStream os; g->shared().Print(os); os << std::endl; } #endif // OBJECT_PRINT TEST(IncrementalMarkingPreservesMonomorphicCallIC) { if (!FLAG_use_ic) return; if (!FLAG_incremental_marking) return; if (FLAG_always_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local fun1, fun2; v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { CompileRun("function fun() {};"); fun1 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked(); } { CompileRun("function fun() {};"); fun2 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked(); } // Prepare function f that contains type feedback for the two closures. CHECK(CcTest::global()->Set(ctx, v8_str("fun1"), fun1).FromJust()); CHECK(CcTest::global()->Set(ctx, v8_str("fun2"), fun2).FromJust()); CompileRun( "function f(a, b) { a(); b(); } %EnsureFeedbackVectorForFunction(f); " "f(fun1, fun2);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); Handle feedback_vector(f->feedback_vector(), f->GetIsolate()); FeedbackVectorHelper feedback_helper(feedback_vector); int expected_slots = 2; CHECK_EQ(expected_slots, feedback_helper.slot_count()); int slot1 = 0; int slot2 = 1; CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeak()); CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeak()); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeak()); CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeak()); } static void CheckVectorIC(Handle f, int slot_index, InlineCacheState desired_state) { Handle vector = Handle(f->feedback_vector(), f->GetIsolate()); FeedbackVectorHelper helper(vector); FeedbackSlot slot = helper.slot(slot_index); FeedbackNexus nexus(vector, slot); CHECK(nexus.ic_state() == desired_state); } TEST(IncrementalMarkingPreservesMonomorphicConstructor) { if (!FLAG_incremental_marking) return; if (FLAG_always_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Prepare function f that contains a monomorphic IC for object // originating from the same native context. CompileRun( "function fun() { this.x = 1; };" "function f(o) { return new o(); }" "%EnsureFeedbackVectorForFunction(f);" "f(fun); f(fun);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); Handle vector(f->feedback_vector(), f->GetIsolate()); CHECK(vector->Get(FeedbackSlot(0))->IsWeakOrCleared()); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); CHECK(vector->Get(FeedbackSlot(0))->IsWeakOrCleared()); } TEST(IncrementalMarkingPreservesMonomorphicIC) { if (!FLAG_use_ic) return; if (!FLAG_incremental_marking) return; if (FLAG_always_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Prepare function f that contains a monomorphic IC for object // originating from the same native context. CompileRun( "function fun() { this.x = 1; }; var obj = new fun();" "%EnsureFeedbackVectorForFunction(f);" "function f(o) { return o.x; } f(obj); f(obj);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CheckVectorIC(f, 0, MONOMORPHIC); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); CheckVectorIC(f, 0, MONOMORPHIC); } TEST(IncrementalMarkingPreservesPolymorphicIC) { if (!FLAG_use_ic) return; if (!FLAG_incremental_marking) return; if (FLAG_always_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local obj1, obj2; v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } { LocalContext env; CompileRun("function fun() { this.x = 2; }; var obj = new fun();"); obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } // Prepare function f that contains a polymorphic IC for objects // originating from two different native contexts. CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust()); CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust()); CompileRun( "function f(o) { return o.x; }; " "%EnsureFeedbackVectorForFunction(f);" "f(obj1); f(obj1); f(obj2);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CheckVectorIC(f, 0, POLYMORPHIC); // Fire context dispose notification. heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); CheckVectorIC(f, 0, POLYMORPHIC); } TEST(ContextDisposeDoesntClearPolymorphicIC) { if (!FLAG_use_ic) return; if (!FLAG_incremental_marking) return; if (FLAG_always_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local obj1, obj2; v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } { LocalContext env; CompileRun("function fun() { this.x = 2; }; var obj = new fun();"); obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } // Prepare function f that contains a polymorphic IC for objects // originating from two different native contexts. CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust()); CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust()); CompileRun( "function f(o) { return o.x; }; " "%EnsureFeedbackVectorForFunction(f);" "f(obj1); f(obj1); f(obj2);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CheckVectorIC(f, 0, POLYMORPHIC); // Fire context dispose notification. CcTest::isolate()->ContextDisposedNotification(); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::CollectAllGarbage(); CheckVectorIC(f, 0, POLYMORPHIC); } class SourceResource : public v8::String::ExternalOneByteStringResource { public: explicit SourceResource(const char* data) : data_(data), length_(strlen(data)) { } void Dispose() override { i::DeleteArray(data_); data_ = nullptr; } const char* data() const override { return data_; } size_t length() const override { return length_; } bool IsDisposed() { return data_ == nullptr; } private: const char* data_; size_t length_; }; void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source, const char* accessor) { // Test that the data retained by the Error.stack accessor is released // after the first time the accessor is fired. We use external string // to check whether the data is being released since the external string // resource's callback is fired when the external string is GC'ed. i::Isolate* i_isolate = reinterpret_cast(isolate); v8::HandleScope scope(isolate); SourceResource* resource = new SourceResource(i::StrDup(source)); { v8::HandleScope scope(isolate); v8::Local ctx = isolate->GetCurrentContext(); v8::Local source_string = v8::String::NewExternalOneByte(isolate, resource).ToLocalChecked(); i_isolate->heap()->CollectAllAvailableGarbage( i::GarbageCollectionReason::kTesting); v8::Script::Compile(ctx, source_string) .ToLocalChecked() ->Run(ctx) .ToLocalChecked(); CHECK(!resource->IsDisposed()); } // i_isolate->heap()->CollectAllAvailableGarbage(); CHECK(!resource->IsDisposed()); CompileRun(accessor); i_isolate->heap()->CollectAllAvailableGarbage( i::GarbageCollectionReason::kTesting); // External source has been released. CHECK(resource->IsDisposed()); delete resource; } UNINITIALIZED_TEST(ReleaseStackTraceData) { if (FLAG_always_opt) { // TODO(ulan): Remove this once the memory leak via code_next_link is fixed. // See: https://codereview.chromium.org/181833004/ return; } #ifndef V8_LITE_MODE // ICs retain objects. FLAG_use_ic = false; #endif // V8_LITE_MODE FLAG_concurrent_recompilation = false; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); static const char* source1 = "var error = null; " /* Normal Error */ "try { " " throw new Error(); " "} catch (e) { " " error = e; " "} "; static const char* source2 = "var error = null; " /* Stack overflow */ "try { " " (function f() { f(); })(); " "} catch (e) { " " error = e; " "} "; static const char* source3 = "var error = null; " /* Normal Error */ "try { " /* as prototype */ " throw new Error(); " "} catch (e) { " " error = {}; " " error.__proto__ = e; " "} "; static const char* source4 = "var error = null; " /* Stack overflow */ "try { " /* as prototype */ " (function f() { f(); })(); " "} catch (e) { " " error = {}; " " error.__proto__ = e; " "} "; static const char* getter = "error.stack"; static const char* setter = "error.stack = 0"; ReleaseStackTraceDataTest(isolate, source1, setter); ReleaseStackTraceDataTest(isolate, source2, setter); // We do not test source3 and source4 with setter, since the setter is // supposed to (untypically) write to the receiver, not the holder. This is // to emulate the behavior of a data property. ReleaseStackTraceDataTest(isolate, source1, getter); ReleaseStackTraceDataTest(isolate, source2, getter); ReleaseStackTraceDataTest(isolate, source3, getter); ReleaseStackTraceDataTest(isolate, source4, getter); } isolate->Dispose(); } // TODO(mmarchini) also write tests for async/await and Promise.all void DetailedErrorStackTraceTest(const char* src, std::function)> test) { FLAG_detailed_error_stack_trace = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::TryCatch try_catch(CcTest::isolate()); CompileRun(src); CHECK(try_catch.HasCaught()); Handle exception = v8::Utils::OpenHandle(*try_catch.Exception()); Isolate* isolate = CcTest::i_isolate(); Handle key = isolate->factory()->stack_trace_symbol(); Handle stack_trace(Handle::cast( Object::GetProperty(isolate, exception, key).ToHandleChecked())); test(GetFrameArrayFromStackTrace(isolate, stack_trace)); } // * Test interpreted function error TEST(DetailedErrorStackTrace) { static const char* source = "function func1(arg1) { " " let err = new Error(); " " throw err; " "} " "function func2(arg1, arg2) { " " func1(42); " "} " "class Foo {}; " "function main(arg1, arg2) { " " func2(arg1, false); " "} " "var foo = new Foo(); " "main(foo); "; DetailedErrorStackTraceTest(source, [](Handle stack_trace) { FixedArray foo_parameters = stack_trace->Parameters(0); CHECK_EQ(foo_parameters.length(), 1); CHECK(foo_parameters.get(0).IsSmi()); CHECK_EQ(Smi::ToInt(foo_parameters.get(0)), 42); FixedArray bar_parameters = stack_trace->Parameters(1); CHECK_EQ(bar_parameters.length(), 2); CHECK(bar_parameters.get(0).IsJSObject()); CHECK(bar_parameters.get(1).IsBoolean()); Handle foo = Handle::cast(GetByName("foo")); CHECK_EQ(bar_parameters.get(0), *foo); CHECK(!bar_parameters.get(1).BooleanValue(CcTest::i_isolate())); FixedArray main_parameters = stack_trace->Parameters(2); CHECK_EQ(main_parameters.length(), 2); CHECK(main_parameters.get(0).IsJSObject()); CHECK(main_parameters.get(1).IsUndefined()); CHECK_EQ(main_parameters.get(0), *foo); }); } // * Test optimized function with inline frame error TEST(DetailedErrorStackTraceInline) { FLAG_allow_natives_syntax = true; static const char* source = "function add(x) { " " if (x == 42) " " throw new Error(); " " return x + x; " "} " "add(0); " "add(1); " "function foo(x) { " " return add(x + 1) " "} " "%PrepareFunctionForOptimization(foo); " "foo(40); " "%OptimizeFunctionOnNextCall(foo); " "foo(41); "; DetailedErrorStackTraceTest(source, [](Handle stack_trace) { FixedArray parameters_add = stack_trace->Parameters(0); CHECK_EQ(parameters_add.length(), 1); CHECK(parameters_add.get(0).IsSmi()); CHECK_EQ(Smi::ToInt(parameters_add.get(0)), 42); FixedArray parameters_foo = stack_trace->Parameters(1); CHECK_EQ(parameters_foo.length(), 1); CHECK(parameters_foo.get(0).IsSmi()); CHECK_EQ(Smi::ToInt(parameters_foo.get(0)), 41); }); } // * Test builtin exit error TEST(DetailedErrorStackTraceBuiltinExit) { static const char* source = "function test(arg1) { " " (new Number()).toFixed(arg1); " "} " "test(9999); "; DetailedErrorStackTraceTest(source, [](Handle stack_trace) { FixedArray parameters = stack_trace->Parameters(0); CHECK_EQ(parameters.length(), 2); CHECK(parameters.get(0).IsSmi()); CHECK_EQ(Smi::ToInt(parameters.get(0)), 9999); }); } TEST(Regress169928) { FLAG_allow_natives_syntax = true; #ifndef V8_LITE_MODE FLAG_opt = false; #endif // V8_LITE_MODE CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); LocalContext env; Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction || FLAG_stress_incremental_marking) return; // Prepare the environment CompileRun("function fastliteralcase(literal, value) {" " literal[0] = value;" " return literal;" "}" "function get_standard_literal() {" " var literal = [1, 2, 3];" " return literal;" "}" "obj = fastliteralcase(get_standard_literal(), 1);" "obj = fastliteralcase(get_standard_literal(), 1.5);" "obj = fastliteralcase(get_standard_literal(), 2);"); // prepare the heap v8::Local mote_code_string = v8_str("fastliteralcase(mote, 2.5);"); v8::Local array_name = v8_str("mote"); CHECK(CcTest::global() ->Set(env.local(), array_name, v8::Int32::New(CcTest::isolate(), 0)) .FromJust()); // First make sure we flip spaces