// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/common/globals.h" #include "src/torque/csa-generator.h" #include "src/torque/declaration-visitor.h" #include "src/torque/implementation-visitor.h" #include "src/torque/parameter-difference.h" #include "src/torque/server-data.h" #include "src/torque/type-inference.h" #include "src/torque/type-visitor.h" namespace v8 { namespace internal { namespace torque { VisitResult ImplementationVisitor::Visit(Expression* expr) { CurrentSourcePosition::Scope scope(expr->pos); switch (expr->kind) { #define ENUM_ITEM(name) \ case AstNode::Kind::k##name: \ return Visit(name::cast(expr)); AST_EXPRESSION_NODE_KIND_LIST(ENUM_ITEM) #undef ENUM_ITEM default: UNREACHABLE(); } } const Type* ImplementationVisitor::Visit(Statement* stmt) { CurrentSourcePosition::Scope scope(stmt->pos); StackScope stack_scope(this); const Type* result; switch (stmt->kind) { #define ENUM_ITEM(name) \ case AstNode::Kind::k##name: \ result = Visit(name::cast(stmt)); \ break; AST_STATEMENT_NODE_KIND_LIST(ENUM_ITEM) #undef ENUM_ITEM default: UNREACHABLE(); } DCHECK_EQ(result == TypeOracle::GetNeverType(), assembler().CurrentBlockIsComplete()); return result; } void ImplementationVisitor::BeginCSAFiles() { for (SourceId file : SourceFileMap::AllSources()) { std::ostream& source = GlobalContext::GeneratedPerFile(file).csa_ccfile; std::ostream& header = GlobalContext::GeneratedPerFile(file).csa_headerfile; for (const std::string& include_path : GlobalContext::CppIncludes()) { source << "#include " << StringLiteralQuote(include_path) << "\n"; } for (SourceId file : SourceFileMap::AllSources()) { source << "#include \"torque-generated/" + SourceFileMap::PathFromV8RootWithoutExtension(file) + "-tq-csa.h\"\n"; } source << "\n"; source << "namespace v8 {\n" << "namespace internal {\n" << "\n"; std::string headerDefine = "V8_GEN_TORQUE_GENERATED_" + UnderlinifyPath(SourceFileMap::PathFromV8Root(file)) + "_H_"; header << "#ifndef " << headerDefine << "\n"; header << "#define " << headerDefine << "\n\n"; header << "#include \"src/compiler/code-assembler.h\"\n"; header << "#include \"src/codegen/code-stub-assembler.h\"\n"; header << "#include \"src/utils/utils.h\"\n"; header << "#include \"torque-generated/field-offsets-tq.h\"\n"; header << "#include \"torque-generated/csa-types-tq.h\"\n"; header << "\n"; header << "namespace v8 {\n" << "namespace internal {\n" << "\n"; } } void ImplementationVisitor::EndCSAFiles() { for (SourceId file : SourceFileMap::AllSources()) { std::ostream& source = GlobalContext::GeneratedPerFile(file).csa_ccfile; std::ostream& header = GlobalContext::GeneratedPerFile(file).csa_headerfile; std::string headerDefine = "V8_GEN_TORQUE_GENERATED_" + UnderlinifyPath(SourceFileMap::PathFromV8Root(file)) + "_H_"; source << "} // namespace internal\n" << "} // namespace v8\n" << "\n"; header << "} // namespace internal\n" << "} // namespace v8\n" << "\n"; header << "#endif // " << headerDefine << "\n"; } } void ImplementationVisitor::Visit(NamespaceConstant* decl) { Signature signature{{}, base::nullopt, {{}, false}, 0, decl->type(), {}, false}; BindingsManagersScope bindings_managers_scope; header_out() << " "; GenerateFunctionDeclaration(header_out(), "", decl->external_name(), signature, {}); header_out() << ";\n"; GenerateFunctionDeclaration(source_out(), "", decl->external_name(), signature, {}); source_out() << " {\n"; source_out() << " compiler::CodeAssembler ca_(state_);\n"; DCHECK(!signature.return_type->IsVoidOrNever()); assembler_ = CfgAssembler(Stack{}); VisitResult expression_result = Visit(decl->body()); VisitResult return_result = GenerateImplicitConvert(signature.return_type, expression_result); CSAGenerator csa_generator{assembler().Result(), source_out()}; Stack values = *csa_generator.EmitGraph(Stack{}); assembler_ = base::nullopt; source_out() << "return "; CSAGenerator::EmitCSAValue(return_result, values, source_out()); source_out() << ";\n"; source_out() << "}\n\n"; } void ImplementationVisitor::Visit(TypeAlias* alias) { if (alias->IsRedeclaration()) return; if (const ClassType* class_type = ClassType::DynamicCast(alias->type())) { if (class_type->IsExtern() && !class_type->nspace()->IsDefaultNamespace()) { Error( "extern classes are currently only supported in the default " "namespace"); } } } VisitResult ImplementationVisitor::InlineMacro( Macro* macro, base::Optional this_reference, const std::vector& arguments, const std::vector label_blocks) { CurrentScope::Scope current_scope(macro); BindingsManagersScope bindings_managers_scope; CurrentCallable::Scope current_callable(macro); CurrentReturnValue::Scope current_return_value; const Signature& signature = macro->signature(); const Type* return_type = macro->signature().return_type; bool can_return = return_type != TypeOracle::GetNeverType(); BlockBindings parameter_bindings(&ValueBindingsManager::Get()); BlockBindings label_bindings(&LabelBindingsManager::Get()); DCHECK_EQ(macro->signature().parameter_names.size(), arguments.size() + (this_reference ? 1 : 0)); DCHECK_EQ(this_reference.has_value(), macro->IsMethod()); // Bind the this for methods. Methods that modify a struct-type "this" must // only be called if the this is in a variable, in which case the // LocalValue is non-const. Otherwise, the LocalValue used for the parameter // binding is const, and thus read-only, which will cause errors if // modified, e.g. when called by a struct method that sets the structs // fields. This prevents using temporary struct values for anything other // than read operations. if (this_reference) { DCHECK(macro->IsMethod()); LocalValue this_value = LocalValue{!this_reference->IsVariableAccess(), this_reference->GetVisitResult()}; parameter_bindings.Add(kThisParameterName, this_value, true); } size_t i = 0; for (auto arg : arguments) { if (this_reference && i == signature.implicit_count) i++; const bool mark_as_used = signature.implicit_count > i; const Identifier* name = macro->parameter_names()[i++]; parameter_bindings.Add(name, LocalValue{true, arg}, mark_as_used); } DCHECK_EQ(label_blocks.size(), signature.labels.size()); for (size_t i = 0; i < signature.labels.size(); ++i) { const LabelDeclaration& label_info = signature.labels[i]; label_bindings.Add(label_info.name, LocalLabel{label_blocks[i], label_info.types}); } Block* macro_end; base::Optional> macro_end_binding; if (can_return) { Stack stack = assembler().CurrentStack(); std::vector lowered_return_types = LowerType(return_type); stack.PushMany(lowered_return_types); if (!return_type->IsConstexpr()) { SetReturnValue(VisitResult(return_type, stack.TopRange(lowered_return_types.size()))); } // The stack copy used to initialize the _macro_end block is only used // as a template for the actual gotos generated by return statements. It // doesn't correspond to any real return values, and thus shouldn't contain // top types, because these would pollute actual return value types that get // unioned with them for return statements, erroneously forcing them to top. for (auto i = stack.begin(); i != stack.end(); ++i) { if ((*i)->IsTopType()) { *i = TopType::cast(*i)->source_type(); } } macro_end = assembler().NewBlock(std::move(stack)); macro_end_binding.emplace(&LabelBindingsManager::Get(), kMacroEndLabelName, LocalLabel{macro_end, {return_type}}); } else { SetReturnValue(VisitResult::NeverResult()); } const Type* result = Visit(*macro->body()); if (result->IsNever()) { if (!return_type->IsNever() && !macro->HasReturns()) { std::stringstream s; s << "macro " << macro->ReadableName() << " that never returns must have return type never"; ReportError(s.str()); } } else { if (return_type->IsNever()) { std::stringstream s; s << "macro " << macro->ReadableName() << " has implicit return at end of its declartion but return type " "never"; ReportError(s.str()); } else if (!macro->signature().return_type->IsVoid()) { std::stringstream s; s << "macro " << macro->ReadableName() << " expects to return a value but doesn't on all paths"; ReportError(s.str()); } } if (!result->IsNever()) { assembler().Goto(macro_end); } if (macro->HasReturns() || !result->IsNever()) { assembler().Bind(macro_end); } return GetAndClearReturnValue(); } void ImplementationVisitor::VisitMacroCommon(Macro* macro) { CurrentCallable::Scope current_callable(macro); const Signature& signature = macro->signature(); const Type* return_type = macro->signature().return_type; bool can_return = return_type != TypeOracle::GetNeverType(); bool has_return_value = can_return && return_type != TypeOracle::GetVoidType(); GenerateMacroFunctionDeclaration(header_out(), "", macro); header_out() << ";\n"; GenerateMacroFunctionDeclaration(source_out(), "", macro); source_out() << " {\n"; source_out() << " compiler::CodeAssembler ca_(state_);\n"; Stack lowered_parameters; Stack lowered_parameter_types; std::vector arguments; base::Optional this_reference; if (Method* method = Method::DynamicCast(macro)) { const Type* this_type = method->aggregate_type(); LowerParameter(this_type, ExternalParameterName(kThisParameterName), &lowered_parameters); StackRange range = lowered_parameter_types.PushMany(LowerType(this_type)); VisitResult this_result = VisitResult(this_type, range); // For classes, mark 'this' as a temporary to prevent assignment to it. // Note that using a VariableAccess for non-class types is technically // incorrect because changes to the 'this' variable do not get reflected // to the caller. Therefore struct methods should always be inlined and a // C++ version should never be generated, since it would be incorrect. // However, in order to be able to type- and semantics-check even unused // struct methods, set the this_reference to be the local variable copy of // the passed-in this, which allows the visitor to at least find and report // errors. this_reference = (this_type->IsClassType()) ? LocationReference::Temporary(this_result, "this parameter") : LocationReference::VariableAccess(this_result); } for (size_t i = 0; i < macro->signature().parameter_names.size(); ++i) { if (this_reference && i == macro->signature().implicit_count) continue; const std::string& name = macro->parameter_names()[i]->value; std::string external_name = ExternalParameterName(name); const Type* type = macro->signature().types()[i]; if (type->IsConstexpr()) { arguments.push_back(VisitResult(type, external_name)); } else { LowerParameter(type, external_name, &lowered_parameters); StackRange range = lowered_parameter_types.PushMany(LowerType(type)); arguments.push_back(VisitResult(type, range)); } } DCHECK_EQ(lowered_parameters.Size(), lowered_parameter_types.Size()); assembler_ = CfgAssembler(lowered_parameter_types); std::vector label_blocks; for (const LabelDeclaration& label_info : signature.labels) { Stack label_input_stack; for (const Type* type : label_info.types) { label_input_stack.PushMany(LowerType(type)); } Block* block = assembler().NewBlock(std::move(label_input_stack)); label_blocks.push_back(block); } VisitResult return_value = InlineMacro(macro, this_reference, arguments, label_blocks); Block* end = assembler().NewBlock(); if (return_type != TypeOracle::GetNeverType()) { assembler().Goto(end); } for (size_t i = 0; i < label_blocks.size(); ++i) { Block* label_block = label_blocks[i]; const LabelDeclaration& label_info = signature.labels[i]; assembler().Bind(label_block); std::vector label_parameter_variables; for (size_t i = 0; i < label_info.types.size(); ++i) { LowerLabelParameter(label_info.types[i], ExternalLabelParameterName(label_info.name->value, i), &label_parameter_variables); } assembler().Emit(GotoExternalInstruction{ ExternalLabelName(label_info.name->value), label_parameter_variables}); } if (return_type != TypeOracle::GetNeverType()) { assembler().Bind(end); } CSAGenerator csa_generator{assembler().Result(), source_out()}; base::Optional> values = csa_generator.EmitGraph(lowered_parameters); assembler_ = base::nullopt; if (has_return_value) { source_out() << " return "; CSAGenerator::EmitCSAValue(return_value, *values, source_out()); source_out() << ";\n"; } source_out() << "}\n\n"; } void ImplementationVisitor::Visit(TorqueMacro* macro) { VisitMacroCommon(macro); } void ImplementationVisitor::Visit(Method* method) { DCHECK(!method->IsExternal()); VisitMacroCommon(method); } namespace { std::string AddParameter(size_t i, Builtin* builtin, Stack* parameters, Stack* parameter_types, BlockBindings* parameter_bindings, bool mark_as_used) { const Identifier* name = builtin->signature().parameter_names[i]; const Type* type = builtin->signature().types()[i]; std::string external_name = "parameter" + std::to_string(i); parameters->Push(external_name); StackRange range = parameter_types->PushMany(LowerType(type)); parameter_bindings->Add(name, LocalValue{true, VisitResult(type, range)}, mark_as_used); return external_name; } } // namespace void ImplementationVisitor::Visit(Builtin* builtin) { if (builtin->IsExternal()) return; CurrentScope::Scope current_scope(builtin); CurrentCallable::Scope current_callable(builtin); CurrentReturnValue::Scope current_return_value; const std::string& name = builtin->ExternalName(); const Signature& signature = builtin->signature(); source_out() << "TF_BUILTIN(" << name << ", CodeStubAssembler) {\n" << " compiler::CodeAssemblerState* state_ = state();" << " compiler::CodeAssembler ca_(state());\n"; Stack parameter_types; Stack parameters; BindingsManagersScope bindings_managers_scope; BlockBindings parameter_bindings(&ValueBindingsManager::Get()); if (builtin->IsVarArgsJavaScript() || builtin->IsFixedArgsJavaScript()) { if (builtin->IsVarArgsJavaScript()) { DCHECK(signature.parameter_types.var_args); if (signature.ExplicitCount() > 0) { Error("Cannot mix explicit parameters with varargs.") .Position(signature.parameter_names[signature.implicit_count]->pos); } source_out() << " Node* argc = Parameter(Descriptor::kJSActualArgumentsCount);\n"; source_out() << " TNode arguments_length(ChangeInt32ToIntPtr(argc));\n"; source_out() << " TNode arguments_frame = " "UncheckedCast(LoadFramePointer());\n"; source_out() << " TorqueStructArguments " "torque_arguments(GetFrameArguments(arguments_frame, " "arguments_length));\n"; source_out() << " CodeStubArguments arguments(this, torque_arguments);\n"; parameters.Push("torque_arguments.frame"); parameters.Push("torque_arguments.base"); parameters.Push("torque_arguments.length"); const Type* arguments_type = TypeOracle::GetArgumentsType(); StackRange range = parameter_types.PushMany(LowerType(arguments_type)); parameter_bindings.Add( *signature.arguments_variable, LocalValue{true, VisitResult(arguments_type, range)}, true); } for (size_t i = 0; i < signature.implicit_count; ++i) { const std::string& param_name = signature.parameter_names[i]->value; SourcePosition param_pos = signature.parameter_names[i]->pos; std::string generated_name = AddParameter( i, builtin, ¶meters, ¶meter_types, ¶meter_bindings, true); const Type* actual_type = signature.parameter_types.types[i]; const Type* expected_type; if (param_name == "context") { source_out() << " TNode " << generated_name << " = UncheckedCast(Parameter(" << "Descriptor::kContext));\n"; source_out() << " USE(" << generated_name << ");\n"; expected_type = TypeOracle::GetContextType(); } else if (param_name == "receiver") { source_out() << " TNode " << generated_name << " = " << (builtin->IsVarArgsJavaScript() ? "arguments.GetReceiver()" : "UncheckedCast(Parameter(Descriptor::kReceiver))") << ";\n"; source_out() << "USE(" << generated_name << ");\n"; expected_type = TypeOracle::GetJSAnyType(); } else if (param_name == "newTarget") { source_out() << " TNode " << generated_name << " = UncheckedCast(Parameter(" << "Descriptor::kJSNewTarget));\n"; source_out() << "USE(" << generated_name << ");\n"; expected_type = TypeOracle::GetJSAnyType(); } else if (param_name == "target") { source_out() << " TNode " << generated_name << " = UncheckedCast(Parameter(" << "Descriptor::kJSTarget));\n"; source_out() << "USE(" << generated_name << ");\n"; expected_type = TypeOracle::GetJSFunctionType(); } else { Error( "Unexpected implicit parameter \"", param_name, "\" for JavaScript calling convention, " "expected \"context\", \"receiver\", \"target\", or \"newTarget\"") .Position(param_pos); expected_type = actual_type; } if (actual_type != expected_type) { Error("According to JavaScript calling convention, expected parameter ", param_name, " to have type ", *expected_type, " but found type ", *actual_type) .Position(param_pos); } } for (size_t i = signature.implicit_count; i < signature.parameter_names.size(); ++i) { const std::string& parameter_name = signature.parameter_names[i]->value; const Type* type = signature.types()[i]; const bool mark_as_used = signature.implicit_count > i; std::string var = AddParameter(i, builtin, ¶meters, ¶meter_types, ¶meter_bindings, mark_as_used); source_out() << " " << type->GetGeneratedTypeName() << " " << var << " = " << "UncheckedCast<" << type->GetGeneratedTNodeTypeName() << ">(Parameter(Descriptor::k" << CamelifyString(parameter_name) << "));\n"; source_out() << " USE(" << var << ");\n"; } } else { DCHECK(builtin->IsStub()); // Context const bool context_is_implicit = signature.implicit_count > 0; std::string parameter0 = AddParameter(0, builtin, ¶meters, ¶meter_types, ¶meter_bindings, context_is_implicit); source_out() << " TNode " << parameter0 << " = UncheckedCast(Parameter(" << "Descriptor::kContext));\n"; source_out() << " USE(" << parameter0 << ");\n"; for (size_t i = 1; i < signature.parameter_names.size(); ++i) { const std::string& parameter_name = signature.parameter_names[i]->value; const Type* type = signature.types()[i]; const bool mark_as_used = signature.implicit_count > i; std::string var = AddParameter(i, builtin, ¶meters, ¶meter_types, ¶meter_bindings, mark_as_used); source_out() << " " << type->GetGeneratedTypeName() << " " << var << " = " << "UncheckedCast<" << type->GetGeneratedTNodeTypeName() << ">(Parameter(Descriptor::k" << CamelifyString(parameter_name) << "));\n"; source_out() << " USE(" << var << ");\n"; } } assembler_ = CfgAssembler(parameter_types); const Type* body_result = Visit(*builtin->body()); if (body_result != TypeOracle::GetNeverType()) { ReportError("control reaches end of builtin, expected return of a value"); } CSAGenerator csa_generator{assembler().Result(), source_out(), builtin->kind()}; csa_generator.EmitGraph(parameters); assembler_ = base::nullopt; source_out() << "}\n\n"; } const Type* ImplementationVisitor::Visit(VarDeclarationStatement* stmt) { BlockBindings block_bindings(&ValueBindingsManager::Get()); return Visit(stmt, &block_bindings); } const Type* ImplementationVisitor::Visit( VarDeclarationStatement* stmt, BlockBindings* block_bindings) { // const qualified variables are required to be initialized properly. if (stmt->const_qualified && !stmt->initializer) { ReportError("local constant \"", stmt->name, "\" is not initialized."); } base::Optional type; if (stmt->type) { type = TypeVisitor::ComputeType(*stmt->type); } base::Optional init_result; if (stmt->initializer) { StackScope scope(this); init_result = Visit(*stmt->initializer); if (type) { init_result = GenerateImplicitConvert(*type, *init_result); } type = init_result->type(); if ((*type)->IsConstexpr() && !stmt->const_qualified) { Error("Use 'const' instead of 'let' for variable '", stmt->name->value, "' of constexpr type '", (*type)->ToString(), "'.") .Position(stmt->name->pos) .Throw(); } init_result = scope.Yield(*init_result); } else { DCHECK(type.has_value()); if ((*type)->IsConstexpr()) { ReportError("constexpr variables need an initializer"); } TypeVector lowered_types = LowerType(*type); for (const Type* type : lowered_types) { assembler().Emit(PushUninitializedInstruction{TypeOracle::GetTopType( "uninitialized variable '" + stmt->name->value + "' of type " + type->ToString() + " originally defined at " + PositionAsString(stmt->pos), type)}); } init_result = VisitResult(*type, assembler().TopRange(lowered_types.size())); } block_bindings->Add(stmt->name, LocalValue{stmt->const_qualified, *init_result}); return TypeOracle::GetVoidType(); } const Type* ImplementationVisitor::Visit(TailCallStatement* stmt) { return Visit(stmt->call, true).type(); } VisitResult ImplementationVisitor::Visit(ConditionalExpression* expr) { Block* true_block = assembler().NewBlock(assembler().CurrentStack()); Block* false_block = assembler().NewBlock(assembler().CurrentStack()); Block* done_block = assembler().NewBlock(); Block* true_conversion_block = assembler().NewBlock(); GenerateExpressionBranch(expr->condition, true_block, false_block); VisitResult left; VisitResult right; { // The code for both paths of the conditional need to be generated first // before evaluating the conditional expression because the common type of // the result of both the true and false of the condition needs to be known // to convert both branches to a common type. assembler().Bind(true_block); StackScope left_scope(this); left = Visit(expr->if_true); assembler().Goto(true_conversion_block); const Type* common_type; { assembler().Bind(false_block); StackScope right_scope(this); right = Visit(expr->if_false); common_type = GetCommonType(left.type(), right.type()); right = right_scope.Yield(GenerateImplicitConvert(common_type, right)); assembler().Goto(done_block); } assembler().Bind(true_conversion_block); left = left_scope.Yield(GenerateImplicitConvert(common_type, left)); assembler().Goto(done_block); } assembler().Bind(done_block); CHECK_EQ(left, right); return left; } VisitResult ImplementationVisitor::Visit(LogicalOrExpression* expr) { StackScope outer_scope(this); VisitResult left_result = Visit(expr->left); if (left_result.type()->IsConstexprBool()) { VisitResult right_result = Visit(expr->right); if (!right_result.type()->IsConstexprBool()) { ReportError( "expected type constexpr bool on right-hand side of operator " "||"); } return VisitResult(TypeOracle::GetConstexprBoolType(), std::string("(") + left_result.constexpr_value() + " || " + right_result.constexpr_value() + ")"); } Block* true_block = assembler().NewBlock(); Block* false_block = assembler().NewBlock(); Block* done_block = assembler().NewBlock(); left_result = GenerateImplicitConvert(TypeOracle::GetBoolType(), left_result); GenerateBranch(left_result, true_block, false_block); assembler().Bind(true_block); VisitResult true_result = GenerateBoolConstant(true); assembler().Goto(done_block); assembler().Bind(false_block); VisitResult false_result; { StackScope false_block_scope(this); false_result = false_block_scope.Yield( GenerateImplicitConvert(TypeOracle::GetBoolType(), Visit(expr->right))); } assembler().Goto(done_block); assembler().Bind(done_block); DCHECK_EQ(true_result, false_result); return outer_scope.Yield(true_result); } VisitResult ImplementationVisitor::Visit(LogicalAndExpression* expr) { StackScope outer_scope(this); VisitResult left_result = Visit(expr->left); if (left_result.type()->IsConstexprBool()) { VisitResult right_result = Visit(expr->right); if (!right_result.type()->IsConstexprBool()) { ReportError( "expected type constexpr bool on right-hand side of operator " "&&"); } return VisitResult(TypeOracle::GetConstexprBoolType(), std::string("(") + left_result.constexpr_value() + " && " + right_result.constexpr_value() + ")"); } Block* true_block = assembler().NewBlock(); Block* false_block = assembler().NewBlock(); Block* done_block = assembler().NewBlock(); left_result = GenerateImplicitConvert(TypeOracle::GetBoolType(), left_result); GenerateBranch(left_result, true_block, false_block); assembler().Bind(true_block); VisitResult true_result; { StackScope true_block_scope(this); true_result = true_block_scope.Yield( GenerateImplicitConvert(TypeOracle::GetBoolType(), Visit(expr->right))); } assembler().Goto(done_block); assembler().Bind(false_block); VisitResult false_result = GenerateBoolConstant(false); assembler().Goto(done_block); assembler().Bind(done_block); DCHECK_EQ(true_result, false_result); return outer_scope.Yield(true_result); } VisitResult ImplementationVisitor::Visit(IncrementDecrementExpression* expr) { StackScope scope(this); LocationReference location_ref = GetLocationReference(expr->location); VisitResult current_value = GenerateFetchFromLocation(location_ref); VisitResult one = {TypeOracle::GetConstInt31Type(), "1"}; Arguments args; args.parameters = {current_value, one}; VisitResult assignment_value = GenerateCall( expr->op == IncrementDecrementOperator::kIncrement ? "+" : "-", args); GenerateAssignToLocation(location_ref, assignment_value); return scope.Yield(expr->postfix ? current_value : assignment_value); } VisitResult ImplementationVisitor::Visit(AssignmentExpression* expr) { StackScope scope(this); LocationReference location_ref = GetLocationReference(expr->location); VisitResult assignment_value; if (expr->op) { VisitResult location_value = GenerateFetchFromLocation(location_ref); assignment_value = Visit(expr->value); Arguments args; args.parameters = {location_value, assignment_value}; assignment_value = GenerateCall(*expr->op, args); GenerateAssignToLocation(location_ref, assignment_value); } else { assignment_value = Visit(expr->value); GenerateAssignToLocation(location_ref, assignment_value); } return scope.Yield(assignment_value); } VisitResult ImplementationVisitor::Visit(NumberLiteralExpression* expr) { // TODO(tebbi): Do not silently loose precision; support 64bit literals. double d = std::stod(expr->number.c_str()); int32_t i = static_cast(d); const Type* result_type = TypeOracle::GetConstFloat64Type(); if (i == d) { if ((i >> 30) == (i >> 31)) { result_type = TypeOracle::GetConstInt31Type(); } else { result_type = TypeOracle::GetConstInt32Type(); } } return VisitResult{result_type, expr->number}; } VisitResult