// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_UTILS_UTILS_H_ #define V8_UTILS_UTILS_H_ #include #include #include #include #include #include #include "include/v8.h" #include "src/base/bits.h" #include "src/base/compiler-specific.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/base/platform/platform.h" #include "src/base/v8-fallthrough.h" #include "src/common/globals.h" #include "src/utils/allocation.h" #include "src/utils/vector.h" #if defined(V8_USE_SIPHASH) #include "src/third_party/siphash/halfsiphash.h" #endif #if defined(V8_OS_AIX) #include // NOLINT(build/c++11) #endif namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // General helper functions // Returns the value (0 .. 15) of a hexadecimal character c. // If c is not a legal hexadecimal character, returns a value < 0. inline int HexValue(uc32 c) { c -= '0'; if (static_cast(c) <= 9) return c; c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. if (static_cast(c) <= 5) return c + 10; return -1; } inline char HexCharOfValue(int value) { DCHECK(0 <= value && value <= 16); if (value < 10) return value + '0'; return value - 10 + 'A'; } inline int BoolToInt(bool b) { return b ? 1 : 0; } // Checks if value is in range [lower_limit, higher_limit] using a single // branch. template inline constexpr bool IsInRange(T value, U lower_limit, U higher_limit) { #if V8_CAN_HAVE_DCHECK_IN_CONSTEXPR DCHECK(lower_limit <= higher_limit); #endif STATIC_ASSERT(sizeof(U) <= sizeof(T)); using unsigned_T = typename std::make_unsigned::type; // Use static_cast to support enum classes. return static_cast(static_cast(value) - static_cast(lower_limit)) <= static_cast(static_cast(higher_limit) - static_cast(lower_limit)); } // Checks if [index, index+length) is in range [0, max). Note that this check // works even if {index+length} would wrap around. inline constexpr bool IsInBounds(size_t index, size_t length, size_t max) { return length <= max && index <= (max - length); } // Checks if [index, index+length) is in range [0, max). If not, {length} is // clamped to its valid range. Note that this check works even if // {index+length} would wrap around. template inline bool ClampToBounds(T index, T* length, T max) { if (index > max) { *length = 0; return false; } T avail = max - index; bool oob = *length > avail; if (oob) *length = avail; return !oob; } // X must be a power of 2. Returns the number of trailing zeros. template ::value>::type> inline int WhichPowerOf2(T x) { DCHECK(base::bits::IsPowerOfTwo(x)); int bits = 0; #ifdef DEBUG const T original_x = x; #endif constexpr int max_bits = sizeof(T) * 8; static_assert(max_bits <= 64, "integral types are not bigger than 64 bits"); // Avoid shifting by more than the bit width of x to avoid compiler warnings. #define CHECK_BIGGER(s) \ if (max_bits > s && x >= T{1} << (max_bits > s ? s : 0)) { \ bits += s; \ x >>= max_bits > s ? s : 0; \ } CHECK_BIGGER(32) CHECK_BIGGER(16) CHECK_BIGGER(8) CHECK_BIGGER(4) #undef CHECK_BIGGER switch (x) { default: UNREACHABLE(); case 8: bits++; V8_FALLTHROUGH; case 4: bits++; V8_FALLTHROUGH; case 2: bits++; V8_FALLTHROUGH; case 1: break; } DCHECK_EQ(T{1} << bits, original_x); return bits; } inline int MostSignificantBit(uint32_t x) { static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4}; int nibble = 0; if (x & 0xffff0000) { nibble += 16; x >>= 16; } if (x & 0xff00) { nibble += 8; x >>= 8; } if (x & 0xf0) { nibble += 4; x >>= 4; } return nibble + msb4[x]; } template static T ArithmeticShiftRight(T x, int shift) { DCHECK_LE(0, shift); if (x < 0) { // Right shift of signed values is implementation defined. Simulate a // true arithmetic right shift by adding leading sign bits. using UnsignedT = typename std::make_unsigned::type; UnsignedT mask = ~(static_cast(~0) >> shift); return (static_cast(x) >> shift) | mask; } else { return x >> shift; } } template int Compare(const T& a, const T& b) { if (a == b) return 0; else if (a < b) return -1; else return 1; } // Compare function to compare the object pointer value of two // handlified objects. The handles are passed as pointers to the // handles. template class Handle; // Forward declaration. template int