// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ZONE_ZONE_H_ #define V8_ZONE_ZONE_H_ #include #include #include #include "src/base/hashmap.h" #include "src/base/logging.h" #include "src/common/globals.h" #include "src/zone/accounting-allocator.h" #include "src/zone/zone-segment.h" #ifndef ZONE_NAME #define STRINGIFY(x) #x #define TOSTRING(x) STRINGIFY(x) #define ZONE_NAME __FILE__ ":" TOSTRING(__LINE__) #endif namespace v8 { namespace internal { // The Zone supports very fast allocation of small chunks of // memory. The chunks cannot be deallocated individually, but instead // the Zone supports deallocating all chunks in one fast // operation. The Zone is used to hold temporary data structures like // the abstract syntax tree, which is deallocated after compilation. // // Note: There is no need to initialize the Zone; the first time an // allocation is attempted, a segment of memory will be requested // through the allocator. // // Note: The implementation is inherently not thread safe. Do not use // from multi-threaded code. class V8_EXPORT_PRIVATE Zone final { public: Zone(AccountingAllocator* allocator, const char* name); ~Zone(); // Allocate 'size' bytes of memory in the Zone; expands the Zone by // allocating new segments of memory on demand using malloc(). void* New(size_t size) { #ifdef V8_USE_ADDRESS_SANITIZER return AsanNew(size); #else size = RoundUp(size, kAlignmentInBytes); Address result = position_; if (V8_UNLIKELY(size > limit_ - position_)) { result = NewExpand(size); } else { position_ += size; } return reinterpret_cast(result); #endif } void* AsanNew(size_t size); template T* NewArray(size_t length) { DCHECK_LT(length, std::numeric_limits::max() / sizeof(T)); return static_cast(New(length * sizeof(T))); } // Seals the zone to prevent any further allocation. void Seal() { sealed_ = true; } // Allows the zone to be safely reused. Releases the memory and fires zone // destruction and creation events for the accounting allocator. void ReleaseMemory(); // Returns true if more memory has been allocated in zones than // the limit allows. bool excess_allocation() const { return segment_bytes_allocated_ > kExcessLimit; } const char* name() const { return name_; } size_t allocation_size() const { size_t extra = segment_head_ ? position_ - segment_head_->start() : 0; return allocation_size_ + extra; } AccountingAllocator* allocator() const { return allocator_; } private: // Deletes all objects and free all memory allocated in the Zone. void DeleteAll(); // All pointers returned from New() are 8-byte aligned. static const size_t kAlignmentInBytes = 8; // Never allocate segments smaller than this size in bytes. static const size_t kMinimumSegmentSize = 8 * KB; // Never allocate segments larger than this size in bytes. static const size_t kMaximumSegmentSize = 32 * KB; // Report zone excess when allocation exceeds this limit. static const size_t kExcessLimit = 256 * MB; // The number of bytes allocated in this zone so far. size_t allocation_size_; // The number of bytes allocated in segments. Note that this number // includes memory allocated from the OS but not yet allocated from // the zone. size_t segment_bytes_allocated_; // Expand the Zone to hold at least 'size' more bytes and allocate // the bytes. Returns the address of the newly allocated chunk of // memory in the Zone. Should only be called if there isn't enough // room in the Zone already. Address NewExpand(size_t size); // Creates a new segment, sets it size, and pushes it to the front // of the segment chain. Returns the new segment. inline Segment* NewSegment(size_t requested_size); // The free region in the current (front) segment is represented as // the half-open interval [position, limit). The 'position' variable // is guaranteed to be aligned as dictated by kAlignment. Address position_; Address limit_; AccountingAllocator* allocator_; Segment* segment_head_; const char* name_; bool sealed_; }; // ZoneObject is an abstraction that helps define classes of objects // allocated in the Zone. Use it as a base class; see ast.h. class ZoneObject { public: // Allocate a new ZoneObject of 'size' bytes in the Zone. void* operator new(size_t size, Zone* zone) { return zone->New(size); } // Ideally, the delete operator should be private instead of // public, but unfortunately the compiler sometimes synthesizes // (unused) destructors for