ImplementationVisitor::Visit(AssumeTypeImpossibleExpression* expr) { VisitResult result = Visit(expr->expression); const Type* result_type = SubtractType( result.type(), TypeVisitor::ComputeType(expr->excluded_type)); if (result_type->IsNever()) { ReportError("unreachable code"); } CHECK_EQ(LowerType(result_type), TypeVector{result_type}); assembler().Emit(UnsafeCastInstruction{result_type}); result.SetType(result_type); return result; } VisitResult ImplementationVisitor::Visit(StringLiteralExpression* expr) { return VisitResult{ TypeOracle::GetConstStringType(), "\"" + expr->literal.substr(1, expr->literal.size() - 2) + "\""}; } VisitResult ImplementationVisitor::GetBuiltinCode(Builtin* builtin) { if (builtin->IsExternal() || builtin->kind() != Builtin::kStub) { ReportError( "creating function pointers is only allowed for internal builtins with " "stub linkage"); } const Type* type = TypeOracle::GetBuiltinPointerType( builtin->signature().parameter_types.types, builtin->signature().return_type); assembler().Emit( PushBuiltinPointerInstruction{builtin->ExternalName(), type}); return VisitResult(type, assembler().TopRange(1)); } VisitResult ImplementationVisitor::Visit(LocationExpression* expr) { StackScope scope(this); return scope.Yield(GenerateFetchFromLocation(GetLocationReference(expr))); } const Type* ImplementationVisitor::Visit(GotoStatement* stmt) { Binding* label = LookupLabel(stmt->label->value); size_t parameter_count = label->parameter_types.size(); if (stmt->arguments.size() != parameter_count) { ReportError("goto to label has incorrect number of parameters (expected ", parameter_count, " found ", stmt->arguments.size(), ")"); } if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(stmt->label->pos, label->declaration_position()); } size_t i = 0; StackRange arguments = assembler().TopRange(0); for (Expression* e : stmt->arguments) { StackScope scope(this); VisitResult result = Visit(e); const Type* parameter_type = label->parameter_types[i++]; result = GenerateImplicitConvert(parameter_type, result); arguments.Extend(scope.Yield(result).stack_range()); } assembler().Goto(label->block, arguments.Size()); return TypeOracle::GetNeverType(); } const Type* ImplementationVisitor::Visit(IfStatement* stmt) { bool has_else = stmt->if_false.has_value(); if (stmt->is_constexpr) { VisitResult expression_result = Visit(stmt->condition); if (!(expression_result.type() == TypeOracle::GetConstexprBoolType())) { std::stringstream stream; stream << "expression should return type constexpr bool " << "but returns type " << *expression_result.type(); ReportError(stream.str()); } Block* true_block = assembler().NewBlock(); Block* false_block = assembler().NewBlock(); Block* done_block = assembler().NewBlock(); assembler().Emit(ConstexprBranchInstruction{ expression_result.constexpr_value(), true_block, false_block}); assembler().Bind(true_block); const Type* left_result = Visit(stmt->if_true); if (left_result == TypeOracle::GetVoidType()) { assembler().Goto(done_block); } assembler().Bind(false_block); const Type* right_result = TypeOracle::GetVoidType(); if (has_else) { right_result = Visit(*stmt->if_false); } if (right_result == TypeOracle::GetVoidType()) { assembler().Goto(done_block); } if (left_result->IsNever() != right_result->IsNever()) { std::stringstream stream; stream << "either both or neither branches in a constexpr if statement " "must reach their end at" << PositionAsString(stmt->pos); ReportError(stream.str()); } if (left_result != TypeOracle::GetNeverType()) { assembler().Bind(done_block); } return left_result; } else { Block* true_block = assembler().NewBlock(assembler().CurrentStack(), IsDeferred(stmt->if_true)); Block* false_block = assembler().NewBlock(assembler().CurrentStack(), stmt->if_false && IsDeferred(*stmt->if_false)); GenerateExpressionBranch(stmt->condition, true_block, false_block); Block* done_block; bool live = false; if (has_else) { done_block = assembler().NewBlock(); } else { done_block = false_block; live = true; } assembler().Bind(true_block); { const Type* result = Visit(stmt->if_true); if (result == TypeOracle::GetVoidType()) { live = true; assembler().Goto(done_block); } } if (has_else) { assembler().Bind(false_block); const Type* result = Visit(*stmt->if_false); if (result == TypeOracle::GetVoidType()) { live = true; assembler().Goto(done_block); } } if (live) { assembler().Bind(done_block); } return live ? TypeOracle::GetVoidType() : TypeOracle::GetNeverType(); } } const Type* ImplementationVisitor::Visit(WhileStatement* stmt) { Block* body_block = assembler().NewBlock(assembler().CurrentStack()); Block* exit_block = assembler().NewBlock(assembler().CurrentStack()); Block* header_block = assembler().NewBlock(); assembler().Goto(header_block); assembler().Bind(header_block); GenerateExpressionBranch(stmt->condition, body_block, exit_block); assembler().Bind(body_block); { BreakContinueActivator activator{exit_block, header_block}; const Type* body_result = Visit(stmt->body); if (body_result != TypeOracle::GetNeverType()) { assembler().Goto(header_block); } } assembler().Bind(exit_block); return TypeOracle::GetVoidType(); } const Type* ImplementationVisitor::Visit(BlockStatement* block) { BlockBindings block_bindings(&ValueBindingsManager::Get()); const Type* type = TypeOracle::GetVoidType(); for (Statement* s : block->statements) { CurrentSourcePosition::Scope source_position(s->pos); if (type->IsNever()) { ReportError("statement after non-returning statement"); } if (auto* var_declaration = VarDeclarationStatement::DynamicCast(s)) { type = Visit(var_declaration, &block_bindings); } else { type = Visit(s); } } return type; } const Type* ImplementationVisitor::Visit(DebugStatement* stmt) { #if defined(DEBUG) assembler().Emit(PrintConstantStringInstruction{"halting because of '" + stmt->reason + "' at " + PositionAsString(stmt->pos)}); #endif assembler().Emit(AbortInstruction{stmt->never_continues ? AbortInstruction::Kind::kUnreachable : AbortInstruction::Kind::kDebugBreak}); if (stmt->never_continues) { return TypeOracle::GetNeverType(); } else { return TypeOracle::GetVoidType(); } } namespace { std::string FormatAssertSource(const std::string& str) { // Replace all whitespace characters with a space character. std::string str_no_newlines = str; std::replace_if(str_no_newlines.begin(), str_no_newlines.end(), [](unsigned char c) { return isspace(c); }, ' '); // str might include indentation, squash multiple space characters into one. std::string result; std::unique_copy(str_no_newlines.begin(), str_no_newlines.end(), std::back_inserter(result), [](char a, char b) { return a == ' ' && b == ' '; }); return result; } } // namespace const Type* ImplementationVisitor::Visit(AssertStatement* stmt) { bool do_check = !stmt->debug_only || GlobalContext::force_assert_statements(); #if defined(DEBUG) do_check = true; #endif if (do_check) { // CSA_ASSERT & co. are not used here on purpose for two reasons. First, // Torque allows and handles two types of expressions in the if protocol // automagically, ones that return TNode and those that use the // BranchIf(..., Label* true, Label* false) idiom. Because the machinery to // handle this is embedded in the expression handling and to it's not // possible to make the decision to use CSA_ASSERT or CSA_ASSERT_BRANCH // isn't trivial up-front. Secondly, on failure, the assert text should be // the corresponding Torque code, not the -gen.cc code, which would be the // case when using CSA_ASSERT_XXX. Block* true_block = assembler().NewBlock(assembler().CurrentStack()); Block* false_block = assembler().NewBlock(assembler().CurrentStack(), true); GenerateExpressionBranch(stmt->expression, true_block, false_block); assembler().Bind(false_block); assembler().Emit(AbortInstruction{ AbortInstruction::Kind::kAssertionFailure, "Torque assert '" + FormatAssertSource(stmt->source) + "' failed"}); assembler().Bind(true_block); } else { // Visit the expression so bindings only used in asserts are marked // as such. Otherwise they might be wrongly reported as unused bindings // in release builds. stmt->expression->VisitAllSubExpressions([](Expression* expression) { if (auto id = IdentifierExpression::DynamicCast(expression)) { ValueBindingsManager::Get().TryLookup(id->name->value); } else if (auto call = CallExpression::DynamicCast(expression)) { for (Identifier* label : call->labels) { LabelBindingsManager::Get().TryLookup(label->value); } // TODO(szuend): In case the call expression resolves to a macro // callable, mark the macro as used as well. } else if (auto call = CallMethodExpression::DynamicCast(expression)) { for (Identifier* label : call->labels) { LabelBindingsManager::Get().TryLookup(label->value); } // TODO(szuend): Mark the underlying macro as used. } }); } return TypeOracle::GetVoidType(); } const Type* ImplementationVisitor::Visit(ExpressionStatement* stmt) { const Type* type = Visit(stmt->expression).type(); return type->IsNever() ? type : TypeOracle::GetVoidType(); } const Type* ImplementationVisitor::Visit(ReturnStatement* stmt) { Callable* current_callable = CurrentCallable::Get(); if (current_callable->signature().return_type->IsNever()) { std::stringstream s; s << "cannot return from a function with return type never"; ReportError(s.str()); } LocalLabel* end = current_callable->IsMacro() ? LookupLabel(kMacroEndLabelName) : nullptr; if (current_callable->HasReturnValue()) { if (!stmt->value) { std::stringstream s; s << "return expression needs to be specified for a return type of " << *current_callable->signature().return_type; ReportError(s.str()); } VisitResult expression_result = Visit(*stmt->value); VisitResult return_result = GenerateImplicitConvert( current_callable->signature().return_type, expression_result); if (current_callable->IsMacro()) { if (return_result.IsOnStack()) { StackRange return_value_range = GenerateLabelGoto(end, return_result.stack_range()); SetReturnValue(VisitResult(return_result.type(), return_value_range)); } else { GenerateLabelGoto(end); SetReturnValue(return_result); } } else if (current_callable->IsBuiltin()) { assembler().Emit(ReturnInstruction{}); } else { UNREACHABLE(); } } else { if (stmt->value) { std::stringstream s; s << "return expression can't be specified for a void or never return " "type"; ReportError(s.str()); } GenerateLabelGoto(end); } current_callable->IncrementReturns(); return TypeOracle::GetNeverType(); } VisitResult ImplementationVisitor::Visit(TryLabelExpression* expr) { size_t parameter_count = expr->label_block->parameters.names.size(); std::vector parameters; Block* label_block = nullptr; Block* done_block = assembler().NewBlock(); VisitResult try_result; { CurrentSourcePosition::Scope source_position(expr->label_block->pos); if (expr->label_block->parameters.has_varargs) { ReportError("cannot use ... for label parameters"); } Stack label_input_stack = assembler().CurrentStack(); TypeVector parameter_types; for (size_t i = 0; i < parameter_count; ++i) { const Type* type = TypeVisitor::ComputeType(expr->label_block->parameters.types[i]); parameter_types.push_back(type); if (type->IsConstexpr()) { ReportError("no constexpr type allowed for label arguments"); } StackRange range = label_input_stack.PushMany(LowerType(type)); parameters.push_back(VisitResult(type, range)); } label_block = assembler().NewBlock(label_input_stack, IsDeferred(expr->label_block->body)); Binding label_binding{&LabelBindingsManager::Get(), expr->label_block->label, LocalLabel{label_block, parameter_types}}; // Visit try StackScope stack_scope(this); try_result = Visit(expr->try_expression); if (try_result.type() != TypeOracle::GetNeverType()) { try_result = stack_scope.Yield(try_result); assembler().Goto(done_block); } } // Visit and output the code for the label block. If the label block falls // through, then the try must not return a value. Also, if the try doesn't // fall through, but the label does, then overall the try-label block // returns type void. assembler().Bind(label_block); const Type* label_result; { BlockBindings parameter_bindings(&ValueBindingsManager::Get()); for (size_t i = 0; i < parameter_count; ++i) { parameter_bindings.Add(expr->label_block->parameters.names[i], LocalValue{true, parameters[i]}); } label_result = Visit(expr->label_block->body); } if (!try_result.type()->IsVoidOrNever() && label_result->IsVoid()) { ReportError( "otherwise clauses cannot fall through in a non-void expression"); } if (label_result != TypeOracle::GetNeverType()) { assembler().Goto(done_block); } if (label_result->IsVoid() && try_result.type()->IsNever()) { try_result = VisitResult(TypeOracle::GetVoidType(), try_result.stack_range()); } if (!try_result.type()->IsNever()) { assembler().Bind(done_block); } return try_result; } VisitResult ImplementationVisitor::Visit(StatementExpression* expr) { return VisitResult{Visit(expr->statement), assembler().TopRange(0)}; } void ImplementationVisitor::CheckInitializersWellformed( const std::string& aggregate_name, const std::vector& aggregate_fields, const std::vector& initializers, bool ignore_first_field) { size_t fields_offset = ignore_first_field ? 