CcTest::CollectGarbage(NEW_SPACE); // Allocate the object. Handle array_data = factory->NewFixedArray(2, AllocationType::kYoung); array_data->set(0, Smi::FromInt(1)); array_data->set(1, Smi::FromInt(2)); heap::AllocateAllButNBytes( CcTest::heap()->new_space(), JSArray::kSize + AllocationMemento::kSize + kTaggedSize); Handle array = factory->NewJSArrayWithElements(array_data, PACKED_SMI_ELEMENTS); CHECK_EQ(Smi::FromInt(2), array->length()); CHECK(array->HasSmiOrObjectElements()); // We need filler the size of AllocationMemento object, plus an extra // fill pointer value. HeapObject obj; AllocationResult allocation = CcTest::heap()->new_space()->AllocateRawUnaligned( AllocationMemento::kSize + kTaggedSize); CHECK(allocation.To(&obj)); Address addr_obj = obj.address(); CcTest::heap()->CreateFillerObjectAt(addr_obj, AllocationMemento::kSize + kTaggedSize, ClearRecordedSlots::kNo); // Give the array a name, making sure not to allocate strings. v8::Local array_obj = v8::Utils::ToLocal(array); CHECK(CcTest::global()->Set(env.local(), array_name, array_obj).FromJust()); // This should crash with a protection violation if we are running a build // with the bug. AlwaysAllocateScope aa_scope(isolate); v8::Script::Compile(env.local(), mote_code_string) .ToLocalChecked() ->Run(env.local()) .ToLocalChecked(); } TEST(LargeObjectSlotRecording) { if (!FLAG_incremental_marking) return; if (FLAG_never_compact) return; ManualGCScope manual_gc_scope; FLAG_manual_evacuation_candidates_selection = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Create an object on an evacuation candidate. heap::SimulateFullSpace(heap->old_space()); Handle lit = isolate->factory()->NewFixedArray(4, AllocationType::kOld); Page* evac_page = Page::FromHeapObject(*lit); heap::ForceEvacuationCandidate(evac_page); FixedArray old_location = *lit; // Allocate a large object. int size = Max(1000000, kMaxRegularHeapObjectSize + KB); CHECK_LT(kMaxRegularHeapObjectSize, size); Handle lo = isolate->factory()->NewFixedArray(size, AllocationType::kOld); CHECK(heap->lo_space()->Contains(*lo)); // Start incremental marking to active write barrier. heap::SimulateIncrementalMarking(heap, false); // Create references from the large object to the object on the evacuation // candidate. const int kStep = size / 10; for (int i = 0; i < size; i += kStep) { lo->set(i, *lit); CHECK(lo->get(i) == old_location); } heap::SimulateIncrementalMarking(heap, true); // Move the evaucation candidate object. CcTest::CollectAllGarbage(); // Verify that the pointers in the large object got updated. for (int i = 0; i < size; i += kStep) { CHECK_EQ(lo->get(i), *lit); CHECK(lo->get(i) != old_location); } } class DummyVisitor : public RootVisitor { public: void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override {} }; TEST(DeferredHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::HandleScope scope(reinterpret_cast(isolate)); HandleScopeData* data = isolate->handle_scope_data(); Handle init(ReadOnlyRoots(heap).empty_string(), isolate); while (data->next < data->limit) { Handle obj(ReadOnlyRoots(heap).empty_string(), isolate); } // An entire block of handles has been filled. // Next handle would require a new block. CHECK(data->next == data->limit); DeferredHandleScope deferred(isolate); DummyVisitor visitor; isolate->handle_scope_implementer()->Iterate(&visitor); deferred.Detach(); } static void TestFillersFromDeferredHandles(bool promote) { // We assume that the fillers can only arise when left-trimming arrays. Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::HandleScope scope(reinterpret_cast(isolate)); const size_t n = 10; Handle array = isolate->factory()->NewFixedArray(n); if (promote) { // Age the array so it's ready for promotion on next GC. CcTest::CollectGarbage(NEW_SPACE); } CHECK(Heap::InYoungGeneration(*array)); DeferredHandleScope deferred_scope(isolate); // Trim the array three times to different sizes so all kinds of fillers are // created and tracked by the deferred handles. Handle filler_1 = Handle(*array, isolate); Handle filler_2 = Handle(heap->LeftTrimFixedArray(*filler_1, 1), isolate); Handle filler_3 = Handle(heap->LeftTrimFixedArray(*filler_2, 2), isolate); Handle tail = Handle(heap->LeftTrimFixedArray(*filler_3, 3), isolate); std::unique_ptr deferred_handles(deferred_scope.Detach()); // GC should retain the trimmed array but drop all of the three fillers. CcTest::CollectGarbage(NEW_SPACE); if (promote) { CHECK(heap->InOldSpace(*tail)); } else { CHECK(Heap::InYoungGeneration(*tail)); } CHECK_EQ(n - 6, (*tail).length()); CHECK(!filler_1->IsHeapObject()); CHECK(!filler_2->IsHeapObject()); CHECK(!filler_3->IsHeapObject()); } TEST(DoNotEvacuateFillersFromDeferredHandles) { TestFillersFromDeferredHandles(false /*promote*/); } TEST(DoNotPromoteFillersFromDeferredHandles) { TestFillersFromDeferredHandles(true /*promote*/); } TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) { if (!FLAG_incremental_marking) return; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CompileRun("function f(n) {" " var a = new Array(n);" " for (var i = 0; i < n; i += 100) a[i] = i;" "};" "f(10 * 1024 * 1024);"); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); if (marking->IsStopped()) { CcTest::heap()->StartIncrementalMarking( i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } heap::SimulateIncrementalMarking(CcTest::heap()); CHECK(marking->IsComplete() || marking->IsReadyToOverApproximateWeakClosure()); } TEST(DisableInlineAllocation) { FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function test() {" " var x = [];" " for (var i = 0; i < 10; i++) {" " x[i] = [ {}, [1,2,3], [1,x,3] ];" " }" "}" "function run() {" " %PrepareFunctionForOptimization(test);" " %OptimizeFunctionOnNextCall(test);" " test();" " %DeoptimizeFunction(test);" "}"); // Warm-up with inline allocation enabled. CompileRun("test(); test(); run();"); // Run test with inline allocation disabled. CcTest::heap()->DisableInlineAllocation(); CompileRun("run()"); // Run test with inline allocation re-enabled. CcTest::heap()->EnableInlineAllocation(); CompileRun("run()"); } static int AllocationSitesCount(Heap* heap) { int count = 0; for (Object site = heap->allocation_sites_list(); site.IsAllocationSite();) { AllocationSite cur = AllocationSite::cast(site); CHECK(cur.HasWeakNext()); site = cur.weak_next(); count++; } return count; } static int SlimAllocationSiteCount(Heap* heap) { int count = 0; for (Object weak_list = heap->allocation_sites_list(); weak_list.IsAllocationSite();) { AllocationSite weak_cur = AllocationSite::cast(weak_list); for (Object site = weak_cur.nested_site(); site.IsAllocationSite();) { AllocationSite cur = AllocationSite::cast(site); CHECK(!cur.HasWeakNext()); site = cur.nested_site(); count++; } weak_list = weak_cur.weak_next(); } return count; } TEST(EnsureAllocationSiteDependentCodesProcessed) { if (FLAG_always_opt || !FLAG_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); GlobalHandles* global_handles = isolate->global_handles(); if (!isolate->use_optimizer()) return; // The allocation site at the head of the list is ours. Handle site; { LocalContext context; v8::HandleScope scope(context->GetIsolate()); int count = AllocationSitesCount(heap); CompileRun( "var bar = function() { return (new Array()); };" "%PrepareFunctionForOptimization(bar);" "var a = bar();" "bar();" "bar();"); // One allocation site should have been created. int new_count = AllocationSitesCount(heap); CHECK_EQ(new_count, (count + 1)); site = Handle::cast( global_handles->Create( AllocationSite::cast(heap->allocation_sites_list()))); CompileRun("%OptimizeFunctionOnNextCall(bar); bar();"); Handle bar_handle = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); int dependency_group_count = 0; DependentCode dependency = site->dependent_code(); while (dependency != ReadOnlyRoots(heap).empty_weak_fixed_array()) { CHECK(dependency.group() == DependentCode::kAllocationSiteTransitionChangedGroup || dependency.group() == DependentCode::kAllocationSiteTenuringChangedGroup); CHECK_EQ(1, dependency.count()); CHECK(dependency.object_at(0)->IsWeak()); Code function_bar = Code::cast(dependency.object_at(0)->GetHeapObjectAssumeWeak()); CHECK_EQ(bar_handle->code(), function_bar); dependency = dependency.next_link(); dependency_group_count++; } // Expect a dependent code object for transitioning and pretenuring. CHECK_EQ(2, dependency_group_count); } // Now make sure that a gc should get rid of the function, even though we // still have the allocation site alive. for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } // The site still exists because of our global handle, but the code is no // longer referred to by dependent_code(). CHECK(site->dependent_code().object_at(0)->IsCleared()); } void CheckNumberOfAllocations(Heap* heap, const char* source, int expected_full_alloc, int expected_slim_alloc) { int prev_fat_alloc_count = AllocationSitesCount(heap); int prev_slim_alloc_count = SlimAllocationSiteCount(heap); CompileRun(source); int fat_alloc_sites = AllocationSitesCount(heap) - prev_fat_alloc_count; int slim_alloc_sites = SlimAllocationSiteCount(heap) - prev_slim_alloc_count; CHECK_EQ(expected_full_alloc, fat_alloc_sites); CHECK_EQ(expected_slim_alloc, slim_alloc_sites); } TEST(AllocationSiteCreation) { FLAG_always_opt = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); i::FLAG_allow_natives_syntax = true; // Array literals. CheckNumberOfAllocations(heap, "function f1() {" " return []; " "};" "%EnsureFeedbackVectorForFunction(f1); f1();", 1, 0); CheckNumberOfAllocations(heap, "function f2() {" " return [1, 2];" "};" "%EnsureFeedbackVectorForFunction(f2); f2();", 1, 0); CheckNumberOfAllocations(heap, "function f3() {" " return [[1], [2]];" "};" "%EnsureFeedbackVectorForFunction(f3); f3();", 1, 2); CheckNumberOfAllocations(heap, "function f4() { " "return [0, [1, 1.1, 1.2, " "], 1.5, [2.1, 2.2], 3];" "};" "%EnsureFeedbackVectorForFunction(f4); f4();", 1, 2); // Object literals have lazy AllocationSites CheckNumberOfAllocations(heap, "function f5() {" " return {};" "};" "%EnsureFeedbackVectorForFunction(f5); f5();", 0, 0); // No AllocationSites are created for the empty object literal. for (int i = 0; i < 5; i++) { CheckNumberOfAllocations(heap, "f5(); ", 0, 0); } CheckNumberOfAllocations(heap, "function f6() {" " return {a:1};" "};" "%EnsureFeedbackVectorForFunction(f6); f6();", 0, 0); CheckNumberOfAllocations(heap, "f6(); ", 1, 0); CheckNumberOfAllocations(heap, "function f7() {" " return {a:1, b:2};" "};" "%EnsureFeedbackVectorForFunction(f7); f7(); ", 0, 0); CheckNumberOfAllocations(heap, "f7(); ", 1, 0); // No Allocation sites are created for object subliterals CheckNumberOfAllocations(heap, "function f8() {" "return {a:{}, b:{ a:2, c:{ d:{f:{}}} } }; " "};" "%EnsureFeedbackVectorForFunction(f8); f8();", 0, 0); CheckNumberOfAllocations(heap, "f8(); ", 1, 0); // We currently eagerly create allocation sites if there are sub-arrays. // Allocation sites are created only for array subliterals CheckNumberOfAllocations(heap, "function f9() {" "return {a:[1, 2, 3], b:{ a:2, c:{ d:{f:[]} } }}; " "};" "%EnsureFeedbackVectorForFunction(f9); f9(); ", 1, 2); // No new AllocationSites created on the second invocation. CheckNumberOfAllocations(heap, "f9(); ", 0, 0); } TEST(AllocationSiteCreationForIIFE) { // No feedback vectors and hence no allocation sites. // TODO(mythria): Once lazy feedback allocation is enabled by default // re-evaluate if we need any of these tests. if (FLAG_lite_mode || FLAG_lazy_feedback_allocation) return; FLAG_always_opt = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); i::FLAG_enable_one_shot_optimization = true; // No allocation sites within IIFE/top-level CheckNumberOfAllocations(heap, R"( (function f4() { return [ 0, [ 1, 1.1, 1.2,], 1.5, [2.1, 2.2], 3 ]; })(); )", 0, 0); CheckNumberOfAllocations(heap, R"( l = [ 1, 2, 3, 4]; )", 0, 0); CheckNumberOfAllocations(heap, R"( a = []; )", 0, 0); CheckNumberOfAllocations(heap, R"( (function f4() { return []; })(); )", 0, 0); // No allocation sites for literals in an iife/top level code even if it has // array subliterals CheckNumberOfAllocations(heap, R"( (function f10() { return {a: [1], b: [2]}; })(); )", 0, 0); CheckNumberOfAllocations(heap, R"( l = { a: 