classes derived from ZoneObject, which // require the operator to be visible. MSVC requires the delete // operator to be public. // ZoneObjects should never be deleted individually; use // Zone::DeleteAll() to delete all zone objects in one go. void operator delete(void*, size_t) { UNREACHABLE(); } void operator delete(void* pointer, Zone* zone) { UNREACHABLE(); } }; // The ZoneAllocationPolicy is used to specialize generic data // structures to allocate themselves and their elements in the Zone. class ZoneAllocationPolicy final { public: explicit ZoneAllocationPolicy(Zone* zone) : zone_(zone) {} void* New(size_t size) { return zone()->New(size); } static void Delete(void* pointer) {} Zone* zone() const { return zone_; } private: Zone* zone_; }; template class Vector; // ZoneLists are growable lists with constant-time access to the // elements. The list itself and all its elements are allocated in the // Zone. ZoneLists cannot be deleted individually; you can delete all // objects in the Zone by calling Zone::DeleteAll(). template class ZoneList final { public: // Construct a new ZoneList with the given capacity; the length is // always zero. The capacity must be non-negative. ZoneList(int capacity, Zone* zone) { Initialize(capacity, zone); } // Construct a new ZoneList from a std::initializer_list ZoneList(std::initializer_list list, Zone* zone) { Initialize(static_cast(list.size()), zone); for (auto& i : list) Add(i, zone); } // Construct a new ZoneList by copying the elements of the given ZoneList. ZoneList(const ZoneList& other, Zone* zone) { Initialize(other.length(), zone); AddAll(other, zone); } V8_INLINE ~ZoneList() { DeleteData(data_); } // Please the MSVC compiler. We should never have to execute this. V8_INLINE void operator delete(void* p, ZoneAllocationPolicy allocator) { UNREACHABLE(); } void* operator new(size_t size, Zone* zone) { return zone->New(size); } // Returns a reference to the element at index i. This reference is not safe // to use after operations that can change the list's backing store // (e.g. Add). inline T& operator[](int i) const { DCHECK_LE(0, i); DCHECK_GT(static_cast(length_), static_cast(i)); return data_[i]; } inline T& at(int i) const { return operator[](i); } inline T& last() const { return at(length_ - 1); } inline T& first() const { return at(0); } using iterator = T*; inline iterator begin() const { return &data_[0]; } inline iterator end() const { return &data_[length_]; } V8_INLINE bool is_empty() const { return length_ == 0; } V8_INLINE int length() const { return length_; } V8_INLINE int capacity() const { return capacity_; } Vector ToVector() const { return Vector(data_, length_); } Vector ToVector(int start, int length) const { return Vector(data_ + start, std::min(length_ - start, length)); } Vector ToConstVector() const { return Vector(data_, length_); } V8_INLINE void Initialize(int capacity, Zone* zone) { DCHECK_GE(capacity, 0); data_ = (capacity > 0) ? NewData(capacity, ZoneAllocationPolicy(zone)) : nullptr; capacity_ = capacity; length_ = 0; } // Adds a copy of the given 'element' to the end of the list, // expanding the list if necessary. void Add(const T& element, Zone* zone); // Add all the elements from the argument list to this list. void AddAll(const ZoneList& other, Zone* zone); // Add all the elements from the vector to this list. void AddAll(const Vector& other, Zone* zone); // Inserts the element at the specific index. void InsertAt(int index, const T& element, Zone* zone); // Added 'count' elements with the value 'value' and returns a // vector that allows access to the elements. The vector is valid // until the next change is made to this list. Vector AddBlock(T value, int count, Zone* zone); // Overwrites the element at the specific index. void Set(int index, const T& element); // Removes the i'th element without deleting it even if T is a // pointer type; moves all elements above i "down". Returns the // removed element. This function's complexity is linear in the // size of the list. T Remove(int i); // Removes the last element without deleting it even if T is a // pointer type. Returns the removed element. V8_INLINE T RemoveLast() { return Remove(length_ - 1); } // Clears the list by freeing the storage memory. If you want to keep the // memory, use Rewind(0) instead. Be aware, that even if T is a // pointer type, clearing the list doesn't