1 : 0; size_t fields_size = aggregate_fields.size() - fields_offset; for (size_t i = 0; i < std::min(fields_size, initializers.size()); i++) { const std::string& field_name = aggregate_fields[i + fields_offset].name_and_type.name; Identifier* found_name = initializers[i].name; if (field_name != found_name->value) { Error("Expected field name \"", field_name, "\" instead of \"", found_name->value, "\"") .Position(found_name->pos) .Throw(); } } if (fields_size != initializers.size()) { ReportError("expected ", fields_size, " initializers for ", aggregate_name, " found ", initializers.size()); } } InitializerResults ImplementationVisitor::VisitInitializerResults( const ClassType* class_type, const std::vector& initializers) { InitializerResults result; for (const NameAndExpression& initializer : initializers) { result.names.push_back(initializer.name); Expression* e = initializer.expression; const Field& field = class_type->LookupField(initializer.name->value); auto field_index = field.index; if (SpreadExpression* s = SpreadExpression::DynamicCast(e)) { if (!field_index) { ReportError( "spread expressions can only be used to initialize indexed class " "fields ('", initializer.name->value, "' is not)"); } e = s->spreadee; } else if (field_index) { ReportError("the indexed class field '", initializer.name->value, "' must be initialized with a spread operator"); } result.field_value_map[field.name_and_type.name] = Visit(e); } return result; } void ImplementationVisitor::InitializeClass( const ClassType* class_type, VisitResult allocate_result, const InitializerResults& initializer_results) { if (const ClassType* super = class_type->GetSuperClass()) { InitializeClass(super, allocate_result, initializer_results); } for (Field f : class_type->fields()) { VisitResult current_value = initializer_results.field_value_map.at(f.name_and_type.name); if (f.index) { InitializeFieldFromSpread(allocate_result, f, initializer_results); } else { allocate_result.SetType(class_type); GenerateCopy(allocate_result); assembler().Emit(CreateFieldReferenceInstruction{ ClassType::cast(class_type), f.name_and_type.name}); VisitResult heap_reference( TypeOracle::GetReferenceType(f.name_and_type.type), assembler().TopRange(2)); GenerateAssignToLocation(LocationReference::HeapReference(heap_reference), current_value); } } } void ImplementationVisitor::InitializeFieldFromSpread( VisitResult object, const Field& field, const InitializerResults& initializer_results) { NameAndType index = (*field.index)->name_and_type; VisitResult iterator = initializer_results.field_value_map.at(field.name_and_type.name); VisitResult length = initializer_results.field_value_map.at(index.name); Arguments assign_arguments; assign_arguments.parameters.push_back(object); assign_arguments.parameters.push_back(length); assign_arguments.parameters.push_back(iterator); GenerateCall("%InitializeFieldsFromIterator", assign_arguments, {field.aggregate, index.type, iterator.type()}); } VisitResult ImplementationVisitor::AddVariableObjectSize( VisitResult object_size, const ClassType* current_class, const InitializerResults& initializer_results) { while (current_class != nullptr) { auto current_field = current_class->fields().begin(); while (current_field != current_class->fields().end()) { if (current_field->index) { if (!current_field->name_and_type.type->IsSubtypeOf( TypeOracle::GetObjectType())) { ReportError( "allocating objects containing indexed fields of non-object " "types is not yet supported"); } VisitResult index_field_size = VisitResult(TypeOracle::GetConstInt31Type(), "kTaggedSize"); VisitResult initializer_value = initializer_results.field_value_map.at( (*current_field->index)->name_and_type.name); Arguments args; args.parameters.push_back(object_size); args.parameters.push_back(initializer_value); args.parameters.push_back(index_field_size); object_size = GenerateCall("%AddIndexedFieldSizeToObjectSize", args, {(*current_field->index)->name_and_type.type}, false); } ++current_field; } current_class = current_class->GetSuperClass(); } return object_size; } VisitResult ImplementationVisitor::Visit(NewExpression* expr) { StackScope stack_scope(this); const Type* type = TypeVisitor::ComputeType(expr->type); const ClassType* class_type = ClassType::DynamicCast(type); if (class_type == nullptr) { ReportError("type for new expression must be a class, \"", *type, "\" is not"); } if (!class_type->AllowInstantiation()) { // Classes that are only used for testing should never be instantiated. ReportError(*class_type, " cannot be allocated with new (it's used for testing)"); } InitializerResults initializer_results = VisitInitializerResults(class_type, expr->initializers); VisitResult object_map; const Field& map_field = class_type->LookupField("map"); if (map_field.offset != 0) { ReportError("class initializers must have a map as first parameter"); } const std::map& initializer_fields = initializer_results.field_value_map; auto it_object_map = initializer_fields.find(map_field.name_and_type.name); if (class_type->IsExtern()) { if (it_object_map == initializer_fields.end()) { ReportError("Constructor for ", class_type->name(), " needs Map argument!"); } object_map = it_object_map->second; } else { if (it_object_map != initializer_fields.end()) { ReportError( "Constructor for ", class_type->name(), " must not specify Map argument; it is automatically inserted."); } Arguments get_struct_map_arguments; get_struct_map_arguments.parameters.push_back( VisitResult(TypeOracle::GetConstexprInstanceTypeType(), CapifyStringWithUnderscores(class_type->name()) + "_TYPE")); object_map = GenerateCall("%GetStructMap", get_struct_map_arguments, {}, false); CurrentSourcePosition::Scope current_pos(expr->pos); initializer_results.names.insert(initializer_results.names.begin(), MakeNode("map")); initializer_results.field_value_map[map_field.name_and_type.name] = object_map; } CheckInitializersWellformed(class_type->name(), class_type->ComputeAllFields(), expr->initializers, !class_type->IsExtern()); Arguments size_arguments; size_arguments.parameters.push_back(object_map); VisitResult object_size = GenerateCall("%GetAllocationBaseSize", size_arguments, {class_type}, false); object_size = AddVariableObjectSize(object_size, class_type, initializer_results); Arguments allocate_arguments; allocate_arguments.parameters.push_back(object_size); VisitResult allocate_result = GenerateCall("%Allocate", allocate_arguments, {class_type}, false); DCHECK(allocate_result.IsOnStack()); InitializeClass(class_type, allocate_result, initializer_results); return stack_scope.Yield(allocate_result); } const Type* ImplementationVisitor::Visit(BreakStatement* stmt) { base::Optional*> break_label = TryLookupLabel(kBreakLabelName); if (!break_label) { ReportError("break used outside of loop"); } assembler().Goto((*break_label)->block); return TypeOracle::GetNeverType(); } const Type* ImplementationVisitor::Visit(ContinueStatement* stmt) { base::Optional*> continue_label = TryLookupLabel(kContinueLabelName); if (!continue_label) { ReportError("continue used outside of loop"); } assembler().Goto((*continue_label)->block); return TypeOracle::GetNeverType(); } const Type* ImplementationVisitor::Visit(ForLoopStatement* stmt) { BlockBindings loop_bindings(&ValueBindingsManager::Get()); if (stmt->var_declaration) Visit(*stmt->var_declaration, &loop_bindings); Block* body_block = assembler().NewBlock(assembler().CurrentStack()); Block* exit_block = assembler().NewBlock(assembler().CurrentStack()); Block* header_block = assembler().NewBlock(); assembler().Goto(header_block); assembler().Bind(header_block); // The continue label is where "continue" statements jump to. If no action // expression is provided, we jump directly to the header. Block* continue_block = header_block; // The action label is only needed when an action expression was provided. Block* action_block = nullptr; if (stmt->action) { action_block = assembler().NewBlock(); // The action expression needs to be executed on a continue. continue_block = action_block; } if (stmt->test) { GenerateExpressionBranch(*stmt->test, body_block, exit_block); } else { assembler().Goto(body_block); } assembler().Bind(body_block); { BreakContinueActivator activator(exit_block, continue_block); const Type* body_result = Visit(stmt->body); if (body_result != TypeOracle::GetNeverType()) { assembler().Goto(continue_block); } } if (stmt->action) { assembler().Bind(action_block); const Type* action_result = Visit(*stmt->action); if (action_result != TypeOracle::GetNeverType()) { assembler().Goto(header_block); } } assembler().Bind(exit_block); return TypeOracle::GetVoidType(); } VisitResult ImplementationVisitor::Visit(SpreadExpression* expr) { ReportError( "spread operators are only currently supported in indexed class field " "initialization expressions"); } void ImplementationVisitor::GenerateImplementation(const std::string& dir) { for (SourceId file : SourceFileMap::AllSources()) { std::string path_from_root = SourceFileMap::PathFromV8RootWithoutExtension(file); std::string new_source( GlobalContext::GeneratedPerFile(file).csa_ccfile.str()); std::string source_file_name = dir + "/" + path_from_root + "-tq-csa.cc"; WriteFile(source_file_name, new_source); std::string new_header( GlobalContext::GeneratedPerFile(file).csa_headerfile.str()); std::string header_file_name = dir + "/" + path_from_root + "-tq-csa.h"; WriteFile(header_file_name, new_header); } } void ImplementationVisitor::GenerateMacroFunctionDeclaration( std::ostream& o, const std::string& macro_prefix, Macro* macro) { GenerateFunctionDeclaration(o, macro_prefix, macro->ExternalName(), macro->signature(), macro->parameter_names()); } std::vector ImplementationVisitor::GenerateFunctionDeclaration( std::ostream& o, const std::string& macro_prefix, const std::string& name, const Signature& signature, const NameVector& parameter_names, bool pass_code_assembler_state) { std::vector generated_parameter_names; if (signature.return_type->IsVoidOrNever()) { o << "void"; } else { o << signature.return_type->GetGeneratedTypeName(); } o << " " << macro_prefix << name << "("; bool first = true; if (pass_code_assembler_state) { first = false; o << "compiler::CodeAssemblerState* state_"; } DCHECK_GE(signature.types().size(), parameter_names.size()); for (size_t i = 0; i < signature.types().size(); ++i) { if (!first) o << ", "; first = false; const Type* parameter_type = signature.types()[i]; const std::string& generated_type_name = parameter_type->GetGeneratedTypeName(); generated_parameter_names.push_back(ExternalParameterName( i < parameter_names.size() ? parameter_names[i]->value : std::to_string(i))); o << generated_type_name << " " << generated_parameter_names.back(); } for (const LabelDeclaration& label_info : signature.labels) { if (!first) o << ", "; first = false; generated_parameter_names.push_back( ExternalLabelName(label_info.name->value)); o << "compiler::CodeAssemblerLabel* " << generated_parameter_names.back(); size_t i = 0; for (const Type* type : label_info.types) { std::string generated_type_name; if (type->IsStructType()) { generated_type_name = "\n#error no structs allowed in labels\n"; } else { generated_type_name = "compiler::TypedCodeAssemblerVariable<"; generated_type_name += type->GetGeneratedTNodeTypeName(); generated_type_name += ">*"; } o << ", "; generated_parameter_names.push_back( ExternalLabelParameterName(label_info.name->value, i)); o << generated_type_name << " " << generated_parameter_names.back(); ++i; } } o << ")"; return generated_parameter_names; } namespace { void FailCallableLookup(const std::string& reason, const QualifiedName& name, const TypeVector& parameter_types, const std::vector*>& labels, const std::vector& candidates, const std::vector> inapplicable_generics) { std::stringstream stream; stream << "\n" << reason << ": \n " << name << "(" << parameter_types << ")"; if (labels.size() != 0) { stream << " labels "; for (size_t i = 0; i < labels.size(); ++i) { stream << labels[i]->name() << "(" << labels[i]->parameter_types << ")"; } } stream << "\ncandidates are:"; for (const Signature& signature : candidates) { stream << "\n " << name; PrintSignature(stream, signature, false); } if (inapplicable_generics.size() != 0) { stream << "\nfailed to instantiate all of these generic declarations:"; for (auto& failure : inapplicable_generics) { Generic* generic; const char* reason; std::tie(generic, reason) = failure; stream << "\n " << generic->name() << " defined at " << generic->Position() << ":\n " << reason << "\n"; } } ReportError(stream.str()); } Callable* GetOrCreateSpecialization(const