HandleObjectPointerCompare(const Handle* a, const Handle* b) { return Compare(*(*a), *(*b)); } // Returns the maximum of the two parameters. template constexpr T Max(T a, T b) { return a < b ? b : a; } // Returns the minimum of the two parameters. template constexpr T Min(T a, T b) { return a < b ? a : b; } // Returns the maximum of the two parameters according to JavaScript semantics. template T JSMax(T x, T y) { if (std::isnan(x)) return x; if (std::isnan(y)) return y; if (std::signbit(x) < std::signbit(y)) return x; return x > y ? x : y; } // Returns the maximum of the two parameters according to JavaScript semantics. template T JSMin(T x, T y) { if (std::isnan(x)) return x; if (std::isnan(y)) return y; if (std::signbit(x) < std::signbit(y)) return y; return x > y ? y : x; } // Returns the absolute value of its argument. template ::value>::type> typename std::make_unsigned::type Abs(T a) { // This is a branch-free implementation of the absolute value function and is // described in Warren's "Hacker's Delight", chapter 2. It avoids undefined // behavior with the arithmetic negation operation on signed values as well. using unsignedT = typename std::make_unsigned::type; unsignedT x = static_cast(a); unsignedT y = static_cast(a >> (sizeof(T) * 8 - 1)); return (x ^ y) - y; } // Returns the negative absolute value of its argument. template ::value>::type> T Nabs(T a) { return a < 0 ? a : -a; } inline double Modulo(double x, double y) { #if defined(V8_OS_WIN) // Workaround MS fmod bugs. ECMA-262 says: // dividend is finite and divisor is an infinity => result equals dividend // dividend is a zero and divisor is nonzero finite => result equals dividend if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) && !(x == 0 && (y != 0 && std::isfinite(y)))) { double result = fmod(x, y); // Workaround MS bug in VS CRT in some OS versions, https://crbug.com/915045 // fmod(-17, +/-1) should equal -0.0 but now returns 0.0. if (x < 0 && result == 0) result = -0.0; x = result; } return x; #elif defined(V8_OS_AIX) // AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE) feclearexcept(FE_ALL_EXCEPT); double result = std::fmod(x, y); int exception = fetestexcept(FE_UNDERFLOW); return (exception ? x : result); #else return std::fmod(x, y); #endif } template T SaturateAdd(T a, T b) { if (std::is_signed::value) { if (a > 0 && b > 0) { if (a > std::numeric_limits::max() - b) { return std::numeric_limits::max(); } } else if (a < 0 && b < 0) { if (a < std::numeric_limits::min() - b) { return std::numeric_limits::min(); } } } else { CHECK(std::is_unsigned::value); if (a > std::numeric_limits::max() - b) { return std::numeric_limits::max(); } } return a + b; } template T SaturateSub(T a, T b) { if (std::is_signed::value) { if (a >= 0 && b < 0) { if (a > std::numeric_limits::max() + b) { return std::numeric_limits::max(); } } else if (a < 0 && b > 0) { if (a < std::numeric_limits::min() + b) { return std::numeric_limits::min(); } } } else { CHECK(std::is_unsigned::value); if (a < b) { return static_cast(0); } } return a - b; } // ---------------------------------------------------------------------------- // BitField is a help template for encoding and decode bitfield with // unsigned content. // Instantiate them via 'using', which is cheaper than deriving a new class: // using MyBitField = BitField; // The BitField class is final to enforce this style over derivation. template class BitField final { public: STATIC_ASSERT(std::is_unsigned::value); STATIC_ASSERT(shift < 8 * sizeof(U)); // Otherwise shifts by {shift} are UB. STATIC_ASSERT(size < 8 * sizeof(U)); // Otherwise shifts by {size} are UB. STATIC_ASSERT(shift + size <= 8 * sizeof(U)); STATIC_ASSERT(size > 0); using FieldType = T; // A type U mask of bit field. To use all bits of a type U of x bits // in a bitfield without compiler warnings we have to compute 2^x // without using a shift count of x in the computation. static constexpr int kShift = shift; static constexpr int kSize = size; static constexpr U kMask = ((U{1} << kShift) << kSize) - (U{1} << kShift); static constexpr int kLastUsedBit = kShift + kSize - 1; static constexpr U kNumValues = U{1} << kSize; // Value