delete the entries. V8_INLINE void Clear(); // Drops all but the first 'pos' elements from the list. V8_INLINE void Rewind(int pos); inline bool Contains(const T& elm) const { for (int i = 0; i < length_; i++) { if (data_[i] == elm) return true; } return false; } // Iterate through all list entries, starting at index 0. template void Iterate(Visitor* visitor); // Sort all list entries (using QuickSort) template void Sort(CompareFunction cmp); template void StableSort(CompareFunction cmp, size_t start, size_t length); void operator delete(void* pointer) { UNREACHABLE(); } void operator delete(void* pointer, Zone* zone) { UNREACHABLE(); } private: T* data_; int capacity_; int length_; V8_INLINE T* NewData(int n, ZoneAllocationPolicy allocator) { return static_cast(allocator.New(n * sizeof(T))); } V8_INLINE void DeleteData(T* data) { ZoneAllocationPolicy::Delete(data); } // Increase the capacity of a full list, and add an element. // List must be full already. void ResizeAdd(const T& element, ZoneAllocationPolicy allocator); // Inlined implementation of ResizeAdd, shared by inlined and // non-inlined versions of ResizeAdd. void ResizeAddInternal(const T& element, ZoneAllocationPolicy allocator); // Resize the list. void Resize(int new_capacity, ZoneAllocationPolicy allocator); DISALLOW_COPY_AND_ASSIGN(ZoneList); }; // ZonePtrList is a ZoneList of pointers to ZoneObjects allocated in the same // zone as the list object. template using ZonePtrList = ZoneList; // ScopedList is a scope-lifetime list with a std::vector backing that can be // re-used between ScopedLists. Note that a ScopedList in an outer scope cannot // add any entries if there is a ScopedList with the same backing in an inner // scope. template class ScopedList final { // The backing can either be the same type as the list type, or, for pointers, // we additionally allow a void* backing store. STATIC_ASSERT((std::is_same::value) || (std::is_same::value && std::is_pointer::value)); public: explicit ScopedList(std::vector* buffer) : buffer_(*buffer), start_(buffer->size()), end_(buffer->size()) {} ~ScopedList() { Rewind(); } void Rewind() { DCHECK_EQ(buffer_.size(), end_); buffer_.resize(start_); end_ = start_; } void MergeInto(ScopedList* parent) { DCHECK_EQ(parent->end_, start_); parent->end_ = end_; start_ = end_; DCHECK_EQ(0, length()); } int length() const { return static_cast(end_ - start_); } const T& at(int i) const { size_t index = start_ + i; DCHECK_LE(start_, index); DCHECK_LT(index, buffer_.size()); return *reinterpret_cast(&buffer_[index]); } T& at(int i) { size_t index = start_ + i; DCHECK_LE(start_, index); DCHECK_LT(index, buffer_.size()); return *reinterpret_cast(&buffer_[index]); } void CopyTo(ZoneList* target, Zone* zone) const { DCHECK_LE(end_, buffer_.size()); // Make sure we don't reference absent elements below. if (length() == 0) return; target->Initialize(length(), zone); T* data = reinterpret_cast(&buffer_[start_]); target->AddAll(Vector(data, length()), zone); } Vector CopyTo(Zone* zone) { DCHECK_LE(end_, buffer_.size()); T* data = zone->NewArray(length()); if (length() != 0) { MemCopy(data, &buffer_[start_], length() * sizeof(T)); } return Vector(data, length()); } void Add(const T& value) { DCHECK_EQ(buffer_.size(), end_); buffer_.push_back(value); ++end_; } void AddAll(const ZoneList& list) { DCHECK_EQ(buffer_.size(), end_); buffer_.reserve(buffer_.size() + list.length()); for (int i = 0; i < list.length(); i++) { buffer_.push_back(list.at(i)); } end_ += list.length(); } using iterator = T*; inline iterator begin() const { return reinterpret_cast(buffer_.data() + start_); } inline iterator end() const { return reinterpret_cast(buffer_.data() + end_); } private: std::vector& buffer_; size_t start_; size_t end_; }; template using ScopedPtrList = ScopedList; using ZoneHashMap = base::PointerTemplateHashMapImpl; using CustomMatcherZoneHashMap = base::CustomMatcherTemplateHashMapImpl; } // namespace internal } // namespace v8 // The accidential pattern // new (zone) SomeObject() // where SomeObject does not inherit from ZoneObject leads to nasty crashes. // This triggers a compile-time error instead. template ::value>::type> void* operator new(size_t size, T zone) { static_assert(false && sizeof(T), "Placement new with a zone is only permitted for classes " "inheriting from ZoneObject"); UNREACHABLE(); } #endif // V8_ZONE_ZONE_H_