// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_VECTOR_H_ #define V8_VECTOR_H_ #include #include #include #include "src/allocation.h" #include "src/checks.h" #include "src/globals.h" namespace v8 { namespace internal { template class Vector { public: constexpr Vector() : start_(nullptr), length_(0) {} Vector(T* data, size_t length) : start_(data), length_(length) { DCHECK(length == 0 || data != nullptr); } template explicit constexpr Vector(T (&arr)[N]) : start_(arr), length_(N) {} static Vector New(int length) { return Vector(NewArray(length), length); } // Returns a vector using the same backing storage as this one, // spanning from and including 'from', to but not including 'to'. Vector SubVector(size_t from, size_t to) const { DCHECK_LE(from, to); DCHECK_LE(to, length_); return Vector(start() + from, to - from); } // Returns the length of the vector. int length() const { DCHECK(length_ <= static_cast(std::numeric_limits::max())); return static_cast(length_); } // Returns the length of the vector as a size_t. constexpr size_t size() const { return length_; } // Returns whether or not the vector is empty. constexpr bool is_empty() const { return length_ == 0; } // Returns the pointer to the start of the data in the vector. constexpr T* start() const { return start_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](size_t index) const { DCHECK_LT(index, length_); return start_[index]; } const T& at(size_t index) const { return operator[](index); } T& first() { return start_[0]; } T& last() { DCHECK_LT(0, length_); return start_[length_ - 1]; } typedef T* iterator; constexpr iterator begin() const { return start_; } constexpr iterator end() const { return start_ + length_; } // Returns a clone of this vector with a new backing store. Vector Clone() const { T* result = NewArray(length_); for (size_t i = 0; i < length_; i++) result[i] = start_[i]; return Vector(result, length_); } template void Sort(CompareFunction cmp, size_t s, size_t l) { std::sort(start() + s, start() + s + l, RawComparer(cmp)); } template void Sort(CompareFunction cmp) { std::sort(start(), start() + length(), RawComparer(cmp)); } void Sort() { std::sort(start(), start() + length()); } template void StableSort(CompareFunction cmp, size_t s, size_t l) { std::stable_sort(start() + s, start() + s + l, RawComparer(cmp)); } template void StableSort(CompareFunction cmp) { std::stable_sort(start(), start() + length(), RawComparer(cmp)); } void StableSort() { std::stable_sort(start(), start() + length()); } void Truncate(size_t length) { DCHECK(length <= length_); length_ = length; } // Releases the array underlying this vector. Once disposed the // vector is empty. void Dispose() { DeleteArray(start_); start_ = nullptr; length_ = 0; } Vector operator+(size_t offset) { DCHECK_LE(offset, length_); return Vector(start_ + offset, length_ - offset); } Vector operator+=(size_t offset) { DCHECK_LE(offset, length_); start_ += offset; length_ -= offset; return *this; } // Implicit conversion from Vector to Vector. inline operator Vector() { return Vector::cast(*this); } // Factory method for creating empty vectors. static Vector empty() { return Vector(nullptr, 0); } template static constexpr Vector cast(Vector input) { return Vector(reinterpret_cast(input.start()), input.length() * sizeof(S) / sizeof(T)); } bool operator==(const Vector& other) const { if (length_ != other.length_) return false; if (start_ == other.start_) return true; for (size_t i = 0; i < length_; ++i) { if (start_[i] != other.start_[i]) { return false; } } return true; } private: T* start_; size_t length_; template class RawComparer { public: explicit RawComparer(CookedComparer cmp) : cmp_(cmp) {} bool operator()(const T& a, const T& b) { return cmp_(&a, &b) < 0; } private: CookedComparer cmp_; }; }; template class ScopedVector : public Vector { public: explicit ScopedVector(int length) : Vector(NewArray(length), length) { } ~ScopedVector() { DeleteArray(this->start()); } private: DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector); }; template class OwnedVector { public: MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(OwnedVector); OwnedVector(std::unique_ptr data, size_t length) : data_(std::move(data)), length_(length) { DCHECK_IMPLIES(length_ > 0, data_ != nullptr); } // Implicit conversion from {OwnedVector} to {OwnedVector}, instantiable // if {std::unique_ptr} can be converted to {std::unique_ptr}. // Can be used to convert {OwnedVector} to {OwnedVector}. template , std::unique_ptr>::value>::type> OwnedVector(OwnedVector&& other) : data_(other.ReleaseData()), length_(other.size()) {} // Returns the length of the vector as a size_t. constexpr size_t size() const { return length_; } // Returns whether or not the vector is empty. constexpr bool is_empty() const { return length_ == 0; } // Returns the pointer to the start of the data in the vector. T* start() const { DCHECK_IMPLIES(length_ > 0, data_ != nullptr); return data_.get(); } // Returns a {Vector} view of the data in this vector. Vector as_vector() const { return Vector(start(), size()); } // Releases the backing data from this vector and transfers ownership to the // caller. This vectors data can no longer be used afterwards. std::unique_ptr ReleaseData() { return std::move(data_); } // Allocates a new vector of the specified size via the default allocator. static OwnedVector New(size_t size) { if (size == 0) return {}; return OwnedVector(std::unique_ptr(new T[size]), size); } // Allocates a new vector containing the specified collection of values. // {Iterator} is the common type of {std::begin} and {std::end} called on a // {const U&}. This function is only instantiable if that type exists. template ())), decltype(std::end(std::declval()))>::type> static OwnedVector Of(const U& collection) { Iterator begin = std::begin(collection); Iterator end = std::end(collection); OwnedVector vec = New(std::distance(begin, end)); std::copy(begin, end, vec.start()); return vec; } private: std::unique_ptr data_; size_t length_ = 0; }; inline int StrLength(const char* string) { size_t length = strlen(string); DCHECK(length == static_cast(static_cast(length))); return static_cast(length); } #define STATIC_CHAR_VECTOR(x) \ v8::internal::Vector(reinterpret_cast(x), \ arraysize(x) - 1) inline Vector CStrVector(const char* data) { return Vector(data, StrLength(data)); } inline Vector OneByteVector(const char* data, int length) { return Vector(reinterpret_cast(data), length); } inline Vector OneByteVector(const char* data) { return OneByteVector(data, StrLength(data)); } inline Vector MutableCStrVector(char* data) { return Vector(data, StrLength(data)); } inline Vector MutableCStrVector(char* data, int max) { int length = StrLength(data); return Vector(data, (length < max) ? length : max); } template inline constexpr Vector ArrayVector(T (&arr)[N]) { return Vector(arr); } } // namespace internal } // namespace v8 #endif // V8_VECTOR_H_