for the field with all bits set. static constexpr T kMax = static_cast(kNumValues - 1); template using Next = BitField; // Tells whether the provided value fits into the bit field. static constexpr bool is_valid(T value) { return (static_cast(value) & ~static_cast(kMax)) == 0; } // Returns a type U with the bit field value encoded. static constexpr U encode(T value) { #if V8_CAN_HAVE_DCHECK_IN_CONSTEXPR DCHECK(is_valid(value)); #endif return static_cast(value) << kShift; } // Returns a type U with the bit field value updated. static constexpr U update(U previous, T value) { return (previous & ~kMask) | encode(value); } // Extracts the bit field from the value. static constexpr T decode(U value) { return static_cast((value & kMask) >> kShift); } }; template using BitField8 = BitField; template using BitField16 = BitField; template using BitField64 = BitField; // Helper macros for defining a contiguous sequence of bit fields. Example: // (backslashes at the ends of respective lines of this multi-line macro // definition are omitted here to please the compiler) // // #define MAP_BIT_FIELD1(V, _) // V(IsAbcBit, bool, 1, _) // V(IsBcdBit, bool, 1, _) // V(CdeBits, int, 5, _) // V(DefBits, MutableMode, 1, _) // // DEFINE_BIT_FIELDS(MAP_BIT_FIELD1) // or // DEFINE_BIT_FIELDS_64(MAP_BIT_FIELD1) // #define DEFINE_BIT_FIELD_RANGE_TYPE(Name, Type, Size, _) \ k##Name##Start, k##Name##End = k##Name##Start + Size - 1, #define DEFINE_BIT_RANGES(LIST_MACRO) \ struct LIST_MACRO##_Ranges { \ enum { LIST_MACRO(DEFINE_BIT_FIELD_RANGE_TYPE, _) kBitsCount }; \ }; #define DEFINE_BIT_FIELD_TYPE(Name, Type, Size, RangesName) \ using Name = BitField; #define DEFINE_BIT_FIELD_64_TYPE(Name, Type, Size, RangesName) \ using Name = BitField64; #define DEFINE_BIT_FIELDS(LIST_MACRO) \ DEFINE_BIT_RANGES(LIST_MACRO) \ LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges) #define DEFINE_BIT_FIELDS_64(LIST_MACRO) \ DEFINE_BIT_RANGES(LIST_MACRO) \ LIST_MACRO(DEFINE_BIT_FIELD_64_TYPE, LIST_MACRO##_Ranges) // ---------------------------------------------------------------------------- // BitSetComputer is a help template for encoding and decoding information for // a variable number of items in an array. // // To encode boolean data in a smi array you would use: // using BoolComputer = BitSetComputer; // template class BitSetComputer { public: static const int kItemsPerWord = kBitsPerWord / kBitsPerItem; static const int kMask = (1 << kBitsPerItem) - 1; // The number of array elements required to embed T information for each item. static int word_count(int items) { if (items == 0) return 0; return (items - 1) / kItemsPerWord + 1; } // The array index to look at for item. static int index(int base_index, int item) { return base_index + item / kItemsPerWord; } // Extract T data for a given item from data. static T decode(U data, int item) { return static_cast((data >> shift(item)) & kMask); } // Return the encoding for a store of value for item in previous. static U encode(U previous, int item, T value) { int shift_value = shift(item); int set_bits = (static_cast(value) << shift_value); return (previous & ~(kMask << shift_value)) | set_bits; } static int shift(int item) { return (item % kItemsPerWord) * kBitsPerItem; } }; // Helper macros for defining a contiguous sequence of field offset constants. // Example: (backslashes at the ends of respective lines of this multi-line // macro definition are omitted here to please the compiler) // // #define MAP_FIELDS(V) // V(kField1Offset, kTaggedSize) // V(kField2Offset, kIntSize) // V(kField3Offset, kIntSize) // V(kField4Offset, kSystemPointerSize) // V(kSize, 0) // // DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS) // #define DEFINE_ONE_FIELD_OFFSET(Name, Size) Name, Name##End = Name + (Size)-1, #define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \ enum { \ LIST_MACRO##_StartOffset = StartOffset - 1, \ LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \ }; // Size of the field defined by DEFINE_FIELD_OFFSET_CONSTANTS #define FIELD_SIZE(Name) (Name##End + 1 - Name) // Compare two offsets with static cast #define STATIC_ASSERT_FIELD_OFFSETS_EQUAL(Offset1, Offset2) \ STATIC_ASSERT(static_cast(Offset1) == Offset2) // ---------------------------------------------------------------------------- // Hash function. static const uint64_t kZeroHashSeed = 0; // Thomas Wang, Integer Hash Functions. // http://www.concentric.net/~Ttwang/tech/inthash.htm` inline uint32_t ComputeUnseededHash(uint32_t key) { uint32_t hash = key; hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1; hash = hash ^ (hash >> 12); hash = hash + (hash << 2); hash = hash ^ (hash >> 4); hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11); hash = hash ^ (hash >> 16); return hash & 0x3fffffff; } inline uint32_t ComputeLongHash(uint64_t key) { uint64_t hash = key; hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1; hash = hash ^ (hash >> 31); hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4); hash = hash ^ (hash >> 11); hash = hash + (hash << 6); hash = hash ^ (hash >> 22); return static_cast(hash & 0x3fffffff); } inline uint32_t ComputeSeededHash(uint32_t key, uint64_t seed) { #ifdef V8_USE_SIPHASH return halfsiphash(key, seed); #else return ComputeLongHash(static_cast(key) ^ seed); #endif // V8_USE_SIPHASH } inline uint32_t ComputePointerHash(void* ptr) { return ComputeUnseededHash( static_cast(reinterpret_cast(ptr))); } inline uint32_t ComputeAddressHash(Address address) { return ComputeUnseededHash(static_cast(address & 0xFFFFFFFFul)); } // ---------------------------------------------------------------------------- // Miscellaneous // Memory offset for lower and higher bits in a 64 bit integer. #if defined(V8_TARGET_LITTLE_ENDIAN) static const int kInt64LowerHalfMemoryOffset = 0; static const int kInt64UpperHalfMemoryOffset = 4; #elif defined(V8_TARGET_BIG_ENDIAN) static const int kInt64LowerHalfMemoryOffset = 4; static const int kInt64UpperHalfMemoryOffset = 0; #endif // V8_TARGET_LITTLE_ENDIAN // A static resource holds a static instance that can be reserved in // a local scope using an instance of Access. Attempts to re-reserve // the instance will cause an error. template class StaticResource { public: StaticResource() : is_reserved_(false) {} private: template friend class Access; T instance_; bool is_reserved_; }; // Locally scoped access to a static resource. template class Access { public: explicit Access(StaticResource* resource) : resource_(resource), instance_(&resource->instance_) { DCHECK(!resource->is_reserved_); resource->is_reserved_ = true; } ~Access() { resource_->is_reserved_ = false; resource_ = nullptr; instance_ = nullptr; } T* value() { return instance_; } T* operator->() { return instance_; } private: StaticResource* resource_; T* instance_; }; // A pointer that can only be set once and doesn't allow NULL values. template class SetOncePointer { public: SetOncePointer() = default; bool is_set() const { return pointer_ != nullptr; } T* get() const { DCHECK_NOT_NULL(pointer_); return pointer_; } void set(T* value) { DCHECK(pointer_ == nullptr && value != nullptr); pointer_ = value; } SetOncePointer& operator=(T* value) { set(value); return *this; } bool operator==(std::nullptr_t) const { return pointer_ == nullptr; } bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; } private: T* pointer_ = nullptr; }; // Compare 8bit/16bit chars to 8bit/16bit chars. template inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs, size_t chars) { const lchar* limit = lhs + chars; if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) { // memcmp compares byte-by-byte, yielding wrong results for two-byte // strings on little-endian systems. return memcmp(lhs, rhs, chars); } while (lhs < limit) { int r = static_cast(*lhs) - static_cast(*rhs); if (r != 0) return r; ++lhs; ++rhs; } return 0; } template inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) { DCHECK_LE(sizeof(lchar), 2); DCHECK_LE(sizeof(rchar), 2); if (sizeof(lchar) == 1) { if (sizeof(rchar) == 1) { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } else { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } } else { if (sizeof(rchar) == 1) { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } else { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } } } // Calculate 