1, b: { c: [5], } }; )", 0, 0); // Eagerly create allocation sites for literals within a loop of iife or // top-level code CheckNumberOfAllocations(heap, R"( (function f11() { while(true) { return {a: [1], b: [2]}; } })(); )", 1, 2); CheckNumberOfAllocations(heap, R"( for (i = 0; i < 1; ++i) { l = { a: 1, b: { c: [5], } }; } )", 1, 1); } TEST(CellsInOptimizedCodeAreWeak) { if (FLAG_always_opt || !FLAG_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun( "bar = (function() {" " function bar() {" " return foo(1);" " };" " %PrepareFunctionForOptimization(bar);" " var foo = function(x) { with (x) { return 1 + x; } };" " %NeverOptimizeFunction(foo);" " bar(foo);" " bar(foo);" " bar(foo);" " %OptimizeFunctionOnNextCall(bar);" " bar(foo);" " return bar;})();"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); code = scope.CloseAndEscape(Handle(bar->code(), isolate)); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); CHECK(code->embedded_objects_cleared()); } TEST(ObjectsInOptimizedCodeAreWeak) { if (FLAG_always_opt || !FLAG_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun( "function bar() {" " return foo(1);" "};" "%PrepareFunctionForOptimization(bar);" "function foo(x) { with (x) { return 1 + x; } };" "%NeverOptimizeFunction(foo);" "bar();" "bar();" "bar();" "%OptimizeFunctionOnNextCall(bar);" "bar();"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); code = scope.CloseAndEscape(Handle(bar->code(), isolate)); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); CHECK(code->embedded_objects_cleared()); } TEST(NewSpaceObjectsInOptimizedCode) { if (FLAG_always_opt || !FLAG_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(isolate); Handle code; { LocalContext context; HandleScope scope(isolate); CompileRun( "var foo;" "var bar;" "(function() {" " function foo_func(x) { with (x) { return 1 + x; } };" " %NeverOptimizeFunction(foo_func);" " function bar_func() {" " return foo(1);" " };" " %PrepareFunctionForOptimization(bar_func);" " bar = bar_func;" " foo = foo_func;" " bar_func();" " bar_func();" " bar_func();" " %OptimizeFunctionOnNextCall(bar_func);" " bar_func();" "})();"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); Handle foo = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("foo")) .ToLocalChecked()))); CHECK(Heap::InYoungGeneration(*foo)); CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); CHECK(!Heap::InYoungGeneration(*foo)); #ifdef VERIFY_HEAP CcTest::heap()->Verify(); #endif CHECK(!bar->code().marked_for_deoptimization()); code = scope.CloseAndEscape(Handle(bar->code(), isolate)); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); CHECK(code->embedded_objects_cleared()); } TEST(ObjectsInEagerlyDeoptimizedCodeAreWeak) { if (FLAG_always_opt || !FLAG_opt) return; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun( "function bar() {" " return foo(1);" "};" "function foo(x) { with (x) { return 1 + x; } };" "%NeverOptimizeFunction(foo);" "%PrepareFunctionForOptimization(bar);" "bar();" "bar();" "bar();" "%OptimizeFunctionOnNextCall(bar);" "bar();" "%DeoptimizeFunction(bar);"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); code = scope.CloseAndEscape(Handle(bar->code(), isolate)); } CHECK(code->marked_for_deoptimization()); // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); CHECK(code->embedded_objects_cleared()); } static Handle OptimizeDummyFunction(v8::Isolate* isolate, const char* name) { EmbeddedVector source; SNPrintF(source, "function %s() { return 0; }" "%%PrepareFunctionForOptimization(%s);" "%s(); %s();" "%%OptimizeFunctionOnNextCall(%s);" "%s();", name, name, name, name, name, name); CompileRun(source.begin()); i::Handle fun = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(isolate->GetCurrentContext(), v8_str(name)) .ToLocalChecked()))); return fun; } static int GetCodeChainLength(Code code) { int result = 0; while (code.next_code_link().IsCode()) { result++; code = Code::cast(code.next_code_link()); } return result; } TEST(NextCodeLinkIsWeak) { FLAG_always_opt = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(heap->isolate()); Handle code; CcTest::CollectAllAvailableGarbage(); int code_chain_length_before, code_chain_length_after; { HandleScope scope(heap->isolate()); Handle mortal = OptimizeDummyFunction(CcTest::isolate(), "mortal"); Handle immortal = OptimizeDummyFunction(CcTest::isolate(), "immortal"); CHECK_EQ(immortal->code().next_code_link(), mortal->code()); code_chain_length_before = GetCodeChainLength(immortal->code()); // Keep the immortal code and let the mortal code die. code = scope.CloseAndEscape(Handle(immortal->code(), isolate)); CompileRun("mortal = null; immortal = null;"); } CcTest::CollectAllAvailableGarbage(); // Now mortal code should be dead. code_chain_length_after = GetCodeChainLength(*code); CHECK_EQ(code_chain_length_before - 1, code_chain_length_after); } TEST(NextCodeLinkInCodeDataContainerIsCleared) { FLAG_always_opt = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(heap->isolate()); Handle code_data_container; { HandleScope scope(heap->isolate()); Handle mortal1 = OptimizeDummyFunction(CcTest::isolate(), "mortal1"); Handle mortal2 = OptimizeDummyFunction(CcTest::isolate(), "mortal2"); CHECK_EQ(mortal2->code().next_code_link(), mortal1->code()); code_data_container = scope.CloseAndEscape(Handle( mortal2->code().code_data_container(), isolate)); CompileRun("mortal1 = null; mortal2 = null;"); } CcTest::CollectAllAvailableGarbage(); CHECK(code_data_container->next_code_link().IsUndefined(isolate)); } static Handle DummyOptimizedCode(Isolate* isolate) { i::byte buffer[i::Assembler::kMinimalBufferSize]; MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, ExternalAssemblerBuffer(buffer, sizeof(buffer))); CodeDesc desc; masm.Push(isolate->factory()->undefined_value()); masm.Push(isolate->factory()->undefined_value()); masm.Drop(2); masm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, Code::OPTIMIZED_FUNCTION) .set_self_reference(masm.CodeObject()) .Build(); CHECK(code->IsCode()); return code; } TEST(NextCodeLinkIsWeak2) { FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_optimizer()) return; HandleScope outer_scope(heap->isolate()); CcTest::CollectAllAvailableGarbage(); Handle context(Context::cast(heap->native_contexts_list()), isolate); Handle new_head; Handle old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate); { HandleScope scope(heap->isolate()); Handle immortal = DummyOptimizedCode(isolate); Handle mortal = DummyOptimizedCode(isolate); mortal->set_next_code_link(*old_head); immortal->set_next_code_link(*mortal); context->set(Context::OPTIMIZED_CODE_LIST, *immortal); new_head = scope.CloseAndEscape(immortal); } CcTest::CollectAllAvailableGarbage(); // Now mortal code should be dead. CHECK_EQ(*old_head, new_head->next_code_link()); } static bool weak_ic_cleared = false; static void ClearWeakIC( const v8::WeakCallbackInfo>& data) { printf("clear weak is called\n"); weak_ic_cleared = true; data.GetParameter()->Reset(); } TEST(WeakFunctionInConstructor) { if (FLAG_always_opt) return; FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); LocalContext env; v8::HandleScope scope(isolate); CompileRun( "function createObj(obj) {" " return new obj();" "}"); i::Handle createObj = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(env.local(), v8_str("createObj")) .ToLocalChecked()))); v8::Persistent garbage; { v8::HandleScope scope(isolate); const char* source = " (function() {" " function hat() { this.x = 5; }" " %EnsureFeedbackVectorForFunction(hat);" " %EnsureFeedbackVectorForFunction(createObj);" " createObj(hat);" " createObj(hat);" " return hat;" " })();"; garbage.Reset(isolate, CompileRun(env.local(), source) .ToLocalChecked() ->ToObject(env.local()) .ToLocalChecked()); } weak_ic_cleared = false; garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter); CcTest::CollectAllGarbage(); CHECK(weak_ic_cleared); // We've determined the constructor in createObj has had it's weak cell // cleared. Now, verify that one additional call with a new function // allows monomorphicity. Handle feedback_vector = Handle(createObj->feedback_vector(), CcTest::i_isolate()); for (int i = 0; i < 20; i++) { MaybeObject slot_value = feedback_vector->Get(FeedbackSlot(0)); CHECK(slot_value->IsWeakOrCleared()); if (slot_value->IsCleared()) break; CcTest::CollectAllGarbage(); } MaybeObject slot_value = feedback_vector->Get(FeedbackSlot(0)); CHECK(slot_value->IsCleared()); CompileRun( "function coat() { this.x = 6; }" "createObj(coat);"); slot_value = feedback_vector->Get(FeedbackSlot(0)); CHECK(slot_value->IsWeak()); } // Checks that the value returned by execution of the source is weak. void CheckWeakness(const char* source) { FLAG_stress_compaction = false; FLAG_stress_incremental_marking = false; FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); LocalContext env; v8::HandleScope scope(isolate); v8::Persistent garbage; { v8::HandleScope scope(isolate); garbage.Reset(isolate, CompileRun(env.local(), source) .ToLocalChecked() ->ToObject(env.local()) .ToLocalChecked()); } weak_ic_cleared = false; garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter); CcTest::CollectAllGarbage(); CHECK(weak_ic_cleared); } // Each of the following "weak IC" tests creates an IC that embeds a map with // the prototype pointing to _proto_ and checks that the _proto_ dies on GC. TEST(WeakMapInMonomorphicLoadIC) { CheckWeakness( "function loadIC(obj) {" " return obj.name;" "}" "%EnsureFeedbackVectorForFunction(loadIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " return proto;" " })();"); } TEST(WeakMapInPolymorphicLoadIC) { CheckWeakness( "function loadIC(obj) {" " return obj.name;" "}" "%EnsureFeedbackVectorForFunction(loadIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " var poly = Object.create(proto);" " poly.x = true;" " loadIC(poly);" " return proto;" " })();"); } TEST(WeakMapInMonomorphicKeyedLoadIC) { CheckWeakness( "function keyedLoadIC(obj, field) {" " return obj[field];" "}" "%EnsureFeedbackVectorForFunction(keyedLoadIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " return proto;" " })();"); } TEST(WeakMapInPolymorphicKeyedLoadIC) { CheckWeakness( "function keyedLoadIC(obj, field) {" " return obj[field];" "}" "%EnsureFeedbackVectorForFunction(keyedLoadIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " var poly = Object.create(proto);" " poly.x = true;" " keyedLoadIC(poly, 'name');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicStoreIC) { CheckWeakness( "function storeIC(obj, value) {" " obj.name = value;" "}" "%EnsureFeedbackVectorForFunction(storeIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " return proto;" " })();"); } TEST(WeakMapInPolymorphicStoreIC) { CheckWeakness( "function storeIC(obj, value) {" " obj.name = value;" "}" "%EnsureFeedbackVectorForFunction(storeIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " var poly = Object.create(proto);" " poly.x = true;" " storeIC(poly, 'x');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicKeyedStoreIC) { CheckWeakness( "function keyedStoreIC(obj, field, value) {" " obj[field] = value;" "}" "%EnsureFeedbackVectorForFunction(keyedStoreIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " return proto;" " })();"); } TEST(WeakMapInPolymorphicKeyedStoreIC) { CheckWeakness( "function keyedStoreIC(obj, field, value) {" " obj[field] = value;" "}" "%EnsureFeedbackVectorForFunction(keyedStoreIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " var poly = Object.create(proto);" " poly.x = true;" " keyedStoreIC(poly, 'x');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicCompareNilIC) { FLAG_allow_natives_syntax = true; CheckWeakness( "function compareNilIC(obj) {" " return obj == null;" "}" "%EnsureFeedbackVectorForFunction(compareNilIC);" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " compareNilIC(obj);" " compareNilIC(obj);" " compareNilIC(obj);" " return proto;" " })();"); } Handle GetFunctionByName(Isolate* isolate, const char* name) { Handle str = isolate->factory()->InternalizeUtf8String(name); Handle obj = Object::GetProperty(isolate, isolate->global_object(), str) .ToHandleChecked(); return Handle::cast(obj); } void CheckIC(Handle function, int slot_index, InlineCacheState state) { FeedbackVector vector = function->feedback_vector(); FeedbackSlot slot(slot_index); FeedbackNexus nexus(vector, slot); CHECK_EQ(nexus.ic_state(), state); } TEST(MonomorphicStaysMonomorphicAfterGC) { if (!FLAG_use_ic) return; if (FLAG_always_opt) return; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); FLAG_allow_natives_syntax = true; CompileRun( "function loadIC(obj) {" " return obj.name;" "}" "%EnsureFeedbackVectorForFunction(loadIC);" "function testIC() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " return proto;" "};"); Handle loadIC = GetFunctionByName(isolate, "loadIC"); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } CcTest::CollectAllGarbage(); CheckIC(loadIC, 0, MONOMORPHIC); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } CheckIC(loadIC, 0, MONOMORPHIC); } TEST(PolymorphicStaysPolymorphicAfterGC) { if (!FLAG_use_ic) return; if (FLAG_always_opt) return; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); FLAG_allow_natives_syntax = true; CompileRun( "function loadIC(obj) {" " return obj.name;" "}" "%EnsureFeedbackVectorForFunction(loadIC);" "function testIC() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " var poly = Object.create(proto);" " poly.x = true;" " loadIC(poly);" " return proto;" "};"); Handle loadIC = GetFunctionByName(isolate, "loadIC"); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } CcTest::CollectAllGarbage(); CheckIC(loadIC, 0, POLYMORPHIC); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } CheckIC(loadIC, 0, POLYMORPHIC); } #ifdef DEBUG TEST(AddInstructionChangesNewSpacePromotion) { FLAG_allow_natives_syntax = true; FLAG_expose_gc = true; FLAG_stress_compaction = true; FLAG_gc_interval = 1000; CcTest::InitializeVM(); if (!FLAG_allocation_site_pretenuring) return; v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); LocalContext env; CompileRun( "function add(a, b) {" " return a + b;" "}" "add(1, 2);" "add(\"a\", \"b\");" "var oldSpaceObject;" "gc();" "function crash(x) {" " var object = {a: null, b: null};" " var result = add(1.5, x | 0);" " object.a = result;" " oldSpaceObject = object;" " return object;" "}" "%PrepareFunctionForOptimization(crash);" "crash(1);" "crash(1);" "%OptimizeFunctionOnNextCall(crash);" "crash(1);"); v8::Local global = CcTest::global(); v8::Local g = v8::Local::Cast( global->Get(env.local(), v8_str("crash")).ToLocalChecked()); v8::Local args1[] = {v8_num(1)}; heap->DisableInlineAllocation(); heap->set_allocation_timeout(1); g->Call(env.local(), global, 1, args1).ToLocalChecked(); CcTest::CollectAllGarbage(); } void OnFatalErrorExpectOOM(const char* location, const char* message) { // Exit with 0 if the location matches our expectation. exit(strcmp(location, "CALL_AND_RETRY_LAST")); } TEST(CEntryStubOOM) { FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CcTest::isolate()->SetFatalErrorHandler(OnFatalErrorExpectOOM); v8::Local result = CompileRun( "%SetAllocationTimeout(1, 1);" "var a = [];" "a.__proto__ = [];" "a.unshift(1)"); CHECK(result->IsNumber()); } #endif // DEBUG static void InterruptCallback357137(v8::Isolate* isolate, void* data) { } static void RequestInterrupt(const v8::FunctionCallbackInfo& args) { CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, nullptr); } HEAP_TEST(Regress538257) { ManualGCScope manual_gc_scope; FLAG_manual_evacuation_candidates_selection = true; v8::Isolate::CreateParams create_params; // Set heap limits. create_params.constraints.set_max_young_generation_size_in_bytes(3 * MB); #ifdef DEBUG create_params.constraints.set_max_old_generation_size_in_bytes(20 * MB); #else create_params.constraints.set_max_old_generation_size_in_bytes(6 * MB); #endif create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); isolate->Enter(); { i::Isolate* i_isolate = reinterpret_cast(isolate); Heap* heap = i_isolate->heap(); HandleScope handle_scope(i_isolate); PagedSpace* old_space = heap->old_space(); const int kMaxObjects = 10000; const int kFixedArrayLen = 512; Handle objects[kMaxObjects]; for (int i = 0; (i < kMaxObjects) && heap->CanExpandOldGeneration(old_space->AreaSize()); i++) { objects[i] = i_isolate->factory()->NewFixedArray(kFixedArrayLen, AllocationType::kOld); heap::ForceEvacuationCandidate(Page::FromHeapObject(*objects[i])); } heap::SimulateFullSpace(old_space); CcTest::CollectAllGarbage(); // If we get this far, we've successfully aborted compaction. Any further // allocations might trigger OOM. } isolate->Exit(); isolate->Dispose(); } TEST(Regress357137) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope hscope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set( v8::String::NewFromUtf8(isolate, "interrupt", v8::NewStringType::kNormal) .ToLocalChecked(), v8::FunctionTemplate::New(isolate, RequestInterrupt)); v8::Local context = v8::Context::New(isolate, nullptr, global); CHECK(!context.IsEmpty()); v8::Context::Scope cscope(context); v8::Local result = CompileRun( "var locals = '';" "for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';" "eval('function f() {' + locals + 'return function() { return v0; }; }');" "interrupt();" // This triggers a fake stack overflow in f. "f()()"); CHECK_EQ(42.0, result->ToNumber(context).ToLocalChecked()->Value()); } TEST(Regress507979) { const int kFixedArrayLen = 10; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handle_scope(isolate); Handle o1 = isolate->factory()->NewFixedArray(kFixedArrayLen); Handle o2 = isolate->factory()->NewFixedArray(kFixedArrayLen); CHECK(Heap::InYoungGeneration(*o1)); CHECK(Heap::InYoungGeneration(*o2)); HeapObjectIterator it(isolate->heap(), i::HeapObjectIterator::kFilterUnreachable); // Replace parts of an object placed before a live object with a filler. This // way the filler object shares the mark bits with the following live object. o1->Shrink(isolate, kFixedArrayLen - 1); for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) { // Let's not optimize the loop away. CHECK_NE(obj.address(), kNullAddress); } } TEST(Regress388880) { if (!FLAG_incremental_marking) return; FLAG_stress_incremental_marking = false; FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); Handle map1 = Map::Create(isolate, 1); Handle name = factory->NewStringFromStaticChars("foo"); name = factory->InternalizeString(name); Handle map2 = Map::CopyWithField(isolate, map1, name, FieldType::Any(isolate), NONE, PropertyConstness::kMutable, Representation::Tagged(), OMIT_TRANSITION) .ToHandleChecked(); size_t desired_offset = Page::kPageSize - map1->instance_size(); // Allocate padding objects in old pointer space so, that object allocated // afterwards would end at the end of the page. heap::SimulateFullSpace(heap->old_space()); size_t padding_size = desired_offset - MemoryChunkLayout::ObjectStartOffsetInDataPage(); heap::CreatePadding(heap, static_cast(padding_size), AllocationType::kOld); Handle o = factory->NewJSObjectFromMap(map1, AllocationType::kOld); o->set_raw_properties_or_hash(*factory->empty_fixed_array()); // Ensure that the object allocated where we need it. Page* page = Page::FromHeapObject(*o); CHECK_EQ(desired_offset, page->Offset(o->address())); // Now we have an object right at the end of the page. // Enable incremental marking to trigger actions in Heap::AdjustLiveBytes() // that would cause crash. IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Stop(); CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); CHECK(marking->IsMarking()); // Now everything is set up for crashing in JSObject::MigrateFastToFast() // when it calls heap->AdjustLiveBytes(...). JSObject::MigrateToMap(isolate, o, map2); } TEST(Regress3631) { if (!FLAG_incremental_marking) return; FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); v8::Local result = CompileRun( "var weak_map = new WeakMap();" "var future_keys = [];" "for (var i = 0; i < 50; i++) {" " var key = {'k' : i + 0.1};" " weak_map.set(key, 1);" " future_keys.push({'x' : i + 0.2});" "}" "weak_map"); if (marking->IsStopped()) { CcTest::heap()->StartIncrementalMarking( i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } // Incrementally mark the backing store. Handle obj = v8::Utils::OpenHandle(*v8::Local::Cast(result)); Handle weak_map(JSWeakCollection::cast(*obj), isolate); SimulateIncrementalMarking(heap); // Stash the backing store in a handle. Handle save(weak_map->table(), isolate); // The following line will update the backing store. CompileRun( "for (var i = 0; i < 50; i++) {" " weak_map.set(future_keys[i], i);" "}"); heap->incremental_marking()->set_should_hurry(true); CcTest::CollectGarbage(OLD_SPACE); } TEST(Regress442710) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope sc(isolate); Handle global(CcTest::i_isolate()->context().global_object(), isolate); Handle array = factory->NewJSArray(2); Handle name = factory->InternalizeUtf8String("testArray"); Object::SetProperty(isolate, global, name, array).Check(); CompileRun("testArray[0] = 1; testArray[1] = 2; testArray.shift();"); CcTest::CollectGarbage(OLD_SPACE); } HEAP_TEST(NumberStringCacheSize) { // Test that the number-string cache has not been resized in the snapshot. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->snapshot_available()) return; Heap* heap = isolate->heap(); CHECK_EQ(Heap::kInitialNumberStringCacheSize * 2, heap->number_string_cache().length()); } TEST(Regress3877) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); CompileRun("function cls() { this.x = 10; }"); Handle weak_prototype_holder = factory->NewWeakFixedArray(1); { HandleScope inner_scope(isolate); v8::Local result = CompileRun("cls.prototype"); Handle proto = v8::Utils::OpenHandle(*v8::Local::Cast(result)); weak_prototype_holder->Set(0, HeapObjectReference::Weak(*proto)); } CHECK(!weak_prototype_holder->Get(0)->IsCleared()); CompileRun( "var a = { };" "a.x = new cls();" "cls.prototype = null;"); for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } // The map of a.x keeps prototype alive CHECK(!weak_prototype_holder->Get(0)->IsCleared()); // Change the map of a.x and make the previous map garbage collectable. CompileRun("a.x.__proto__ = {};"); for (int i = 0; i < 4; i++) { CcTest::CollectAllGarbage(); } CHECK(weak_prototype_holder->Get(0)->IsCleared()); } Handle AddRetainedMap(Isolate* isolate, Heap* heap) { HandleScope inner_scope(isolate); Handle map = Map::Create(isolate, 1); v8::Local result = CompileRun("(function () { return {x : 10}; })();"); Handle proto = v8::Utils::OpenHandle(*v8::Local::Cast(result)); Map::SetPrototype(isolate, map, proto); heap->AddRetainedMap(map); Handle array = isolate->factory()->NewWeakFixedArray(1); array->Set(0, HeapObjectReference::Weak(*map)); return inner_scope.CloseAndEscape(array); } void CheckMapRetainingFor(int n) { FLAG_retain_maps_for_n_gc = n; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Handle array_with_map = AddRetainedMap(isolate, heap); CHECK(array_with_map->Get(0)->IsWeak()); for (int i = 0; i < n; i++) { heap::SimulateIncrementalMarking(heap); CcTest::CollectGarbage(OLD_SPACE); } CHECK(array_with_map->Get(0)->IsWeak()); heap::SimulateIncrementalMarking(heap); CcTest::CollectGarbage(OLD_SPACE); CHECK(array_with_map->Get(0)->IsCleared()); } TEST(MapRetaining) { if (!FLAG_incremental_marking) return; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CheckMapRetainingFor(FLAG_retain_maps_for_n_gc); CheckMapRetainingFor(0); CheckMapRetainingFor(1); CheckMapRetainingFor(7); } TEST(PreprocessStackTrace) { // Do not automatically trigger early GC. FLAG_gc_interval = -1; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::TryCatch try_catch(CcTest::isolate()); CompileRun("throw new Error();"); CHECK(try_catch.HasCaught()); Isolate* isolate = CcTest::i_isolate(); Handle exception = v8::Utils::OpenHandle(*try_catch.Exception()); Handle key = isolate->factory()->stack_trace_symbol(); Handle stack_trace = Object::GetProperty(isolate, exception, key).ToHandleChecked(); Handle code = Object::GetElement(isolate, stack_trace, 3).ToHandleChecked(); CHECK(code->IsCode()); CcTest::CollectAllAvailableGarbage(); Handle pos = Object::GetElement(isolate, stack_trace, 3).ToHandleChecked(); CHECK(pos->IsSmi()); Handle frame_array = Handle::cast(stack_trace); int array_length = frame_array->FrameCount(); for (int i = 0; i < array_length; i++) { Handle element = Object::GetElement(isolate, stack_trace, i).ToHandleChecked(); CHECK(!element->IsCode()); } } void AllocateInSpace(Isolate* isolate, size_t bytes, AllocationSpace space) { CHECK_LE(FixedArray::kHeaderSize, bytes); CHECK(IsAligned(bytes, kTaggedSize)); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); int elements = static_cast((bytes - FixedArray::kHeaderSize) / kTaggedSize); Handle array = factory->NewFixedArray( elements, space == NEW_SPACE ? AllocationType::kYoung : AllocationType::kOld); CHECK((space == NEW_SPACE) == Heap::InYoungGeneration(*array)); CHECK_EQ(bytes, static_cast(array->Size())); } TEST(NewSpaceAllocationCounter) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t counter1 = heap->NewSpaceAllocationCounter(); CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); // Ensure new space is empty. const size_t kSize = 1024; AllocateInSpace(isolate, kSize, NEW_SPACE); size_t counter2 = heap->NewSpaceAllocationCounter(); CHECK_EQ(kSize, counter2 - counter1); CcTest::CollectGarbage(NEW_SPACE); size_t counter3 = heap->NewSpaceAllocationCounter(); CHECK_EQ(0U, counter3 - counter2); // Test counter overflow. size_t max_counter = static_cast(-1); heap->set_new_space_allocation_counter(max_counter - 10 * kSize); size_t start = heap->NewSpaceAllocationCounter(); for (int i = 0; i < 20; i++) { AllocateInSpace(isolate, kSize, NEW_SPACE); size_t counter = heap->NewSpaceAllocationCounter(); CHECK_EQ(kSize, counter - start); start = counter; } } TEST(OldSpaceAllocationCounter) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t counter1 = heap->OldGenerationAllocationCounter(); CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); const size_t kSize = 1024; AllocateInSpace(isolate, kSize, OLD_SPACE); size_t counter2 = heap->OldGenerationAllocationCounter(); // TODO(ulan): replace all CHECK_LE with CHECK_EQ after v8:4148 is fixed. CHECK_LE(kSize, counter2 - counter1); CcTest::CollectGarbage(NEW_SPACE); size_t counter3 = heap->OldGenerationAllocationCounter(); CHECK_EQ(0u, counter3 - counter2); AllocateInSpace(isolate, kSize, OLD_SPACE); CcTest::CollectGarbage(OLD_SPACE); size_t counter4 = heap->OldGenerationAllocationCounter(); CHECK_LE(kSize, counter4 - counter3); // Test counter overflow. size_t max_counter = static_cast(-1); heap->set_old_generation_allocation_counter_at_last_gc(max_counter - 10 * kSize); size_t start = heap->OldGenerationAllocationCounter(); for (int i = 0; i < 20; i++) { AllocateInSpace(isolate, kSize, OLD_SPACE); size_t counter = heap->OldGenerationAllocationCounter(); CHECK_LE(kSize, counter - start); start = counter; } } static void CheckLeak(const v8::FunctionCallbackInfo& args) { Isolate* isolate = CcTest::i_isolate(); Object message( *reinterpret_cast(isolate->pending_message_obj_address())); CHECK(message.IsTheHole(isolate)); } TEST(MessageObjectLeak) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set( v8::String::NewFromUtf8(isolate, "check", v8::NewStringType::kNormal) .ToLocalChecked(), v8::FunctionTemplate::New(isolate, CheckLeak)); v8::Local context = v8::Context::New(isolate, nullptr, global); v8::Context::Scope cscope(context); const char* test = "try {" " throw 'message 1';" "} catch (e) {" "}" "check();" "L: try {" " throw 'message 2';" "} finally {" " break L;" "}" "check();"; CompileRun(test); const char* flag = "--turbo-filter=*"; FlagList::SetFlagsFromString(flag, strlen(flag)); FLAG_always_opt = true; CompileRun(test); } static void CheckEqualSharedFunctionInfos( const v8::FunctionCallbackInfo& args) { Handle obj1 = v8::Utils::OpenHandle(*args[0]); Handle obj2 = v8::Utils::OpenHandle(*args[1]); Handle fun1 = Handle::cast(obj1); Handle fun2 = Handle::cast(obj2); CHECK(fun1->shared() == fun2->shared()); } static void RemoveCodeAndGC(const v8::FunctionCallbackInfo& args) { Isolate* isolate = CcTest::i_isolate(); Handle obj = v8::Utils::OpenHandle(*args[0]); Handle fun = Handle::cast(obj); // Bytecode is code too. SharedFunctionInfo::DiscardCompiled(isolate, handle(fun->shared(), isolate)); fun->set_code(*BUILTIN_CODE(isolate, CompileLazy)); CcTest::CollectAllAvailableGarbage(); } TEST(CanonicalSharedFunctionInfo) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set(isolate, "check", v8::FunctionTemplate::New( isolate, CheckEqualSharedFunctionInfos)); global->Set(isolate, "remove", v8::FunctionTemplate::New(isolate, RemoveCodeAndGC)); v8::Local context = v8::Context::New(isolate, nullptr, global); v8::Context::Scope cscope(context); CompileRun( "function f() { return function g() {}; }" "var g1 = f();" "remove(f);" "var g2 = f();" "check(g1, g2);"); CompileRun( "function f() { return (function() { return function g() {}; })(); }" "var g1 = f();" "remove(f);" "var g2 = f();" "check(g1, g2);"); } TEST(ScriptIterator) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = CcTest::heap(); LocalContext context; CcTest::CollectAllGarbage(); int script_count = 0; { HeapObjectIterator it(heap); for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) { if (obj.IsScript()) script_count++; } } { Script::Iterator iterator(isolate); for (Script script = iterator.Next(); !script.is_null(); script = iterator.Next()) { script_count--; } } CHECK_EQ(0, script_count); } // This is the same as Factory::NewByteArray, except it doesn't retry on // allocation failure. AllocationResult HeapTester::AllocateByteArrayForTest( Heap* heap, int length, AllocationType allocation_type) { DCHECK(length >= 0 && length <= ByteArray::kMaxLength); int size = ByteArray::SizeFor(length); HeapObject result; { AllocationResult allocation = heap->AllocateRaw(size, allocation_type); if (!allocation.To(&result)) return allocation; } result.set_map_after_allocation(ReadOnlyRoots(heap).byte_array_map(), SKIP_WRITE_BARRIER); ByteArray::cast(result).set_length(length); ByteArray::cast(result).clear_padding(); return result; } bool HeapTester::CodeEnsureLinearAllocationArea(Heap* heap, int size_in_bytes) { return heap->code_space()->EnsureLinearAllocationArea( size_in_bytes, AllocationOrigin::kRuntime); } HEAP_TEST(Regress587004) { ManualGCScope manual_gc_scope; #ifdef VERIFY_HEAP FLAG_verify_heap = false; #endif CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const int N = (kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) / kTaggedSize; Handle array = factory->NewFixedArray(N, AllocationType::kOld); CHECK(heap->old_space()->Contains(*array)); Handle number = factory->NewHeapNumber(1.0); CHECK(Heap::InYoungGeneration(*number)); for (int i = 0; i < N; i++) { array->set(i, *number); } CcTest::CollectGarbage(OLD_SPACE); heap::SimulateFullSpace(heap->old_space()); heap->RightTrimFixedArray(*array, N - 1); heap->mark_compact_collector()->EnsureSweepingCompleted(); ByteArray byte_array; const int M = 256; // Don't allow old space expansion. The test works without this flag too, // but becomes very slow. heap->set_force_oom(true); while ( AllocateByteArrayForTest(heap, M, AllocationType::kOld).To(&byte_array)) { for (int j = 0; j < M; j++) { byte_array.set(j, 0x31); } } // Re-enable old space expansion to avoid OOM crash. heap->set_force_oom(false); CcTest::CollectGarbage(NEW_SPACE); } HEAP_TEST(Regress589413) { if (!FLAG_incremental_marking) return; FLAG_stress_compaction = true; FLAG_manual_evacuation_candidates_selection = true; FLAG_parallel_compaction = false; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); // Get the heap in clean state. CcTest::CollectGarbage(OLD_SPACE); CcTest::CollectGarbage(OLD_SPACE); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); // Fill the new space with byte arrays with elements looking like pointers. const int M = 256; ByteArray byte_array; while (AllocateByteArrayForTest(heap, M, AllocationType::kYoung) .To(&byte_array)) { for (int j = 0; j < M; j++) { byte_array.set(j, 0x31); } // Add the array in root set. handle(byte_array, isolate); } // Make sure the byte arrays will be promoted on the next GC. CcTest::CollectGarbage(NEW_SPACE); // This number is close to large free list category threshold. const int N = 0x3EEE; { std::vector arrays; std::set pages; FixedArray array; // Fill all pages with fixed arrays. heap->set_force_oom(true); while ( AllocateFixedArrayForTest(heap, N, AllocationType::kOld).To(&array)) { arrays.push_back(array); pages.insert(Page::FromHeapObject(array)); // Add the array in root set. handle(array, isolate); } // Expand and full one complete page with fixed arrays. heap->set_force_oom(false); while ( AllocateFixedArrayForTest(heap, N, AllocationType::kOld).To(&array)) { arrays.push_back(array); pages.insert(Page::FromHeapObject(array)); // Add the array in root set. handle(array, isolate); // Do not expand anymore. heap->set_force_oom(true); } // Expand and mark the new page as evacuation candidate. heap->set_force_oom(false); { AlwaysAllocateScope always_allocate(isolate); Handle ec_obj = factory->NewFixedArray(5000, AllocationType::kOld); Page* ec_page = Page::FromHeapObject(*ec_obj); heap::ForceEvacuationCandidate(ec_page); // Make all arrays point to evacuation candidate so that // slots are recorded for them. for (size_t j = 0; j < arrays.size(); j++) { array = arrays[j]; for (int i = 0; i < N; i++) { array.set(i, *ec_obj); } } } heap::SimulateIncrementalMarking(heap); for (size_t j = 0; j < arrays.size(); j++) { heap->RightTrimFixedArray(arrays[j], N - 1); } } // Force allocation from the free list. heap->set_force_oom(true); CcTest::CollectGarbage(OLD_SPACE); } TEST(Regress598319) { if (!FLAG_incremental_marking) return; ManualGCScope manual_gc_scope; // This test ensures that no white objects can cross the progress bar of large // objects during incremental marking. It checks this by using Shift() during // incremental marking. CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); // The size of the array should be larger than kProgressBarScanningChunk. const int kNumberOfObjects = Max(FixedArray::kMaxRegularLength + 1, 128 * KB); struct Arr { Arr(Isolate* isolate, int number_of_objects) { root = isolate->factory()->NewFixedArray(1, AllocationType::kOld); { // Temporary scope to avoid getting any other objects into the root set. v8::HandleScope scope(CcTest::isolate()); Handle tmp = isolate->factory()->NewFixedArray( number_of_objects, AllocationType::kOld); root->set(0, *tmp); for (int i = 0; i < get().length(); i++) { tmp = isolate->factory()->NewFixedArray(100, AllocationType::kOld); get().set(i, *tmp); } } } FixedArray get() { return FixedArray::cast(root->get(0)); } Handle root; } arr(isolate, kNumberOfObjects); CHECK_EQ(arr.get().length(), kNumberOfObjects); CHECK(heap->lo_space()->Contains(arr.get())); LargePage* page = LargePage::FromHeapObject(arr.get()); CHECK_NOT_NULL(page); // GC to cleanup state CcTest::CollectGarbage(OLD_SPACE); MarkCompactCollector* collector = heap->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(heap->lo_space()->Contains(arr.get())); IncrementalMarking* marking = heap->incremental_marking(); IncrementalMarking::MarkingState* marking_state = marking->marking_state(); CHECK(marking_state->IsWhite(arr.get())); for (int i = 0; i < arr.get().length(); i++) { HeapObject arr_value = HeapObject::cast(arr.get().get(i)); CHECK(marking_state->IsWhite(arr_value)); } // Start incremental marking. CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } CHECK(marking->IsMarking()); // Check that we have not marked the interesting array during root scanning. for (int i = 0; i < arr.get().length(); i++) { HeapObject arr_value = HeapObject::cast(arr.get().get(i)); CHECK(marking_state->IsWhite(arr_value)); } // Now we search for a state where we are in incremental marking and have // only partially marked the large object. const double kSmallStepSizeInMs = 0.1; while (!marking->IsComplete()) { marking->V8Step(kSmallStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD, StepOrigin::kV8); if (page->IsFlagSet(Page::HAS_PROGRESS_BAR) && page->ProgressBar() > 0) { CHECK_NE(page->ProgressBar(), arr.get().Size()); { // Shift by 1, effectively moving one white object across the progress // bar, meaning that we will miss marking it. v8::HandleScope scope(CcTest::isolate()); Handle js_array = isolate->factory()->NewJSArrayWithElements( Handle(arr.get(), isolate)); js_array->GetElementsAccessor()->Shift(js_array); } break; } } // Finish marking with bigger