10^exponent. inline int TenToThe(int exponent) { DCHECK_LE(exponent, 9); DCHECK_GE(exponent, 1); int answer = 10; for (int i = 1; i < exponent; i++) answer *= 10; return answer; } template class EmbeddedContainer { public: EmbeddedContainer() : elems_() {} int length() const { return NumElements; } const ElementType& operator[](int i) const { DCHECK(i < length()); return elems_[i]; } ElementType& operator[](int i) { DCHECK(i < length()); return elems_[i]; } private: ElementType elems_[NumElements]; }; template class EmbeddedContainer { public: int length() const { return 0; } const ElementType& operator[](int i) const { UNREACHABLE(); static ElementType t = 0; return t; } ElementType& operator[](int i) { UNREACHABLE(); static ElementType t = 0; return t; } }; // Helper class for building result strings in a character buffer. The // purpose of the class is to use safe operations that checks the // buffer bounds on all operations in debug mode. // This simple base class does not allow formatted output. class SimpleStringBuilder { public: // Create a string builder with a buffer of the given size. The // buffer is allocated through NewArray and must be // deallocated by the caller of Finalize(). explicit SimpleStringBuilder(int size); SimpleStringBuilder(char* buffer, int size) : buffer_(buffer, size), position_(0) {} ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); } int size() const { return buffer_.length(); } // Get the current position in the builder. int position() const { DCHECK(!is_finalized()); return position_; } // Reset the position. void Reset() { position_ = 0; } // Add a single character to the builder. It is not allowed to add // 0-characters; use the Finalize() method to terminate the string // instead. void AddCharacter(char c) { DCHECK_NE(c, '\0'); DCHECK(!is_finalized() && position_ < buffer_.length()); buffer_[position_++] = c; } // Add an entire string to the builder. Uses strlen() internally to // compute the length of the input string. void AddString(const char* s); // Add the first 'n' characters of the given 0-terminated string 's' to the // builder. The input string must have enough characters. void AddSubstring(const char* s, int n); // Add character padding to the builder. If count is non-positive, // nothing is added to the builder. void AddPadding(char c, int count); // Add the decimal representation of the value. void AddDecimalInteger(int value); // Finalize the string by 0-terminating it and returning the buffer. char* Finalize(); protected: Vector buffer_; int position_; bool is_finalized() const { return position_ < 0; } private: DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder); }; // Bit field extraction. inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); } inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { return (x >> lsb) & ((static_cast(1) << (1 + msb - lsb)) - 1); } inline int32_t signed_bitextract_32(int msb, int lsb, uint32_t x) { return static_cast(x << (31 - msb)) >> (lsb + 31 - msb); } // Check number width. inline bool is_intn(int64_t x, unsigned n) { DCHECK((0 < n) && (n < 64)); int64_t limit = static_cast(1) << (n - 1); return (-limit <= x) && (x < limit); } inline bool is_uintn(int64_t x, unsigned n) { DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); return !(x >> n); } template inline T truncate_to_intn(T x, unsigned n) { DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); return (x & ((static_cast(1) << n) - 1)); } // clang-format off #define INT_1_TO_63_LIST(V) \ V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) V(10) \ V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) V(20) \ V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) V(30) \ V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) V(50) \ V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) V(60) \ V(61) V(62) V(63) // clang-format on #define DECLARE_IS_INT_N(N) \ inline bool is_int##N(int64_t x) { return is_intn(x, N); } #define DECLARE_IS_UINT_N(N) \ template \ inline bool is_uint##N(T x) { \ return is_uintn(x, N); \ } #define DECLARE_TRUNCATE_TO_INT_N(N) \ template \ inline T truncate_to_int##N(T x) { \ return truncate_to_intn(x, N); \ } INT_1_TO_63_LIST(DECLARE_IS_INT_N) INT_1_TO_63_LIST(DECLARE_IS_UINT_N) INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) #undef DECLARE_IS_INT_N #undef DECLARE_IS_UINT_N #undef DECLARE_TRUNCATE_TO_INT_N // clang-format off #define INT_0_TO_127_LIST(V) \ V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) \ V(10) V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) \ V(20) V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) \ V(30) V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) \ V(40) V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) \ V(50) V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) \ V(60) V(61) V(62) V(63) V(64) V(65) V(66) V(67) V(68) V(69) \ V(70) V(71) V(72) V(73) V(74) V(75) V(76) V(77) V(78) V(79) \ V(80) V(81) V(82) V(83) V(84) V(85) V(86) V(87) V(88) V(89) \ V(90) V(91) V(92) V(93) V(94) V(95) V(96) V(97) V(98) V(99) \ V(100) V(101) V(102) V(103) V(104) V(105) V(106) V(107) V(108) V(109) \ V(110) V(111) V(112) V(113) V(114) V(115) V(116) V(117) V(118) V(119) \ V(120) V(121) V(122) V(123) V(124) V(125) V(126) V(127) // clang-format on class FeedbackSlot { public: FeedbackSlot() : id_(kInvalidSlot) {} explicit FeedbackSlot(int id) : id_(id) {} int ToInt() const { return id_; } static FeedbackSlot Invalid() { return FeedbackSlot(); } bool IsInvalid() const { return id_ == kInvalidSlot; } bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; } bool operator!=(FeedbackSlot that) const { return !(*this == that); } friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); } V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream& os, FeedbackSlot); private: static const int kInvalidSlot = -1; int id_; }; V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, FeedbackSlot); class BailoutId { public: explicit BailoutId(int id) : id_(id) {} int ToInt() const { return id_; } static BailoutId None() { return BailoutId(kNoneId); } // Special bailout id support for deopting into the {JSConstructStub} stub. // The following hard-coded deoptimization points are supported by the stub: // - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}. // - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}. static BailoutId ConstructStubCreate() { return BailoutId(1); } static BailoutId ConstructStubInvoke() { return BailoutId(2); } bool IsValidForConstructStub() const { return id_ == ConstructStubCreate().ToInt() || id_ == ConstructStubInvoke().ToInt(); } bool IsNone() const { return id_ == kNoneId; } bool operator==(const BailoutId& other) const { return id_ == other.id_; } bool operator!=(const BailoutId& other) const { return id_ != other.id_; } friend size_t hash_value(BailoutId); V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId); private: friend class Builtins; static const int kNoneId = -1; // Using 0 could disguise errors. // Builtin continuations bailout ids start here. If you need to add a // non-builtin BailoutId, add it before this id so that this Id has the // highest number. static const int kFirstBuiltinContinuationId = 1; int id_; }; // ---------------------------------------------------------------------------- // I/O support. // Our version of printf(). V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...); V8_EXPORT_PRIVATE void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...); // Prepends the current process ID to the output. void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...); // Prepends the current process ID and given isolate pointer to the output. void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...); // Safe formatting print. Ensures that str is always null-terminated. // Returns the number of chars written, or -1 if output was truncated. V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 3) SNPrintF(Vector str, const char* format, ...); V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 0) VSNPrintF(Vector str, const char* format, va_list args); void StrNCpy(Vector dest, const char* src, size_t n); // Our version of fflush. void Flush(FILE* out); inline void Flush() { Flush(stdout); } // Read a line of characters after printing the prompt to stdout. The resulting // char* needs to be disposed off with DeleteArray by the caller. char* ReadLine(const char* prompt); // Append size chars from str to the file given by filename. // The file is overwritten. Returns the number of chars written. int AppendChars(const char* filename, const char* str, int size, bool verbose = true); // Write size chars from str to the file given by filename. // The file is overwritten. Returns the number of chars written. int WriteChars(const char* filename, const char* str, int size, bool verbose = true); // Write size bytes to the file given by filename. // The file is overwritten. Returns the number of bytes written. int WriteBytes(const char* filename, const byte* bytes, int size, bool verbose = true); // Write the C code // const char* = ""; // const int _len = ; // to the file given by filename. Only the first len chars are written. int WriteAsCFile(const char* filename, const char* varname, const char* str, int size, bool verbose = true); // Simple support to read a file into std::string. // On return, *exits tells whether the file existed. V8_EXPORT_PRIVATE std::string ReadFile(const char* filename, bool* exists, bool verbose = true); V8_EXPORT_PRIVATE std::string ReadFile(FILE* file, bool* exists, bool verbose = true); class StringBuilder : public SimpleStringBuilder { public: explicit StringBuilder(int size) : SimpleStringBuilder(size) {} StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) {} // Add formatted contents to the builder just like printf(). void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...); // Add formatted contents like printf based on a va_list. void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list); private: DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); }; bool DoubleToBoolean(double d); template bool TryAddIndexChar(uint32_t* index, Char c); template bool StringToArrayIndex(Stream* stream, index_t* index); // Returns the current stack top. Works correctly with ASAN and SafeStack. // GetCurrentStackPosition() should not be inlined, because it works on stack // frames if it were inlined into a function with a huge stack frame it would // return an address significantly above the actual current stack position. V8_EXPORT_PRIVATE V8_NOINLINE uintptr_t GetCurrentStackPosition(); static inline uint16_t ByteReverse16(uint16_t value) { #if V8_HAS_BUILTIN_BSWAP16 return __builtin_bswap16(value); #else return value << 8 | (value >> 8 & 0x00FF); #endif } static inline uint32_t ByteReverse32(uint32_t value) { #if V8_HAS_BUILTIN_BSWAP32 return __builtin_bswap32(value); #else return value << 24 | ((value << 8) & 0x00FF0000) | ((value >> 8) & 0x0000FF00) | ((value >> 24) & 0x00000FF); #endif } static inline uint64_t ByteReverse64(uint64_t value) { #if V8_HAS_BUILTIN_BSWAP64 return __builtin_bswap64(value); #else size_t bits_of_v = sizeof(value) * kBitsPerByte; return value << (bits_of_v - 8) | ((value << (bits_of_v - 24)) & 0x00FF000000000000) | ((value << (bits_of_v - 40)) & 0x0000FF0000000000) | ((value << (bits_of_v - 56)) & 0x000000FF00000000) | ((value >> (bits_of_v - 56)) & 0x00000000FF000000) | ((value >> (bits_of_v - 40)) & 0x0000000000FF0000) | ((value >> (bits_of_v - 24)) & 0x000000000000FF00) | ((value >> (bits_of_v - 8)) & 0x00000000000000FF); #endif } template static inline V ByteReverse(V value) { size_t size_of_v = sizeof(value); switch (size_of_v) { case 1: return value; case 2: return static_cast(ByteReverse16(static_cast(value))); case 4: return static_cast(ByteReverse32(static_cast(value))); case 8: return static_cast(ByteReverse64(static_cast(value))); default: UNREACHABLE(); } } V8_EXPORT_PRIVATE bool PassesFilter(Vector name, Vector filter); // Zap the specified area with a specific byte pattern. This currently defaults // to int3 on x64 and ia32. On other architectures this will produce unspecified // instruction sequences. // TODO(jgruber): Better support for other architectures. V8_INLINE void ZapCode(Address addr, size_t size_in_bytes) { static constexpr int kZapByte = 0xCC; std::memset(reinterpret_cast(addr), kZapByte, size_in_bytes); } } // namespace internal } // namespace v8 #endif // V8_UTILS_UTILS_H_