steps to speed up test. const double kLargeStepSizeInMs = 1000; while (!marking->IsComplete()) { marking->V8Step(kLargeStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD, StepOrigin::kV8); if (marking->IsReadyToOverApproximateWeakClosure()) { marking->FinalizeIncrementally(); } } CHECK(marking->IsComplete()); // All objects need to be black after marking. If a white object crossed the // progress bar, we would fail here. for (int i = 0; i < arr.get().length(); i++) { HeapObject arr_value = HeapObject::cast(arr.get().get(i)); CHECK(marking_state->IsBlack(arr_value)); } } Handle ShrinkArrayAndCheckSize(Heap* heap, int length) { // Make sure there is no garbage and the compilation cache is empty. for (int i = 0; i < 5; i++) { CcTest::CollectAllGarbage(); } heap->mark_compact_collector()->EnsureSweepingCompleted(); size_t size_before_allocation = heap->SizeOfObjects(); Handle array = heap->isolate()->factory()->NewFixedArray(length, AllocationType::kOld); size_t size_after_allocation = heap->SizeOfObjects(); CHECK_EQ(size_after_allocation, size_before_allocation + array->Size()); array->Shrink(heap->isolate(), 1); size_t size_after_shrinking = heap->SizeOfObjects(); // Shrinking does not change the space size immediately. CHECK_EQ(size_after_allocation, size_after_shrinking); // GC and sweeping updates the size to acccount for shrinking. CcTest::CollectAllGarbage(); heap->mark_compact_collector()->EnsureSweepingCompleted(); intptr_t size_after_gc = heap->SizeOfObjects(); CHECK_EQ(size_after_gc, size_before_allocation + array->Size()); return array; } TEST(Regress609761) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); int length = kMaxRegularHeapObjectSize / kTaggedSize + 1; Handle array = ShrinkArrayAndCheckSize(heap, length); CHECK(heap->lo_space()->Contains(*array)); } TEST(LiveBytes) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Handle array = ShrinkArrayAndCheckSize(heap, 2000); CHECK(heap->old_space()->Contains(*array)); } TEST(Regress615489) { if (!FLAG_incremental_marking) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); CcTest::CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::HandleScope inner(CcTest::isolate()); isolate->factory()->NewFixedArray(500, AllocationType::kOld)->Size(); } const double kStepSizeInMs = 100; while (!marking->IsComplete()) { marking->V8Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD, StepOrigin::kV8); if (marking->IsReadyToOverApproximateWeakClosure()) { marking->FinalizeIncrementally(); } } CHECK(marking->IsComplete()); intptr_t size_before = heap->SizeOfObjects(); CcTest::CollectAllGarbage(); intptr_t size_after = heap->SizeOfObjects(); // Live size does not increase after garbage collection. CHECK_LE(size_after, size_before); } class StaticOneByteResource : public v8::String::ExternalOneByteStringResource { public: explicit StaticOneByteResource(const char* data) : data_(data) {} ~StaticOneByteResource() override = default; const char* data() const override { return data_; } size_t length() const override { return strlen(data_); } private: const char* data_; }; TEST(Regress631969) { if (!FLAG_incremental_marking) return; FLAG_manual_evacuation_candidates_selection = true; FLAG_parallel_compaction = false; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); // Get the heap in clean state. CcTest::CollectGarbage(OLD_SPACE); CcTest::CollectGarbage(OLD_SPACE); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); // Allocate two strings in a fresh page and mark the page as evacuation // candidate. heap::SimulateFullSpace(heap->old_space()); Handle s1 = factory->NewStringFromStaticChars("123456789", AllocationType::kOld); Handle s2 = factory->NewStringFromStaticChars("01234", AllocationType::kOld); heap::ForceEvacuationCandidate(Page::FromHeapObject(*s1)); heap::SimulateIncrementalMarking(heap, false); // Allocate a cons string and promote it to a fresh page in the old space. heap::SimulateFullSpace(heap->old_space()); Handle s3; factory->NewConsString(s1, s2).ToHandle(&s3); CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); // Finish incremental marking. const double kStepSizeInMs = 100; IncrementalMarking* marking = heap->incremental_marking(); while (!marking->IsComplete()) { marking->V8Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD, StepOrigin::kV8); if (marking->IsReadyToOverApproximateWeakClosure()) { marking->FinalizeIncrementally(); } } { StaticOneByteResource external_string("12345678901234"); s3->MakeExternal(&external_string); CcTest::CollectGarbage(OLD_SPACE); // This avoids the GC from trying to free stack allocated resources. i::Handle::cast(s3)->SetResource(isolate, nullptr); } } TEST(LeftTrimFixedArrayInBlackArea) { if (!FLAG_incremental_marking) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); CcTest::CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); isolate->factory()->NewFixedArray(4, AllocationType::kOld); Handle array = isolate->factory()->NewFixedArray(50, AllocationType::kOld); CHECK(heap->old_space()->Contains(*array)); IncrementalMarking::MarkingState* marking_state = marking->marking_state(); CHECK(marking_state->IsBlack(*array)); // Now left trim the allocated black area. A filler has to be installed // for the trimmed area and all mark bits of the trimmed area have to be // cleared. FixedArrayBase trimmed = heap->LeftTrimFixedArray(*array, 10); CHECK(marking_state->IsBlack(trimmed)); heap::GcAndSweep(heap, OLD_SPACE); } TEST(ContinuousLeftTrimFixedArrayInBlackArea) { if (!FLAG_incremental_marking) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); CcTest::CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); isolate->factory()->NewFixedArray(10, AllocationType::kOld); // Allocate the fixed array that will be trimmed later. Handle array = isolate->factory()->NewFixedArray(100, AllocationType::kOld); Address start_address = array->address(); Address end_address = start_address + array->Size(); Page* page = Page::FromAddress(start_address); IncrementalMarking::NonAtomicMarkingState* marking_state = marking->non_atomic_marking_state(); CHECK(marking_state->IsBlack(*array)); CHECK(marking_state->bitmap(page)->AllBitsSetInRange( page->AddressToMarkbitIndex(start_address), page->AddressToMarkbitIndex(end_address))); CHECK(heap->old_space()->Contains(*array)); FixedArrayBase previous = *array; FixedArrayBase trimmed; // First trim in one word steps. for (int i = 0; i < 10; i++) { trimmed = heap->LeftTrimFixedArray(previous, 1); HeapObject filler = HeapObject::FromAddress(previous.address()); CHECK(filler.IsFiller()); CHECK(marking_state->IsBlack(trimmed)); CHECK(marking_state->IsBlack(previous)); previous = trimmed; } // Then trim in two and three word steps. for (int i = 2; i <= 3; i++) { for (int j = 0; j < 10; j++) { trimmed = heap->LeftTrimFixedArray(previous, i); HeapObject filler = HeapObject::FromAddress(previous.address()); CHECK(filler.IsFiller()); CHECK(marking_state->IsBlack(trimmed)); CHECK(marking_state->IsBlack(previous)); previous = trimmed; } } heap::GcAndSweep(heap, OLD_SPACE); } TEST(ContinuousRightTrimFixedArrayInBlackArea) { if (!FLAG_incremental_marking) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = CcTest::i_isolate(); CcTest::CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); isolate->factory()->NewFixedArray(10, AllocationType::kOld); // Allocate the fixed array that will be trimmed later. Handle array = CcTest::i_isolate()->factory()->NewFixedArray(100, AllocationType::kOld); Address start_address = array->address(); Address end_address = start_address + array->Size(); Page* page = Page::FromAddress(start_address); IncrementalMarking::NonAtomicMarkingState* marking_state = marking->non_atomic_marking_state(); CHECK(marking_state->IsBlack(*array)); CHECK(marking_state->bitmap(page)->AllBitsSetInRange( page->AddressToMarkbitIndex(start_address), page->AddressToMarkbitIndex(end_address))); CHECK(heap->old_space()->Contains(*array)); // Trim it once by one word to make checking for white marking color uniform. Address previous = end_address - kTaggedSize; isolate->heap()->RightTrimFixedArray(*array, 1); HeapObject filler = HeapObject::FromAddress(previous); CHECK(filler.IsFiller()); CHECK(marking_state->IsImpossible(filler)); // Trim 10 times by one, two, and three word. for (int i = 1; i <= 3; i++) { for (int j = 0; j < 10; j++) { previous -= kTaggedSize * i; isolate->heap()->RightTrimFixedArray(*array, i); HeapObject filler = HeapObject::FromAddress(previous); CHECK(filler.IsFiller()); CHECK(marking_state->IsWhite(filler)); } } heap::GcAndSweep(heap, OLD_SPACE); } TEST(Regress618958) { if (!FLAG_incremental_marking) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); bool isolate_is_locked = true; CcTest::isolate()->AdjustAmountOfExternalAllocatedMemory(100 * MB); int mark_sweep_count_before = heap->ms_count(); heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, isolate_is_locked); int mark_sweep_count_after = heap->ms_count(); int mark_sweeps_performed = mark_sweep_count_after - mark_sweep_count_before; // The memory pressuer handler either performed two GCs or performed one and // started incremental marking. CHECK(mark_sweeps_performed == 2 || (mark_sweeps_performed == 1 && !heap->incremental_marking()->IsStopped())); } TEST(YoungGenerationLargeObjectAllocationScavenge) { if (FLAG_minor_mc) return; FLAG_young_generation_large_objects = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); if (!isolate->serializer_enabled()) return; // TODO(hpayer): Update the test as soon as we have a tenure limit for LO. Handle array_small = isolate->factory()->NewFixedArray(200000); MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small); CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity()); CHECK(chunk->IsFlagSet(MemoryChunk::LARGE_PAGE)); CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE)); Handle number = isolate->factory()->NewHeapNumber(123.456); array_small->set(0, *number); CcTest::CollectGarbage(NEW_SPACE); // After the first young generation GC array_small will be in the old // generation large object space. chunk = MemoryChunk::FromHeapObject(*array_small); CHECK_EQ(LO_SPACE, chunk->owner_identity()); CHECK(!chunk->InYoungGeneration()); CcTest::CollectAllAvailableGarbage(); } TEST(YoungGenerationLargeObjectAllocationMarkCompact) { if (FLAG_minor_mc) return; FLAG_young_generation_large_objects = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); if (!isolate->serializer_enabled()) return; // TODO(hpayer): Update the test as soon as we have a tenure limit for LO. Handle array_small = isolate->factory()->NewFixedArray(200000); MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small); CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity()); CHECK(chunk->IsFlagSet(MemoryChunk::LARGE_PAGE)); CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE)); Handle number = isolate->factory()->NewHeapNumber(123.456); array_small->set(0, *number); CcTest::CollectGarbage(OLD_SPACE); // After the first full GC array_small will be in the old generation // large object space. chunk = MemoryChunk::FromHeapObject(*array_small); CHECK_EQ(LO_SPACE, chunk->owner_identity()); CHECK(!chunk->InYoungGeneration()); CcTest::CollectAllAvailableGarbage(); } TEST(YoungGenerationLargeObjectAllocationReleaseScavenger) { if (FLAG_minor_mc) return; FLAG_young_generation_large_objects = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); if (!isolate->serializer_enabled()) return; { HandleScope scope(isolate); for (int i = 0; i < 10; i++) { Handle array_small = isolate->factory()->NewFixedArray(20000); MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small); CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity()); CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE)); } } CcTest::CollectGarbage(NEW_SPACE); CHECK(isolate->heap()->new_lo_space()->IsEmpty()); CHECK_EQ(0, isolate->heap()->new_lo_space()->Size()); CHECK_EQ(0, isolate->heap()->new_lo_space()->SizeOfObjects()); CHECK(isolate->heap()->lo_space()->IsEmpty()); CHECK_EQ(0, isolate->heap()->lo_space()->Size()); CHECK_EQ(0, isolate->heap()->lo_space()->SizeOfObjects()); } TEST(UncommitUnusedLargeObjectMemory) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); Handle array = isolate->factory()->NewFixedArray(200000, AllocationType::kOld); MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array); CHECK(chunk->owner_identity() == LO_SPACE); intptr_t size_before = array->Size(); size_t committed_memory_before = chunk->CommittedPhysicalMemory(); array->Shrink(isolate, 1); CHECK(array->Size() < size_before); CcTest::CollectAllGarbage(); CHECK(chunk->CommittedPhysicalMemory() < committed_memory_before); size_t shrinked_size = RoundUp( (array->address() - chunk->address()) + array->Size(), CommitPageSize()); CHECK_EQ(shrinked_size, chunk->CommittedPhysicalMemory()); } template static size_t GetRememberedSetSize(HeapObject obj) { size_t count = 0; auto chunk = MemoryChunk::FromHeapObject(obj); RememberedSet::Iterate( chunk, [&count](MaybeObjectSlot slot) { count++; return KEEP_SLOT; }, SlotSet::KEEP_EMPTY_BUCKETS); return count; } TEST(RememberedSet_InsertOnWriteBarrier) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); heap::SealCurrentObjects(heap); HandleScope scope(isolate); // Allocate an object in old space. Handle arr = factory->NewFixedArray(3, AllocationType::kOld); // Add into 'arr' references to young objects. { HandleScope scope_inner(isolate); Handle number = factory->NewHeapNumber(42); arr->set(0, *number); arr->set(1, *number); arr->set(2, *number); Handle number_other = factory->NewHeapNumber(24); arr->set(2, *number_other); } // Remembered sets track *slots* pages with cross-generational pointers, so // must have recorded three of them each exactly once. CHECK_EQ(3, GetRememberedSetSize(*arr)); } TEST(RememberedSet_InsertInLargePage) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); heap::SealCurrentObjects(heap); HandleScope scope(isolate); // Allocate an object in Large space. const int count = Max(FixedArray::kMaxRegularLength + 1, 128 * KB); Handle arr = factory->NewFixedArray(count, AllocationType::kOld); CHECK(heap->lo_space()->Contains(*arr)); CHECK_EQ(0, GetRememberedSetSize(*arr)); // Create OLD_TO_NEW references from the large object so that the // corresponding slots end up in different SlotSets. { HandleScope short_lived(isolate); Handle number = factory->NewHeapNumber(42); arr->set(0, *number); arr->set(count - 1, *number); } CHECK_EQ(2, GetRememberedSetSize(*arr)); } TEST(RememberedSet_InsertOnPromotingObjectToOld) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); heap::SealCurrentObjects(heap); HandleScope scope(isolate); // Create a young object and age it one generation inside the new space. Handle arr = factory->NewFixedArray(1); CcTest::CollectGarbage(i::NEW_SPACE); CHECK(Heap::InYoungGeneration(*arr)); // Add into 'arr' a reference to an object one generation younger. { HandleScope scope_inner(isolate); Handle number = factory->NewHeapNumber(42); arr->set(0, *number); } // Promote 'arr' into old, its element is still in new, the old to new // refs are inserted into the remembered sets during GC. CcTest::CollectGarbage(i::NEW_SPACE); CHECK(heap->InOldSpace(*arr)); CHECK_EQ(1, GetRememberedSetSize(*arr)); } TEST(RememberedSet_RemoveStaleOnScavenge) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); heap::SealCurrentObjects(heap); HandleScope scope(isolate); // Allocate an object in old space and add into it references to young. Handle arr = factory->NewFixedArray(3, AllocationType::kOld); { HandleScope scope_inner(isolate); Handle number = factory->NewHeapNumber(42); arr->set(0, *number); // will be trimmed away arr->set(1, *number); // will be replaced with #undefined arr->set(2, *number); // will be promoted into old } CHECK_EQ(3, GetRememberedSetSize(*arr)); // Run scavenger once so the young object becomes ready for promotion on the // next pass. CcTest::CollectGarbage(i::NEW_SPACE); arr->set(1, ReadOnlyRoots(CcTest::heap()).undefined_value()); Handle tail = Handle(heap->LeftTrimFixedArray(*arr, 1), isolate); // None of the actions above should have updated the remembered set. CHECK_EQ(3, GetRememberedSetSize(*tail)); // Run GC to promote the remaining young object and fixup the stale entries in // the remembered set. CcTest::CollectGarbage(i::NEW_SPACE); CHECK_EQ(0, GetRememberedSetSize(*tail)); } // The OLD_TO_OLD remembered set is created temporary by GC and is cleared at // the end of the pass. There is no way to observe it so the test only checks // that compaction has happened and otherwise relies on code's self-validation. TEST(RememberedSet_OldToOld) { if (FLAG_stress_incremental_marking) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); heap::SealCurrentObjects(heap); HandleScope scope(isolate); Handle arr = factory->NewFixedArray(10, AllocationType::kOld); { HandleScope short_lived(isolate); factory->NewFixedArray(100, AllocationType::kOld); } Handle ref = factory->NewFixedArray(100, AllocationType::kOld); arr->set(0, *ref); // To force compaction of the old space, fill it with garbage and start a new // page (so that the page with 'arr' becomes subject to compaction). { HandleScope short_lived(isolate); heap::SimulateFullSpace(heap->old_space()); factory->NewFixedArray(100, AllocationType::kOld); } FLAG_manual_evacuation_candidates_selection = true; heap::ForceEvacuationCandidate(Page::FromHeapObject(*arr)); const auto prev_location = *arr; // This GC pass will evacuate the page with 'arr'/'ref' so it will have to // create OLD_TO_OLD remembered set to track the reference. CcTest::CollectAllGarbage(); CHECK_NE(prev_location, *arr); } TEST(RememberedSetRemoveRange) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); Handle array = isolate->factory()->NewFixedArray( Page::kPageSize / kTaggedSize, AllocationType::kOld); MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array); CHECK(chunk->owner_identity() == LO_SPACE); Address start = array->address(); // Maps slot to boolean indicator of whether the slot should be in the set. std::map slots; slots[start + 0] = true; slots[start + kTaggedSize] = true; slots[start + Page::kPageSize - kTaggedSize] = true; slots[start + Page::kPageSize] = true; slots[start + Page::kPageSize + kTaggedSize] = true; slots[chunk->area_end() - kTaggedSize] = true; for (auto x : slots) { RememberedSet::Insert(chunk, x.first); } RememberedSet::Iterate( chunk, [&slots](MaybeObjectSlot slot) { CHECK(slots[slot.address()]); return KEEP_SLOT; }, SlotSet::FREE_EMPTY_BUCKETS); RememberedSet::RemoveRange(chunk, start, start + kTaggedSize, SlotSet::FREE_EMPTY_BUCKETS); slots[start] = false; RememberedSet::Iterate( chunk, [&slots](MaybeObjectSlot slot) { CHECK(slots[slot.address()]); return KEEP_SLOT; }, SlotSet::FREE_EMPTY_BUCKETS); RememberedSet::RemoveRange(chunk, start + kTaggedSize, start + Page::kPageSize, SlotSet::FREE_EMPTY_BUCKETS); slots[start + kTaggedSize] = false; slots[start + Page::kPageSize - kTaggedSize] = false; RememberedSet::Iterate( chunk, [&slots](MaybeObjectSlot slot) { CHECK(slots[slot.address()]); return KEEP_SLOT; }, SlotSet::FREE_EMPTY_BUCKETS); RememberedSet::RemoveRange(chunk, start, start + Page::kPageSize + kTaggedSize, SlotSet::FREE_EMPTY_BUCKETS); slots[start + Page::kPageSize] = false; RememberedSet::Iterate( chunk, [&slots](MaybeObjectSlot slot) { CHECK(slots[slot.address()]); return KEEP_SLOT; }, SlotSet::FREE_EMPTY_BUCKETS); RememberedSet::RemoveRange(chunk, chunk->area_end() - kTaggedSize, chunk->area_end(), SlotSet::FREE_EMPTY_BUCKETS); slots[chunk->area_end() - kTaggedSize] = false; RememberedSet::Iterate( chunk, [&slots](MaybeObjectSlot slot) { CHECK(slots[slot.address()]); return KEEP_SLOT; }, SlotSet::FREE_EMPTY_BUCKETS); } HEAP_TEST(Regress670675) { if (!FLAG_incremental_marking) return; FLAG_stress_incremental_marking = false; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); CcTest::CollectAllGarbage(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } i::IncrementalMarking* marking = CcTest::heap()->incremental_marking(); if (marking->IsStopped()) { marking->Start(i::GarbageCollectionReason::kTesting); } size_t array_length = 128 * KB; size_t n = heap->OldGenerationSpaceAvailable() / array_length; for (size_t i = 0; i < n + 40; i++) { { HandleScope inner_scope(isolate); isolate->factory()->NewFixedArray(static_cast(array_length), AllocationType::kOld); } if (marking->IsStopped()) break; double deadline = heap->MonotonicallyIncreasingTimeInMs() + 1; marking->AdvanceWithDeadline( deadline, IncrementalMarking::GC_VIA_STACK_GUARD, StepOrigin::kV8); } DCHECK(marking->IsStopped()); } namespace { Handle GenerateDummyImmovableCode(Isolate* isolate) { Assembler assm(AssemblerOptions{}); const int kNumberOfNops = 1 << 10; for (int i = 0; i < kNumberOfNops; i++) { assm.nop(); // supported on all architectures } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, Code::STUB).set_immovable().Build(); CHECK(code->IsCode()); return code; } } // namespace HEAP_TEST(Regress5831) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); Isolate* isolate = CcTest::i_isolate(); HandleScope handle_scope(isolate); // Used to ensure that the generated code is not collected. const int kInitialSize = 32; Handle array = isolate->factory()->NewFixedArray(kInitialSize); // Ensure that all immovable code space pages are full and we overflow into // LO_SPACE. const int kMaxIterations = 1 << 16; bool overflowed_into_lospace = false; for (int i = 0; i < kMaxIterations; i++) { Handle code = GenerateDummyImmovableCode(isolate); array = FixedArray::SetAndGrow(isolate, array, i, code); CHECK(heap->code_space()->Contains(code->address()) || heap->code_lo_space()->Contains(*code)); if (heap->code_lo_space()->Contains(*code)) { overflowed_into_lospace = true; break; } } CHECK(overflowed_into_lospace); // Fake a serializer run. isolate->serializer_enabled_ = true; // Generate the code. Handle code = GenerateDummyImmovableCode(isolate); CHECK_GE(i::kMaxRegularHeapObjectSize, code->Size()); CHECK(!heap->code_space()->first_page()->Contains(code->address())); // Ensure it's not in large object space. MemoryChunk* chunk = MemoryChunk::FromHeapObject(*code); CHECK(chunk->owner_identity() != LO_SPACE); CHECK(chunk->NeverEvacuate()); } HEAP_TEST(RegressMissingWriteBarrierInAllocate) { if (!FLAG_incremental_marking) return; ManualGCScope manual_gc_scope; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); CcTest::CollectAllGarbage(); heap::SimulateIncrementalMarking(heap, false); Handle map; { AlwaysAllocateScope always_allocate(isolate); map = isolate->factory()->NewMap(HEAP_NUMBER_TYPE, HeapNumber::kSize); } heap->incremental_marking()->StartBlackAllocationForTesting(); Handle object; { AlwaysAllocateScope always_allocate(isolate); object = handle(isolate->factory()->NewForTest(map, AllocationType::kOld), isolate); } // The object is black. If Factory::New sets the map without write-barrier, // then the map is white and will be freed prematurely. heap::SimulateIncrementalMarking(heap, true); CcTest::CollectAllGarbage(); MarkCompactCollector* collector = heap->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(object->map().IsMap()); } HEAP_TEST(MarkCompactEpochCounter) { ManualGCScope manual_gc_scope; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); unsigned epoch0 = heap->mark_compact_collector()->epoch(); CcTest::CollectGarbage(OLD_SPACE); unsigned epoch1 = heap->mark_compact_collector()->epoch(); CHECK_EQ(epoch0 + 1, epoch1); heap::SimulateIncrementalMarking(heap, true); CcTest::CollectGarbage(OLD_SPACE); unsigned epoch2 = heap->mark_compact_collector()->epoch(); CHECK_EQ(epoch1 + 1, epoch2); CcTest::CollectGarbage(NEW_SPACE); unsigned epoch3 = heap->mark_compact_collector()->epoch(); CHECK_EQ(epoch2, epoch3); } UNINITIALIZED_TEST(ReinitializeStringHashSeed) { // Enable rehashing and create an isolate and context. i::FLAG_rehash_snapshot = true; for (int i = 1; i < 3; i++) { i::FLAG_hash_seed = 1337 * i; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); CHECK_EQ(static_cast(1337 * i), HashSeed(reinterpret_cast(isolate))); v8::HandleScope handle_scope(isolate); v8::Local context = v8::Context::New(isolate); CHECK(!context.IsEmpty()); v8::Context::Scope context_scope(context); } isolate->Dispose(); ReadOnlyHeap::ClearSharedHeapForTest(); } } const int kHeapLimit = 100 * MB; Isolate* oom_isolate = nullptr; void OOMCallback(const char* location, bool is_heap_oom) { Heap* heap = oom_isolate->heap(); size_t kSlack = heap->new_space()->Capacity(); CHECK_LE(heap->OldGenerationCapacity(), kHeapLimit + kSlack); CHECK_LE(heap->memory_allocator()->Size(), heap->MaxReserved() + kSlack); base::OS::ExitProcess(0); } UNINITIALIZED_TEST(OutOfMemory) { if (FLAG_stress_incremental_marking) return; #ifdef VERIFY_HEAP if (FLAG_verify_heap) return; #endif FLAG_max_old_space_size = kHeapLimit / MB; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); Isolate* i_isolate = reinterpret_cast(isolate); oom_isolate = i_isolate; isolate->SetOOMErrorHandler(OOMCallback); { Factory* factory = i_isolate->factory(); HandleScope handle_scope(i_isolate); while (true) { factory->NewFixedArray(100); } } } UNINITIALIZED_TEST(OutOfMemoryIneffectiveGC) { if (!FLAG_detect_ineffective_gcs_near_heap_limit) return; if (FLAG_stress_incremental_marking) return; #ifdef VERIFY_HEAP if (FLAG_verify_heap) return; #endif FLAG_max_old_space_size = kHeapLimit / MB; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); Isolate* i_isolate = reinterpret_cast(isolate); oom_isolate = i_isolate; isolate->SetOOMErrorHandler(OOMCallback); Factory* factory = i_isolate->factory(); Heap* heap = i_isolate->heap(); heap->CollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kTesting); { HandleScope scope(i_isolate); while (heap->OldGenerationSizeOfObjects() < heap->MaxOldGenerationSize() * 0.9) { factory->NewFixedArray(100, AllocationType::kOld); } { int initial_ms_count = heap->ms_count(); int ineffective_ms_start = initial_ms_count; while (heap->ms_count() < initial_ms_count + 10) { HandleScope inner_scope(i_isolate); factory->NewFixedArray(30000, AllocationType::kOld); if (heap->tracer()->AverageMarkCompactMutatorUtilization() >= 0.3) { ineffective_ms_start = heap->ms_count() + 1; } } int consecutive_ineffective_ms = heap->ms_count() - ineffective_ms_start; CHECK_IMPLIES( consecutive_ineffective_ms >= 4, heap->tracer()->AverageMarkCompactMutatorUtilization() >= 0.3); } } isolate->Dispose(); } HEAP_TEST(Regress779503) { // The following regression test ensures that the Scavenger does not allocate // over invalid slots. More specific, the Scavenger should not sweep a page // that it currently processes because it might allocate over the currently // processed slot. const int kArraySize = 2048; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = CcTest::heap(); heap::SealCurrentObjects(heap); { HandleScope handle_scope(isolate); // The byte array filled with kHeapObjectTag ensures that we cannot read // from the slot again and interpret it as heap value. Doing so will crash. Handle byte_array = isolate->factory()->NewByteArray(kArraySize); CHECK(Heap::InYoungGeneration(*byte_array)); for (int i = 0; i < kArraySize; i++) { byte_array->set(i, kHeapObjectTag); } { HandleScope handle_scope(isolate); // The FixedArray in old space serves as space for slots. Handle fixed_array = isolate->factory()->NewFixedArray(kArraySize, AllocationType::kOld); CHECK(!Heap::InYoungGeneration(*fixed_array)); for (int i = 0; i < kArraySize; i++) { fixed_array->set(i, *byte_array); } } // Delay sweeper tasks to allow the scavenger to sweep the page it is // currently scavenging. heap->delay_sweeper_tasks_for_testing_ = true; CcTest::CollectGarbage(OLD_SPACE); CHECK(Heap::InYoungGeneration(*byte_array)); } // Scavenging and sweeping the same page will crash as slots will be // overridden. CcTest::CollectGarbage(NEW_SPACE); heap->delay_sweeper_tasks_for_testing_ = false; } struct OutOfMemoryState { Heap* heap; bool oom_triggered; size_t old_generation_capacity_at_oom; size_t memory_allocator_size_at_oom; size_t new_space_capacity_at_oom; size_t new_lo_space_size_at_oom; size_t current_heap_limit; size_t initial_heap_limit; }; size_t NearHeapLimitCallback(void* raw_state, size_t current_heap_limit, size_t initial_heap_limit) { OutOfMemoryState* state = static_cast(raw_state); Heap* heap = state->heap; state->oom_triggered = true; state->old_generation_capacity_at_oom = heap->OldGenerationCapacity(); state->memory_allocator_size_at_oom = heap->memory_allocator()->Size(); state->new_space_capacity_at_oom = heap->new_space()->Capacity(); state->new_lo_space_size_at_oom = heap->new_lo_space()->Size(); state->current_heap_limit = current_heap_limit; state->initial_heap_limit = initial_heap_limit; return initial_heap_limit + 100 * MB; } size_t MemoryAllocatorSizeFromHeapCapacity(size_t capacity) { // Size to capacity factor. double factor = Page::kPageSize * 1.0 / MemoryChunkLayout::AllocatableMemoryInDataPage(); // Some tables (e.g. deoptimization table) are allocated directly with the // memory allocator. Allow some slack to account for them. size_t slack = 5 * MB; return static_cast(capacity * factor) + slack; } UNINITIALIZED_TEST(OutOfMemorySmallObjects) { if (FLAG_stress_incremental_marking) return; #ifdef VERIFY_HEAP if (FLAG_verify_heap) return; #endif const size_t kOldGenerationLimit = 300 * MB; FLAG_max_old_space_size = kOldGenerationLimit / MB; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); Isolate* isolate = reinterpret_cast(v8::Isolate::New(create_params)); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); OutOfMemoryState state; state.heap = heap; state.oom_triggered = false; heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state); { HandleScope handle_scope(isolate); while (!state.oom_triggered) { factory->NewFixedArray(100); } } CHECK_LE(state.old_generation_capacity_at_oom, kOldGenerationLimit + state.new_space_capacity_at_oom); CHECK_LE(kOldGenerationLimit, state.old_generation_capacity_at_oom + state.new_space_capacity_at_oom); CHECK_LE( state.memory_allocator_size_at_oom, MemoryAllocatorSizeFromHeapCapacity(state.old_generation_capacity_at_oom + 2 * state.new_space_capacity_at_oom)); reinterpret_cast(isolate)->Dispose(); } UNINITIALIZED_TEST(OutOfMemoryLargeObjects) { if (FLAG_stress_incremental_marking) return; #ifdef VERIFY_HEAP if (FLAG_verify_heap) return; #endif const size_t kOldGenerationLimit = 300 * MB; FLAG_max_old_space_size = kOldGenerationLimit / MB; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); Isolate* isolate = reinterpret_cast(v8::Isolate::New(create_params)); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); OutOfMemoryState state; state.heap = heap; state.oom_triggered = false; heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state); const int kFixedArrayLength = 1000000; { HandleScope handle_scope(isolate); while (!state.oom_triggered) { factory->NewFixedArray(kFixedArrayLength); } } CHECK_LE(state.old_generation_capacity_at_oom, kOldGenerationLimit); CHECK_LE(kOldGenerationLimit, state.old_generation_capacity_at_oom + state.new_space_capacity_at_oom + state.new_lo_space_size_at_oom + FixedArray::SizeFor(kFixedArrayLength)); CHECK_LE( state.memory_allocator_size_at_oom, MemoryAllocatorSizeFromHeapCapacity(state.old_generation_capacity_at_oom + 2 * state.new_space_capacity_at_oom + state.new_lo_space_size_at_oom)); reinterpret_cast(isolate)->Dispose(); } UNINITIALIZED_TEST(RestoreHeapLimit) { if (FLAG_stress_incremental_marking) return; #ifdef VERIFY_HEAP if (FLAG_verify_heap) return; #endif ManualGCScope manual_gc_scope; const size_t kOldGenerationLimit = 300 * MB; FLAG_max_old_space_size = kOldGenerationLimit / MB; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); Isolate* isolate = reinterpret_cast(v8::Isolate::New(create_params)); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); OutOfMemoryState state; state.heap = heap; state.oom_triggered = false; heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state); heap->AutomaticallyRestoreInitialHeapLimit(0.5); const int kFixedArrayLength = 1000000; { HandleScope handle_scope(isolate); while (!state.oom_triggered) { factory->NewFixedArray(kFixedArrayLength); } } heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, true); state.oom_triggered = false; { HandleScope handle_scope(isolate); while (!state.oom_triggered) { factory->NewFixedArray(kFixedArrayLength); } } CHECK_EQ(state.current_heap_limit, state.initial_heap_limit); reinterpret_cast(isolate)->Dispose(); } void HeapTester::UncommitFromSpace(Heap* heap) { heap->UncommitFromSpace(); heap->memory_allocator()->unmapper()->EnsureUnmappingCompleted(); } class DeleteNative { public: static void Deleter(void* arg) { delete reinterpret_cast(arg); } }; TEST(Regress8014) { Isolate* isolate = CcTest::InitIsolateOnce(); Heap* heap = isolate->heap(); { HandleScope scope(isolate); for (int i = 0; i < 10000; i++) { auto handle = Managed::FromRawPtr(isolate, 1000000, new DeleteNative()); USE(handle); } } int ms_count = heap->ms_count(); heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, true); // Several GCs can be triggred by the above call. // The bad case triggers 10000 GCs. CHECK_LE(heap->ms_count(), ms_count + 10); } TEST(Regress8617) { ManualGCScope manual_gc_scope; FLAG_manual_evacuation_candidates_selection = true; LocalContext env; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); heap::SimulateFullSpace(heap->old_space()); // Step 1. Create a function and ensure that it is in the old space. Handle foo = v8::Utils::OpenHandle(*CompileRun("function foo() { return 42; };" "foo;")); if (heap->InYoungGeneration(*foo)) { CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); } // Step 2. Create an object with a reference to foo in the descriptor array. CompileRun( "var obj = {};" "obj.method = foo;" "obj;"); // Step 3. Make sure that foo moves during Mark-Compact. Page* ec_page = Page::FromAddress(foo->ptr()); heap::ForceEvacuationCandidate(ec_page); // Step 4. Start incremental marking. heap::SimulateIncrementalMarking(heap, false); CHECK(ec_page->IsEvacuationCandidate()); // Step 5. Install a new descriptor array on the map of the object. // This runs the marking barrier for the descriptor array. // In the bad case it sets the number of marked descriptors but does not // change the color of the descriptor array. CompileRun("obj.bar = 10;"); // Step 6. Promote the descriptor array to old space. During promotion // the Scavenger will not record the slot of foo in the descriptor array. CcTest::CollectGarbage(NEW_SPACE); CcTest::CollectGarbage(NEW_SPACE); // Step 7. Complete the Mark-Compact. CcTest::CollectAllGarbage(); // Step 8. Use the descriptor for foo, which contains a stale pointer. CompileRun("obj.method()"); } HEAP_TEST(MemoryReducerActivationForSmallHeaps) { ManualGCScope manual_gc_scope; LocalContext env; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); CHECK_EQ(heap->memory_reducer()->state_.action, MemoryReducer::Action::kDone); HandleScope scope(isolate); const size_t kActivationThreshold = 1 * MB; size_t initial_capacity = heap->OldGenerationCapacity(); while (heap->OldGenerationCapacity() < initial_capacity + kActivationThreshold) { isolate->factory()->NewFixedArray(1 * KB, AllocationType::kOld); } CHECK_EQ(heap->memory_reducer()->state_.action, MemoryReducer::Action::kWait); } TEST(AllocateExternalBackingStore) { ManualGCScope manual_gc_scope; LocalContext env; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); int initial_ms_count = heap->ms_count(); void* result = heap->AllocateExternalBackingStore([](size_t) { return nullptr; }, 10); CHECK_NULL(result); // At least two GCs should happen. CHECK_LE(2, heap->ms_count() - initial_ms_count); } TEST(CodeObjectRegistry) { // We turn off compaction to ensure that code is not moving. FLAG_never_compact = true; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Handle code1; HandleScope outer_scope(heap->isolate()); Address code2_address; { // Ensure that both code objects end up on the same page. CHECK(HeapTester::CodeEnsureLinearAllocationArea( heap, kMaxRegularHeapObjectSize)); code1 = DummyOptimizedCode(isolate); Handle code2 = DummyOptimizedCode(isolate); code2_address = code2->address(); CHECK_EQ(MemoryChunk::FromHeapObject(*code1), MemoryChunk::FromHeapObject(*code2)); CHECK(MemoryChunk::FromHeapObject(*code1)->Contains(code1->address())); CHECK(MemoryChunk::FromHeapObject(*code2)->Contains(code2->address())); } CcTest::CollectAllAvailableGarbage(); CHECK(MemoryChunk::FromHeapObject(*code1)->Contains(code1->address())); CHECK(MemoryChunk::FromAddress(code2_address)->Contains(code2_address)); } } // namespace heap } // namespace internal } // namespace v8 #undef __