SpecializationKey& key) { if (base::Optional specialization = key.generic->specializations().Get(key.specialized_types)) { return *specialization; } return DeclarationVisitor::SpecializeImplicit(key); } } // namespace base::Optional*> ImplementationVisitor::TryLookupLocalValue( const std::string& name) { return ValueBindingsManager::Get().TryLookup(name); } base::Optional*> ImplementationVisitor::TryLookupLabel( const std::string& name) { return LabelBindingsManager::Get().TryLookup(name); } Binding* ImplementationVisitor::LookupLabel( const std::string& name) { base::Optional*> label = TryLookupLabel(name); if (!label) ReportError("cannot find label ", name); return *label; } Block* ImplementationVisitor::LookupSimpleLabel(const std::string& name) { LocalLabel* label = LookupLabel(name); if (!label->parameter_types.empty()) { ReportError("label ", name, "was expected to have no parameters, but has parameters (", label->parameter_types, ")"); } return label->block; } // Try to lookup a callable with the provided argument types. Do not report // an error if no matching callable was found, but return false instead. // This is used to test the presence of overloaded field accessors. bool ImplementationVisitor::TestLookupCallable( const QualifiedName& name, const TypeVector& parameter_types) { return LookupCallable(name, Declarations::TryLookup(name), parameter_types, {}, {}, true) != nullptr; } template Callable* ImplementationVisitor::LookupCallable( const QualifiedName& name, const Container& declaration_container, const TypeVector& parameter_types, const std::vector*>& labels, const TypeVector& specialization_types, bool silence_errors) { Callable* result = nullptr; std::vector overloads; std::vector overload_signatures; std::vector> inapplicable_generics; for (auto* declarable : declaration_container) { if (Generic* generic = Generic::DynamicCast(declarable)) { TypeArgumentInference inference = generic->InferSpecializationTypes( specialization_types, parameter_types); if (inference.HasFailed()) { inapplicable_generics.push_back( std::make_tuple(generic, inference.GetFailureReason())); continue; } overloads.push_back(generic); overload_signatures.push_back( DeclarationVisitor::MakeSpecializedSignature( SpecializationKey{generic, inference.GetResult()})); } else if (Callable* callable = Callable::DynamicCast(declarable)) { overloads.push_back(callable); overload_signatures.push_back(callable->signature()); } } // Indices of candidates in overloads/overload_signatures. std::vector candidates; for (size_t i = 0; i < overloads.size(); ++i) { const Signature& signature = overload_signatures[i]; if (IsCompatibleSignature(signature, parameter_types, labels.size())) { candidates.push_back(i); } } if (overloads.empty() && inapplicable_generics.empty()) { if (silence_errors) return nullptr; std::stringstream stream; stream << "no matching declaration found for " << name; ReportError(stream.str()); } else if (candidates.empty()) { if (silence_errors) return nullptr; FailCallableLookup("cannot find suitable callable with name", name, parameter_types, labels, overload_signatures, inapplicable_generics); } auto is_better_candidate = [&](size_t a, size_t b) { return ParameterDifference(overload_signatures[a].GetExplicitTypes(), parameter_types) .StrictlyBetterThan(ParameterDifference( overload_signatures[b].GetExplicitTypes(), parameter_types)); }; size_t best = *std::min_element(candidates.begin(), candidates.end(), is_better_candidate); // This check is contained in libstdc++'s std::min_element. DCHECK(!is_better_candidate(best, best)); for (size_t candidate : candidates) { if (candidate != best && !is_better_candidate(best, candidate)) { std::vector candidate_signatures; for (size_t i : candidates) { candidate_signatures.push_back(overload_signatures[i]); } FailCallableLookup("ambiguous callable ", name, parameter_types, labels, candidate_signatures, inapplicable_generics); } } if (Generic* generic = Generic::DynamicCast(overloads[best])) { TypeArgumentInference inference = generic->InferSpecializationTypes( specialization_types, parameter_types); result = GetOrCreateSpecialization( SpecializationKey{generic, inference.GetResult()}); } else { result = Callable::cast(overloads[best]); } size_t caller_size = parameter_types.size(); size_t callee_size = result->signature().types().size() - result->signature().implicit_count; if (caller_size != callee_size && !result->signature().parameter_types.var_args) { std::stringstream stream; stream << "parameter count mismatch calling " << *result << " - expected " << std::to_string(callee_size) << ", found " << std::to_string(caller_size); ReportError(stream.str()); } return result; } template Callable* ImplementationVisitor::LookupCallable( const QualifiedName& name, const Container& declaration_container, const Arguments& arguments, const TypeVector& specialization_types) { return LookupCallable(name, declaration_container, arguments.parameters.ComputeTypeVector(), arguments.labels, specialization_types); } Method* ImplementationVisitor::LookupMethod( const std::string& name, const AggregateType* receiver_type, const Arguments& arguments, const TypeVector& specialization_types) { TypeVector types(arguments.parameters.ComputeTypeVector()); types.insert(types.begin(), receiver_type); return Method::cast(LookupCallable({{}, name}, receiver_type->Methods(name), types, arguments.labels, specialization_types)); } const Type* ImplementationVisitor::GetCommonType(const Type* left, const Type* right) { const Type* common_type; if (IsAssignableFrom(left, right)) { common_type = left; } else if (IsAssignableFrom(right, left)) { common_type = right; } else { common_type = TypeOracle::GetUnionType(left, right); } common_type = common_type->NonConstexprVersion(); return common_type; } VisitResult ImplementationVisitor::GenerateCopy(const VisitResult& to_copy) { if (to_copy.IsOnStack()) { return VisitResult(to_copy.type(), assembler().Peek(to_copy.stack_range(), to_copy.type())); } return to_copy; } VisitResult ImplementationVisitor::Visit(StructExpression* expr) { StackScope stack_scope(this); auto& initializers = expr->initializers; std::vector values; std::vector term_argument_types; values.reserve(initializers.size()); term_argument_types.reserve(initializers.size()); // Compute values and types of all initializer arguments for (const NameAndExpression& initializer : initializers) { VisitResult value = Visit(initializer.expression); values.push_back(value); term_argument_types.push_back(value.type()); } // Compute and check struct type from given struct name and argument types const StructType* struct_type = TypeVisitor::ComputeTypeForStructExpression( expr->type, term_argument_types); CheckInitializersWellformed(struct_type->name(), struct_type->fields(), initializers); // Implicitly convert values and thereby build the struct on the stack StackRange struct_range = assembler().TopRange(0); auto& fields = struct_type->fields(); for (size_t i = 0; i < values.size(); i++) { values[i] = GenerateImplicitConvert(fields[i].name_and_type.type, values[i]); struct_range.Extend(values[i].stack_range()); } return stack_scope.Yield(VisitResult(struct_type, struct_range)); } LocationReference ImplementationVisitor::GetLocationReference( Expression* location) { switch (location->kind) { case AstNode::Kind::kIdentifierExpression: return GetLocationReference(static_cast(location)); case AstNode::Kind::kFieldAccessExpression: return GetLocationReference( static_cast(location)); case AstNode::Kind::kElementAccessExpression: return GetLocationReference( static_cast(location)); case AstNode::Kind::kDereferenceExpression: return GetLocationReference( static_cast(location)); default: return LocationReference::Temporary(Visit(location), "expression"); } } LocationReference ImplementationVisitor::GetLocationReference( FieldAccessExpression* expr) { const std::string& fieldname = expr->field->value; LocationReference reference = GetLocationReference(expr->object); if (reference.IsVariableAccess() && reference.variable().type()->IsStructType()) { const StructType* type = StructType::cast(reference.variable().type()); const Field& field = type->LookupField(fieldname); if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(expr->field->pos, field.pos); } if (field.const_qualified) { VisitResult t_value = ProjectStructField(reference.variable(), fieldname); return LocationReference::Temporary( t_value, "for constant field '" + field.name_and_type.name + "'"); } else { return LocationReference::VariableAccess( ProjectStructField(reference.variable(), fieldname)); } } if (reference.IsTemporary() && reference.temporary().type()->IsStructType()) { if (GlobalContext::collect_language_server_data()) { const StructType* type = StructType::cast(reference.temporary().type()); const Field& field = type->LookupField(fieldname); LanguageServerData::AddDefinition(expr->field->pos, field.pos); } return LocationReference::Temporary( ProjectStructField(reference.temporary(), fieldname), reference.temporary_description()); } VisitResult object_result = GenerateFetchFromLocation(reference); if (base::Optional class_type = object_result.type()->ClassSupertype()) { // This is a hack to distinguish the situation where we want to use // overloaded field accessors from when we want to create a reference. bool has_explicit_overloads = TestLookupCallable( QualifiedName{"." + fieldname}, {object_result.type()}); if ((*class_type)->HasField(fieldname) && !has_explicit_overloads) { const Field& field = (*class_type)->LookupField(fieldname); if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(expr->field->pos, field.pos); } if (field.index) { assembler().Emit( CreateFieldReferenceInstruction{object_result.type(), fieldname}); // Fetch the length from the object { StackScope length_scope(this); // Get a reference to the length const Field* index_field = field.index.value(); GenerateCopy(object_result); assembler().Emit(CreateFieldReferenceInstruction{ object_result.type(), index_field->name_and_type.name}); VisitResult length_reference( TypeOracle::GetReferenceType(index_field->name_and_type.type), assembler().TopRange(2)); // Load the length from the reference and convert it to intptr VisitResult length = GenerateFetchFromLocation( LocationReference::HeapReference(length_reference)); VisitResult converted_length = GenerateCall("Convert", {{length}, {}}, {TypeOracle::GetIntPtrType(), length.type()}, false); DCHECK_EQ(converted_length.stack_range().Size(), 1); length_scope.Yield(converted_length); } const Type* slice_type = TypeOracle::GetSliceType(field.name_and_type.type); return LocationReference::HeapSlice( VisitResult(slice_type, assembler().TopRange(3))); } else { assembler().Emit( CreateFieldReferenceInstruction{*class_type, fieldname}); const Type* reference_type = TypeOracle::GetReferenceType(field.name_and_type.type); return LocationReference::HeapReference( VisitResult(reference_type, assembler().TopRange(2))); } } } return LocationReference::FieldAccess(object_result, fieldname); } LocationReference ImplementationVisitor::GetLocationReference( ElementAccessExpression* expr) { LocationReference reference = GetLocationReference(expr->array); VisitResult index = Visit(expr->index); if (reference.IsHeapSlice()) { Arguments arguments{{index}, {}}; const AggregateType* slice_type = AggregateType::cast(reference.heap_slice().type()); Method* method = LookupMethod("AtIndex", slice_type, arguments, {}); return LocationReference::HeapReference( GenerateCall(method, reference, arguments, {}, false)); } else { return LocationReference::ArrayAccess(GenerateFetchFromLocation(reference), index); } } LocationReference ImplementationVisitor::GetLocationReference( IdentifierExpression* expr) { if (expr->namespace_qualification.empty()) { if (base::Optional*> value = TryLookupLocalValue(expr->name->value)) { if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(expr->name->pos, (*value)->declaration_position()); } if (expr->generic_arguments.size() != 0) { ReportError("cannot have generic parameters on local name ", expr->name); } if ((*value)->is_const) { return LocationReference::Temporary( (*value)->value, "constant value " + expr->name->value); } return LocationReference::VariableAccess((*value)->value, *value); } } if (expr->IsThis()) { ReportError("\"this\" cannot be qualified"); } QualifiedName name = QualifiedName(expr->namespace_qualification, expr->name->value); if (base::Optional builtin = Declarations::TryLookupBuiltin(name)) { if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(expr->name->pos, (*builtin)->Position()); } return LocationReference::Temporary(GetBuiltinCode(*builtin), "builtin " + expr->name->value); } if (expr->generic_arguments.size() != 0) { Generic* generic = Declarations::LookupUniqueGeneric(name); Callable* specialization = GetOrCreateSpecialization(SpecializationKey{ generic, TypeVisitor::ComputeTypeVector(expr->generic_arguments)}); if (Builtin* builtin = Builtin::DynamicCast(specialization)) { DCHECK(!builtin->IsExternal()); return LocationReference::Temporary(GetBuiltinCode(builtin), "builtin " + expr->name->value); } else { ReportError("cannot create function pointer for non-builtin ", generic->name()); } } Value* value = Declarations::LookupValue(name); if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(expr->name->pos, value->name()->pos); } if (auto* constant = NamespaceConstant::DynamicCast(value)) { if (constant->type()->IsConstexpr()) { return LocationReference::Temporary( VisitResult(constant->type(), constant->external_name() + "(state_)"), "namespace constant " + expr->name->value); } assembler().Emit(NamespaceConstantInstruction{constant}); StackRange stack_range = assembler().TopRange(LoweredSlotCount(constant->type())); return LocationReference::Temporary( VisitResult(constant->type(), stack_range), "namespace constant " + expr->name->value); } ExternConstant* constant = ExternConstant::cast(value); return LocationReference::Temporary(constant->value(), "extern value " + expr->name->value); } LocationReference ImplementationVisitor::GetLocationReference( DereferenceExpression* expr) { VisitResult ref = Visit(expr->reference); if (!StructType::MatchUnaryGeneric(ref.type(), TypeOracle::GetReferenceGeneric())) { ReportError("Operator * expects a reference but found a value of type ", *ref.type()); } return LocationReference::HeapReference(ref); } VisitResult ImplementationVisitor::GenerateFetchFromLocation( const LocationReference& reference) { if (reference.IsTemporary()) { return GenerateCopy(reference.temporary()); } else if (reference.IsVariableAccess()) { return GenerateCopy(reference.variable()); } else if (reference.IsHeapReference()) { GenerateCopy(reference.heap_reference()); assembler().Emit(LoadReferenceInstruction{reference.ReferencedType()}); DCHECK_EQ(1, LoweredSlotCount(reference.ReferencedType())); return VisitResult(reference.ReferencedType(), assembler().TopRange(1)); } else { if (reference.IsHeapSlice()) { ReportError( "fetching a value directly from an indexed field isn't allowed"); } DCHECK(reference.IsCallAccess()); return GenerateCall(reference.eval_function(), Arguments{reference.call_arguments(), {}}); } } void ImplementationVisitor::GenerateAssignToLocation( const LocationReference& reference, const VisitResult& assignment_value) { if (reference.IsCallAccess()) { Arguments arguments{reference.call_arguments(), {}}; arguments.parameters.push_back(assignment_value); GenerateCall(reference.assign_function(), arguments); } else if (reference.IsVariableAccess()) { VisitResult variable = reference.variable(); VisitResult converted_value = GenerateImplicitConvert(variable.type(), assignment_value); assembler().Poke(variable.stack_range(), converted_value.stack_range(), variable.type()); // Local variables are detected by the existence of a binding. Assignment // to local variables is recorded to support lint errors. if (reference.binding()) { (*reference.binding())->SetWritten(); } } else if (reference.IsHeapSlice()) { ReportError("assigning a value directly to an indexed field isn't allowed"); } else if (reference.IsHeapReference()) { const Type* referenced_type = reference.ReferencedType(); GenerateCopy(reference.heap_reference()); VisitResult converted_assignment_value = GenerateImplicitConvert(referenced_type, assignment_value); if (referenced_type == TypeOracle::GetFloat64Type()) { VisitResult silenced_float_value = GenerateCall("Float64SilenceNaN", {{assignment_value}, {}}); assembler().Poke(converted_assignment_value.stack_range(), silenced_float_value.stack_range(), referenced_type); } assembler().Emit(StoreReferenceInstruction{referenced_type}); } else { DCHECK(reference.IsTemporary()); ReportError("cannot assign to temporary ", reference.temporary_description()); } } VisitResult ImplementationVisitor::GeneratePointerCall( Expression* callee, const Arguments& arguments, bool is_tailcall) { StackScope scope(this); TypeVector parameter_types(arguments.parameters.ComputeTypeVector()); VisitResult callee_result = Visit(callee); if (!callee_result.type()->IsBuiltinPointerType()) { std::stringstream stream; stream << "Expected a function pointer type but found " << *callee_result.type(); ReportError(stream.str()); } const BuiltinPointerType* type = BuiltinPointerType::cast(callee_result.type()); if (type->parameter_types().size() != parameter_types.size()) { std::stringstream stream; stream << "parameter count mismatch calling function pointer with Type: " << *type << " - expected " << std::to_string(type->parameter_types().size()) << ", found " << std::to_string(parameter_types.size()); ReportError(stream.str()); } ParameterTypes types{type->parameter_types(), false}; Signature sig; sig.parameter_types = types; if (!IsCompatibleSignature(sig, parameter_types, 0)) { std::stringstream stream; stream << "parameters do not match function pointer signature. Expected: (" << type->parameter_types() << ") but got: (" << parameter_types << ")"; ReportError(stream.str()); } callee_result = GenerateCopy(callee_result); StackRange arg_range = assembler().TopRange(0); for (size_t current = 0; current < arguments.parameters.size(); ++current) { const Type* to_type = type->parameter_types()[current]; arg_range.Extend( GenerateImplicitConvert(to_type, arguments.parameters[current]) .stack_range()); } assembler().Emit( CallBuiltinPointerInstruction{is_tailcall, type, arg_range.Size()}); if (is_tailcall) { return VisitResult::NeverResult(); } DCHECK_EQ(1, LoweredSlotCount(type->return_type())); return scope.Yield(VisitResult(type->return_type(), assembler().TopRange(1))); } void ImplementationVisitor::AddCallParameter( Callable* callable, VisitResult parameter, const Type* parameter_type, std::vector* converted_arguments, StackRange* argument_range, std::vector* constexpr_arguments) { VisitResult converted = GenerateImplicitConvert(parameter_type, parameter); converted_arguments->push_back(converted); if (!callable->ShouldBeInlined()) { if (converted.IsOnStack()) { argument_range->Extend(converted.stack_range()); } else { constexpr_arguments->push_back(converted.constexpr_value()); } } } VisitResult ImplementationVisitor::GenerateCall( Callable* callable, base::Optional this_reference, Arguments arguments, const TypeVector& specialization_types, bool is_tailcall) { const Type* return_type = callable->signature().return_type; if (is_tailcall) { if (Builtin* builtin = Builtin::DynamicCast(CurrentCallable::Get())) { const Type* outer_return_type = builtin->signature().return_type; if (!return_type->IsSubtypeOf(outer_return_type)) { Error("Cannot tailcall, type of result is ", *return_type, " but should be a subtype of ", *outer_return_type, "."); } } else { Error("Tail calls are only allowed from builtins"); } } std::vector converted_arguments; StackRange argument_range = assembler().TopRange(0); std::vector constexpr_arguments; size_t current = 0; for (; current < callable->signature().implicit_count; ++current) { std::string implicit_name = callable->signature().parameter_names[current]->value; base::Optional*> val = TryLookupLocalValue(implicit_name); if (!val) { ReportError("implicit parameter '", implicit_name, "' required for call to '", callable->ReadableName(), "' is not defined"); } AddCallParameter(callable, (*val)->value, callable->signature().parameter_types.types[current], &converted_arguments, &argument_range, &constexpr_arguments); } if (this_reference) { DCHECK(callable->IsMethod()); Method* method = Method::cast(callable); // By now, the this reference should either be a variable, a temporary or // a Slice. In either case the fetch of the VisitResult should succeed. VisitResult this_value = this_reference->GetVisitResult(); if (method->ShouldBeInlined()) { if (!this_value.type()->IsSubtypeOf(method->aggregate_type())) { ReportError("this parameter must be a subtype of ", *method->aggregate_type(), " but it is of type ", this_value.type()); } } else { AddCallParameter(callable, this_value, method->aggregate_type(), &converted_arguments, &argument_range, &constexpr_arguments); } ++current; } for (auto arg : arguments.parameters) { const Type* to_type = (current >= callable->signature().types().size()) ? TypeOracle::GetObjectType() : callable->signature().types()[current++]; AddCallParameter(callable, arg, to_type, &converted_arguments, &argument_range, &constexpr_arguments); } size_t label_count = callable->signature().labels.size(); if (label_count != arguments.labels.size()) { std::stringstream s; s << "unexpected number of otherwise labels for " << callable->ReadableName() << " (expected " << std::to_string(label_count) << " found " << std::to_string(arguments.labels.size()) << ")"; ReportError(s.str()); } if (callable->IsTransitioning()) { if (!CurrentCallable::Get()->IsTransitioning()) { std::stringstream s; s << *CurrentCallable::Get() << " isn't marked transitioning but calls the transitioning " << *callable; ReportError(s.str()); } } if (auto* builtin = Builtin::DynamicCast(callable)) { base::Optional catch_block = GetCatchBlock(); assembler().Emit(CallBuiltinInstruction{ is_tailcall, builtin, argument_range.Size(), catch_block}); GenerateCatchBlock(catch_block); if (is_tailcall) { return VisitResult::NeverResult(); } else { size_t slot_count = LoweredSlotCount(return_type); DCHECK_LE(slot_count, 1); // TODO(tebbi): Actually, builtins have to return a value, so we should // assert slot_count == 1 here. return VisitResult(return_type, assembler().TopRange(slot_count)); } } else if (auto* macro = Macro::DynamicCast(callable)) { if (is_tailcall) { ReportError("can't tail call a macro"); } macro->SetUsed(); if (return_type->IsConstexpr()) { DCHECK_EQ(0, arguments.labels.size()); std::stringstream result; result << "("; bool first = true; if (auto* extern_macro = ExternMacro::DynamicCast(macro)) { result << extern_macro->external_assembler_name() << "(state_)." << extern_macro->ExternalName() << "("; } else { result << macro->ExternalName() << "(state_"; first = false; } for (VisitResult arg : arguments.parameters) { DCHECK(!arg.IsOnStack()); if (!first) { result << ", "; } first = false; result << arg.constexpr_value(); } result << "))"; return VisitResult(return_type, result.str()); } else if (macro->ShouldBeInlined()) { std::vector label_blocks; for (Binding* label : arguments.labels) { label_blocks.push_back(label->block); } return InlineMacro(macro, this_reference, converted_arguments, label_blocks); } else if (arguments.labels.empty() && return_type != TypeOracle::GetNeverType()) { base::Optional catch_block = GetCatchBlock(); assembler().Emit( CallCsaMacroInstruction{macro, constexpr_arguments, catch_block}); GenerateCatchBlock(catch_block); size_t return_slot_count = LoweredSlotCount(return_type); return VisitResult(return_type, assembler().TopRange(return_slot_count)); } else { base::Optional return_continuation; if (return_type != TypeOracle::GetNeverType()) { return_continuation = assembler().NewBlock(); } std::vector label_blocks; for (size_t i = 0; i < label_count; ++i) { label_blocks.push_back(assembler().NewBlock()); } base::Optional catch_block = GetCatchBlock(); assembler().Emit(CallCsaMacroAndBranchInstruction{ macro, constexpr_arguments, return_continuation, label_blocks, catch_block}); GenerateCatchBlock(catch_block); for (size_t i = 0; i < label_count; ++i) { Binding* label = arguments.labels[i]; size_t callee_label_parameters = callable->signature().labels[i].types.size(); if (label->parameter_types.size() != callee_label_parameters) { std::stringstream s; s << "label " << label->name() << " doesn't have the right number of parameters (found " << std::to_string(label->parameter_types.size()) << " expected " << std::to_string(callee_label_parameters) << ")"; ReportError(s.str()); } assembler().Bind(label_blocks[i]); assembler().Goto( label->block, LowerParameterTypes(callable->signature().labels[i].types).size()); size_t j = 0; for (auto t : callable->signature().labels[i].types) { const Type* parameter_type = label->parameter_types[j]; if (!t->IsSubtypeOf(parameter_type)) { ReportError("mismatch of label parameters (label expects ", *parameter_type, " but macro produces ", *t, " for parameter ", i + 1, ")"); } j++; } } if (return_continuation) { assembler().Bind(*return_continuation); size_t return_slot_count = LoweredSlotCount(return_type); return VisitResult(return_type, assembler().TopRange(return_slot_count)); } else { return VisitResult::NeverResult(); } } } else if (auto* runtime_function = RuntimeFunction::DynamicCast(callable)) { base::Optional catch_block = GetCatchBlock(); assembler().Emit(CallRuntimeInstruction{ is_tailcall, runtime_function, argument_range.Size(), catch_block}); GenerateCatchBlock(catch_block); if (is_tailcall || return_type == TypeOracle::GetNeverType()) { return VisitResult::NeverResult(); } else { size_t slot_count = LoweredSlotCount(return_type); DCHECK_LE(slot_count, 1); // TODO(tebbi): Actually, runtime functions have to return a value, so // we should assert slot_count == 1 here. return VisitResult(return_type, assembler().TopRange(slot_count)); } } else if (auto* intrinsic = Intrinsic::DynamicCast(callable)) { if (intrinsic->ExternalName() == "%RawConstexprCast") { if (intrinsic->signature().parameter_types.types.size() != 1 || constexpr_arguments.size() != 1) { ReportError( "%RawConstexprCast must take a single parameter with constexpr " "type"); } if (!return_type->IsConstexpr()) { std::stringstream s; s << *return_type << " return type for %RawConstexprCast is not constexpr"; ReportError(s.str()); } std::stringstream result; result << "static_cast<" << return_type->GetGeneratedTypeName() << ">("; result << constexpr_arguments[0]; result << ")"; return VisitResult(return_type, result.str()); } else { assembler().Emit(CallIntrinsicInstruction{intrinsic, specialization_types, constexpr_arguments}); size_t return_slot_count = LoweredSlotCount(intrinsic->signature().return_type); return VisitResult(return_type, assembler().TopRange(return_slot_count)); } } else { UNREACHABLE(); } } VisitResult ImplementationVisitor::GenerateCall( const QualifiedName& callable_name, Arguments arguments, const TypeVector& specialization_types, bool is_tailcall) { Callable* callable = LookupCallable(callable_name, Declarations::Lookup(callable_name), arguments, specialization_types); return GenerateCall(callable, base::nullopt, arguments, specialization_types, is_tailcall); } VisitResult ImplementationVisitor::Visit(CallExpression* expr, bool is_tailcall) { StackScope scope(this); if (expr->callee->name->value == "&" && expr->arguments.size() == 1) { if (auto* loc_expr = LocationExpression::DynamicCast(expr->arguments[0])) { LocationReference ref = GetLocationReference(loc_expr); if (ref.IsHeapReference()) return scope.Yield(ref.heap_reference()); if (ref.IsHeapSlice()) return scope.Yield(ref.heap_slice()); } ReportError("Unable to create a heap reference."); } Arguments arguments; QualifiedName name = QualifiedName(expr->callee->namespace_qualification, expr->callee->name->value); TypeVector specialization_types = TypeVisitor::ComputeTypeVector(expr->callee->generic_arguments); bool has_template_arguments = !specialization_types.empty(); for (Expression* arg : expr->arguments) arguments.parameters.push_back(Visit(arg)); arguments.labels = LabelsFromIdentifiers(expr->labels); if (!has_template_arguments && name.namespace_qualification.empty() && TryLookupLocalValue(name.name)) { return scope.Yield( GeneratePointerCall(expr->callee, arguments, is_tailcall)); } else { if (GlobalContext::collect_language_server_data()) { Callable* callable = LookupCallable(name, Declarations::Lookup(name), arguments, specialization_types); LanguageServerData::AddDefinition(expr->callee->name->pos, callable->IdentifierPosition()); } return scope.Yield( GenerateCall(name, arguments, specialization_types, is_tailcall)); } } VisitResult ImplementationVisitor::Visit(CallMethodExpression* expr) { StackScope scope(this); Arguments arguments; std::string method_name = expr->method->name->value; TypeVector specialization_types = TypeVisitor::ComputeTypeVector(expr->method->generic_arguments); LocationReference target = GetLocationReference(expr->target); if (!target.IsVariableAccess()) { VisitResult result = GenerateFetchFromLocation(target); target = LocationReference::Temporary(result, "method target result"); } const AggregateType* target_type = AggregateType::DynamicCast(target.ReferencedType()); if (!target_type) { ReportError("target of method call not a struct or class type"); } for (Expression* arg : expr->arguments) { arguments.parameters.push_back(Visit(arg)); } arguments.labels = LabelsFromIdentifiers(expr->labels); TypeVector argument_types = arguments.parameters.ComputeTypeVector(); DCHECK_EQ(expr->method->namespace_qualification.size(), 0); QualifiedName qualified_name = QualifiedName(method_name); Callable* callable = nullptr; callable = LookupMethod(method_name, target_type, arguments, {}); if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(expr->method->name->pos, callable->IdentifierPosition()); } return scope.Yield(GenerateCall(callable, target, arguments, {}, false)); } VisitResult ImplementationVisitor::Visit(IntrinsicCallExpression* expr) { StackScope scope(this); Arguments arguments; TypeVector specialization_types = TypeVisitor::ComputeTypeVector(expr->generic_arguments); for (Expression* arg : expr->arguments) arguments.parameters.push_back(Visit(arg)); return scope.Yield( GenerateCall(expr->name->value, arguments, specialization_types, false)); } void ImplementationVisitor::GenerateBranch(const VisitResult& condition, Block* true_block, Block* false_block) { DCHECK_EQ(condition, VisitResult(TypeOracle::GetBoolType(), assembler().TopRange(1))); assembler().Branch(true_block, false_block); } VisitResult ImplementationVisitor::GenerateBoolConstant(bool constant) { return GenerateImplicitConvert(TypeOracle::GetBoolType(), VisitResult(TypeOracle::GetConstexprBoolType(), constant ? "true" : "false")); } void ImplementationVisitor::GenerateExpressionBranch(Expression* expression, Block* true_block, Block* false_block) { StackScope stack_scope(this); VisitResult expression_result = this->Visit(expression); expression_result = stack_scope.Yield( GenerateImplicitConvert(TypeOracle::GetBoolType(), expression_result)); GenerateBranch(expression_result, true_block, false_block); } VisitResult ImplementationVisitor::GenerateImplicitConvert( const Type* destination_type, VisitResult source) { StackScope scope(this); if (source.type() == TypeOracle::GetNeverType()) { ReportError("it is not allowed to use a value of type never"); } if (destination_type == source.type()) { return scope.Yield(GenerateCopy(source)); } if (TypeOracle::IsImplicitlyConvertableFrom(destination_type, source.type())) { return scope.Yield(GenerateCall(kFromConstexprMacroName, {{source}, {}}, {destination_type, source.type()}, false)); } else if (IsAssignableFrom(destination_type, source.type())) { source.SetType(destination_type); return scope.Yield(GenerateCopy(source)); } else { std::stringstream s; s << "cannot use expression of type " << *source.type() << " as a value of type " << *destination_type; ReportError(s.str()); } } StackRange ImplementationVisitor::GenerateLabelGoto( LocalLabel* label, base::Optional arguments) { return assembler().Goto(label->block, arguments ? arguments->Size() : 0); } std::vector*> ImplementationVisitor::LabelsFromIdentifiers( const std::vector& names) { std::vector*> result; result.reserve(names.size()); for (const auto& name : names) { Binding* label = LookupLabel(name->value); result.push_back(label); // Link up labels in "otherwise" part of the call expression with // either the label in the signature of the calling macro or the label // block ofa surrounding "try". if (GlobalContext::collect_language_server_data()) { LanguageServerData::AddDefinition(name->pos, label->declaration_position()); } } return result; } StackRange ImplementationVisitor::LowerParameter( const Type* type, const std::string& parameter_name, Stack* lowered_parameters) { if (const StructType* struct_type = StructType::DynamicCast(type)) { StackRange range = lowered_parameters->TopRange(0); for (auto& field : struct_type->fields()) { StackRange parameter_range = LowerParameter( field.name_and_type.type, parameter_name + "." + field.name_and_type.name, lowered_parameters); range.Extend(parameter_range); } return range; } else { lowered_parameters->Push(parameter_name); return lowered_parameters->TopRange(1); } } void ImplementationVisitor::LowerLabelParameter( const Type* type, const std::string& parameter_name, std::vector* lowered_parameters) { if (const StructType* struct_type = StructType::DynamicCast(type)) { for (auto& field : struct_type->fields()) { LowerLabelParameter( field.name_and_type.type, "&((*" + parameter_name + ")." + field.name_and_type.name + ")", lowered_parameters); } } else { lowered_parameters->push_back(parameter_name); } } std::string ImplementationVisitor::ExternalLabelName( const std::string& label_name) { return "label_" + label_name; } std::string ImplementationVisitor::ExternalLabelParameterName( const std::string& label_name, size_t i) { return "label_" + label_name + "_parameter_" + std::to_string(i); } std::string ImplementationVisitor::ExternalParameterName( const std::string& name) { return std::string("p_") + name; } DEFINE_CONTEXTUAL_VARIABLE(ImplementationVisitor::ValueBindingsManager) DEFINE_CONTEXTUAL_VARIABLE(ImplementationVisitor::LabelBindingsManager) DEFINE_CONTEXTUAL_VARIABLE(ImplementationVisitor::CurrentCallable) DEFINE_CONTEXTUAL_VARIABLE(ImplementationVisitor::CurrentFileStreams) DEFINE_CONTEXTUAL_VARIABLE(ImplementationVisitor::CurrentReturnValue) bool IsCompatibleSignature(const Signature& sig, const TypeVector& types, size_t label_count) { auto i = sig.parameter_types.types.begin() + sig.implicit_count; if ((sig.parameter_types.types.size() - sig.implicit_count) > types.size()) return false; if (sig.labels.size() != label_count) return false; for (auto current : types) { if (i == sig.parameter_types.types.end()) { if (!sig.parameter_types.var_args) return false; if (!IsAssignableFrom(TypeOracle::GetObjectType(), current)) return false; } else { if (!IsAssignableFrom(*i++, current)) return false; } } return true; } base::Optional ImplementationVisitor::GetCatchBlock() { base::Optional catch_block; if (base::Optional*> catch_handler = TryLookupLabel(kCatchLabelName)) { catch_block = assembler().NewBlock(base::nullopt, true); } return catch_block; } void ImplementationVisitor::GenerateCatchBlock( base::Optional catch_block) { if (catch_block) { base::Optional*> catch_handler = TryLookupLabel(kCatchLabelName); if (assembler().CurrentBlockIsComplete()) { assembler().Bind(*catch_block); assembler().Goto((*catch_handler)->block, 1); } else { CfgAssemblerScopedTemporaryBlock temp(&assembler(), *catch_block); assembler().Goto((*catch_handler)->block, 1); } } } void ImplementationVisitor::VisitAllDeclarables() { CurrentCallable::Scope current_callable(nullptr); const std::vector>& all_declarables = GlobalContext::AllDeclarables(); // This has to be an index-based loop because all_declarables can be extended // during the loop. for (size_t i = 0; i < all_declarables.size(); ++i) { try { Visit(all_declarables[i].get()); } catch (TorqueAbortCompilation&) { // Recover from compile errors here. The error is recorded already. } } } void ImplementationVisitor::Visit(Declarable* declarable) { CurrentScope::Scope current_scope(declarable->ParentScope()); CurrentSourcePosition::Scope current_source_position(declarable->Position()); CurrentFileStreams::Scope current_file_streams( &GlobalContext::GeneratedPerFile(declarable->Position().source)); if (Callable* callable = Callable::DynamicCast(declarable)) { if (!callable->ShouldGenerateExternalCode()) CurrentFileStreams::Get() = nullptr; } switch (declarable->kind()) { case Declarable::kExternMacro: return Visit(ExternMacro::cast(declarable)); case Declarable::kTorqueMacro: return Visit(TorqueMacro::cast(declarable)); case Declarable::kMethod: return Visit(Method::cast(declarable)); case Declarable::kBuiltin: return Visit(Builtin::cast(declarable)); case Declarable::kTypeAlias: return Visit(TypeAlias::cast(declarable)); case Declarable::kNamespaceConstant: return Visit(NamespaceConstant::cast(declarable)); case Declarable::kRuntimeFunction: case Declarable::kIntrinsic: case Declarable::kExternConstant: case Declarable::kNamespace: case Declarable::kGeneric: case Declarable::kGenericStructType: return; } } void ImplementationVisitor::GenerateBuiltinDefinitions( const std::string& output_directory) { std::stringstream new_contents_stream; std::string file_name = "builtin-definitions-tq.h"; { IncludeGuardScope include_guard(new_contents_stream, file_name); new_contents_stream << "\n" "#define BUILTIN_LIST_FROM_TORQUE(CPP, TFJ, TFC, TFS, TFH, " "ASM) " "\\\n"; for (auto& declarable : GlobalContext::AllDeclarables()) { Builtin* builtin = Builtin::DynamicCast(declarable.get()); if (!builtin || builtin->IsExternal()) continue; size_t firstParameterIndex = 1; bool declareParameters = true; if (builtin->IsStub()) { new_contents_stream << "TFS(" << builtin->ExternalName(); } else { new_contents_stream << "TFJ(" << builtin->ExternalName(); if (builtin->IsVarArgsJavaScript()) { new_contents_stream << ", SharedFunctionInfo::kDontAdaptArgumentsSentinel"; declareParameters = false; } else { DCHECK(builtin->IsFixedArgsJavaScript()); // FixedArg javascript builtins need to offer the parameter // count. int parameter_count = static_cast(builtin->signature().ExplicitCount()); new_contents_stream << ", " << parameter_count; // And the receiver is explicitly declared. new_contents_stream << ", kReceiver"; firstParameterIndex = builtin->signature().implicit_count; } } if (declareParameters) { for (size_t i = firstParameterIndex; i < builtin->parameter_names().size(); ++i) { Identifier* parameter = builtin->parameter_names()[i]; new_contents_stream << ", k" << CamelifyString(parameter->value); } } new_contents_stream << ") \\\n"; } new_contents_stream << "\n"; new_contents_stream << "#define TORQUE_FUNCTION_POINTER_TYPE_TO_BUILTIN_MAP(V) \\\n"; for (const BuiltinPointerType* type : TypeOracle::AllBuiltinPointerTypes()) { Builtin* example_builtin = Declarations::FindSomeInternalBuiltinWithType(type); if (!example_builtin) { CurrentSourcePosition::Scope current_source_position( SourcePosition{CurrentSourceFile::Get(), {-1, -1}, {-1, -1}}); ReportError("unable to find any builtin with type \"", *type, "\""); } new_contents_stream << " V(" << type->function_pointer_type_id() << "," << example_builtin->ExternalName() << ")\\\n"; } new_contents_stream << "\n"; } std::string new_contents(new_contents_stream.str()); WriteFile(output_directory + "/" + file_name, new_contents); } namespace { enum class FieldSectionType : uint32_t { kNoSection = 0, kWeakSection = 1 << 0, kStrongSection = 2 << 0, kScalarSection = 3 << 0 }; bool IsPointerSection(FieldSectionType type) { return type == FieldSectionType::kWeakSection || type == FieldSectionType::kStrongSection; } using FieldSections = base::Flags; std::string ToString(FieldSectionType type) { switch (type) { case FieldSectionType::kNoSection: return "NoSection"; break; case FieldSectionType::kWeakSection: return "WeakFields"; break; case FieldSectionType::kStrongSection: return "StrongFields"; break; case FieldSectionType::kScalarSection: return "ScalarFields"; break; } UNREACHABLE(); } class FieldOffsetsGenerator { public: explicit FieldOffsetsGenerator(const ClassType* type) : type_(type) {} virtual void WriteField(const Field& f, const std::string& size_string) = 0; virtual void WriteMarker(const std::string& marker) = 0; virtual void BeginPrivateOffsets() = 0; virtual ~FieldOffsetsGenerator() { CHECK(is_finished_); } void RecordOffsetFor(const Field& f) { CHECK(!is_finished_); UpdateSection(f); // We don't know statically how much space an indexed field takes, so report // it as zero. std::string size_string = "0"; if (!f.index.has_value()) { size_t field_size; std::tie(field_size, size_string) = f.GetFieldSizeInformation(); } WriteField(f, size_string); // Offsets for anything after an indexed field are likely to cause // confusion, because the indexed field itself takes up a variable amount of // space. We could not emit them at all, but that might allow an inherited // kSize to be accessible (and wrong), so we emit them as private. if (f.index.has_value()) { BeginPrivateOffsets(); } } void Finish() { End(current_section_); if (!(completed_sections_ & FieldSectionType::kWeakSection)) { Begin(FieldSectionType::kWeakSection); End(FieldSectionType::kWeakSection); } if (!(completed_sections_ & FieldSectionType::kStrongSection)) { Begin(FieldSectionType::kStrongSection); End(FieldSectionType::kStrongSection); } is_finished_ = true; if (type_->IsAbstract()) { WriteMarker("kHeaderSize"); } if (!type_->IsAbstract() || type_->IsInstantiatedAbstractClass()) { WriteMarker("kSize"); } } protected: const ClassType* type_; private: FieldSectionType GetSectionFor(const Field& f) { if (f.name_and_type.type == TypeOracle::GetVoidType()) { // Allow void type for marker constants of size zero. return current_section_; } if (f.name_and_type.type->IsSubtypeOf(TypeOracle::GetTaggedType())) { if (f.is_weak) { return FieldSectionType::kWeakSection; } else { return FieldSectionType::kStrongSection; } } else { return FieldSectionType::kScalarSection; } } void UpdateSection(const Field& f) { FieldSectionType type = GetSectionFor(f); if (current_section_ == type) return; if (IsPointerSection(type)) { if (completed_sections_ & type) { std::stringstream s; s << "cannot declare field " << f.name_and_type.name << " in class " << type_->name() << ", because section " << ToString(type) << " to which it belongs has already been finished."; Error(s.str()).Position(f.pos); } } End(current_section_); current_section_ = type; Begin(current_section_); } void Begin(FieldSectionType type) { DCHECK(type != FieldSectionType::kNoSection); if (!IsPointerSection(type)) return; WriteMarker("kStartOf" + ToString(type) + "Offset"); } void End(FieldSectionType type) { if (!IsPointerSection(type)) return; completed_sections_ |= type; WriteMarker("kEndOf" + ToString(type) + "Offset"); } FieldSectionType current_section_ = FieldSectionType::kNoSection; FieldSections completed_sections_ = FieldSectionType::kNoSection; bool is_finished_ = false; }; class MacroFieldOffsetsGenerator : public FieldOffsetsGenerator { public: MacroFieldOffsetsGenerator(std::ostream& out, const ClassType* type) : FieldOffsetsGenerator(type), out_(out) { out_ << "#define "; out_ << "TORQUE_GENERATED_" << CapifyStringWithUnderscores(type_->name()) << "_FIELDS(V) \\\n"; } void WriteField(const Field& f, const std::string& size_string) override { out_ << "V(k" << CamelifyString(f.name_and_type.name) << "Offset, " << size_string << ") \\\n"; } void WriteMarker(const std::string& marker) override { out_ << "V(" << marker << ", 0) \\\n"; } void BeginPrivateOffsets() override { // Can't do anything meaningful here in the macro generator. } private: std::ostream& out_; }; } // namespace void ImplementationVisitor::GenerateInstanceTypes( const std::string& output_directory) { std::stringstream header; std::string file_name = "instance-types-tq.h"; { IncludeGuardScope(header, file_name); header << "#define TORQUE_DEFINED_INSTANCE_TYPES(V) \\\n"; for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); if (type->IsExtern()) continue; std::string type_name = CapifyStringWithUnderscores(type->name()) + "_TYPE"; header << " V(" << type_name << ") \\\n"; } header << "\n\n"; header << "#define TORQUE_STRUCT_LIST_GENERATOR(V, _) \\\n"; for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); if (type->IsExtern()) continue; std::string type_name = CapifyStringWithUnderscores(type->name()) + "_TYPE"; std::string variable_name = SnakeifyString(type->name()); header << " V(_, " << type_name << ", " << type->name() << ", " << variable_name << ") \\\n"; } header << "\n"; } std::string output_header_path = output_directory + "/" + file_name; WriteFile(output_header_path, header.str()); } void ImplementationVisitor::GenerateCppForInternalClasses( const std::string& output_directory) { std::stringstream header; std::stringstream inl; std::string base_name = "internal-class-definitions-tq"; { IncludeGuardScope header_guard(header, base_name + ".h"); header << "#include \"src/objects/objects.h\"\n"; header << "#include \"src/objects/struct.h\"\n"; header << "#include \"src/objects/js-objects.h\"\n"; header << "#include \"src/utils/utils.h\"\n"; header << "#include \"torque-generated/class-definitions-tq.h\"\n"; IncludeObjectMacrosScope header_macros(header); NamespaceScope header_namespaces(header, {"v8", "internal"}); IncludeGuardScope inl_guard(inl, base_name + "-inl.h"); inl << "#include \"torque-generated/" << base_name << ".h\"\n"; inl << "#include \"torque-generated/class-definitions-tq-inl.h\"\n"; IncludeObjectMacrosScope inl_macros(inl); NamespaceScope inl_namespaces(inl, {"v8", "internal"}); for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); if (type->IsExtern()) continue; const ClassType* super = type->GetSuperClass(); std::string parent = "TorqueGenerated" + type->name() + "<" + type->name() + ", " + super->name() + ">"; header << "class " << type->name() << ": public " << parent << " {\n"; header << " public:\n"; header << " TQ_OBJECT_CONSTRUCTORS(" << type->name() << ")\n"; header << "};\n\n"; inl << "TQ_OBJECT_CONSTRUCTORS_IMPL(" << type->name() << ")\n"; } } std::string dir_basename = output_directory + "/" + base_name; WriteFile(dir_basename + ".h", header.str()); WriteFile(dir_basename + "-inl.h", inl.str()); } void ImplementationVisitor::GenerateClassFieldOffsets( const std::string& output_directory) { std::stringstream header; std::string file_name = "field-offsets-tq.h"; { IncludeGuardScope include_guard(header, file_name); for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); // TODO(danno): Remove this once all classes use ClassFieldOffsetGenerator // to generate field offsets without the use of macros. if (!type->GenerateCppClassDefinitions()) { MacroFieldOffsetsGenerator g(header, type); for (auto f : type->fields()) { CurrentSourcePosition::Scope scope(f.pos); g.RecordOffsetFor(f); } g.Finish(); header << "\n"; } } } const std::string output_header_path = output_directory + "/" + file_name; WriteFile(output_header_path, header.str()); } namespace { class ClassFieldOffsetGenerator : public FieldOffsetsGenerator { public: ClassFieldOffsetGenerator(std::ostream& header, const ClassType* type) : FieldOffsetsGenerator(type), hdr_(header), previous_field_end_("P::kHeaderSize") {} void WriteField(const Field& f, const std::string& size_string) override { std::string field = "k" + CamelifyString(f.name_and_type.name) + "Offset"; std::string field_end = field + "End"; hdr_ << " static constexpr int " << field << " = " << previous_field_end_ << ";\n"; hdr_ << " static constexpr int " << field_end << " = " << field << " + " << size_string << " - 1;\n"; previous_field_end_ = field_end + " + 1"; } void WriteMarker(const std::string& marker) override { hdr_ << " static constexpr int " << marker << " = " << previous_field_end_ << ";\n"; } void BeginPrivateOffsets() override { // The following section must re-establish public mode (currently done by // GenerateClassConstructors). hdr_ << " private:\n"; } private: std::ostream& hdr_; std::string previous_field_end_; }; class CppClassGenerator { public: CppClassGenerator(const ClassType* type, std::ostream& header, std::ostream& inl_header, std::ostream& impl) : type_(type), super_(type->GetSuperClass()), name_(type->name()), gen_name_("TorqueGenerated" + name_), gen_name_T_(gen_name_ + ""), gen_name_I_(gen_name_ + "<" + name_ + ", " + super_->name() + ">"), hdr_(header), inl_(inl_header), impl_(impl) {} const std::string template_decl() const { return "template "; } void GenerateClass(); private: void GenerateClassConstructors(); void GenerateFieldAccessor(const Field& f); void GenerateFieldAccessorForUntagged(const Field& f); void GenerateFieldAccessorForSmi(const Field& f); void GenerateFieldAccessorForObject(const Field& f); void GenerateClassCasts(); const ClassType* type_; const ClassType* super_; const std::string name_; const std::string gen_name_; const std::string gen_name_T_; const std::string gen_name_I_; std::ostream& hdr_; std::ostream& inl_; std::ostream& impl_; }; void CppClassGenerator::GenerateClass() { hdr_ << template_decl() << "\n"; hdr_ << "class " << gen_name_ << " : public P {\n"; hdr_ << " static_assert(std::is_same<" << name_ << ", D>::value,\n" << " \"Use this class as direct base for " << name_ << ".\");\n"; hdr_ << " static_assert(std::is_same<" << super_->name() << ", P>::value,\n" << " \"Pass in " << super_->name() << " as second template parameter for " << gen_name_ << ".\");\n"; hdr_ << " public: \n"; hdr_ << " using Super = P;\n"; for (const Field& f : type_->fields()) { GenerateFieldAccessor(f); } GenerateClassCasts(); if (type_->ShouldGeneratePrint()) { hdr_ << "\n DECL_PRINTER(" << name_ << ")\n"; } if (type_->ShouldGenerateVerify()) { IfDefScope hdr_scope(hdr_, "VERIFY_HEAP"); hdr_ << " V8_EXPORT_PRIVATE void " << name_ << "Verify(Isolate* isolate);\n"; IfDefScope impl_scope(impl_, "VERIFY_HEAP"); impl_ << "\ntemplate <>\n"; impl_ << "void " << gen_name_I_ << "::" << name_ << "Verify(Isolate* isolate) {\n"; impl_ << " TorqueGeneratedClassVerifiers::" << name_ << "Verify(" << name_ << "::cast(*this), " "isolate);\n"; impl_ << "}\n"; } hdr_ << "\n"; ClassFieldOffsetGenerator g(hdr_, type_); for (auto f : type_->fields()) { CurrentSourcePosition::Scope scope(f.pos); g.RecordOffsetFor(f); } g.Finish(); hdr_ << "\n"; GenerateClassConstructors(); hdr_ << "};\n\n"; } void CppClassGenerator::GenerateClassCasts() { hdr_ << " V8_INLINE static D cast(Object object) {\n"; hdr_ << " return D(object.ptr());\n"; hdr_ << " }\n"; hdr_ << " V8_INLINE static D unchecked_cast(Object object) {\n"; hdr_ << " return bit_cast(object);\n"; hdr_ << " }\n"; } void CppClassGenerator::GenerateClassConstructors() { hdr_ << " public:\n"; hdr_ << " template \n"; hdr_ << " constexpr " << gen_name_ << "() : P() {\n"; hdr_ << " static_assert(std::is_base_of<" << gen_name_ << ", \n"; hdr_ << " DAlias>::value,\n"; hdr_ << " \"class " << gen_name_ << " should be used as direct base for " << name_ << ".\");\n"; hdr_ << " }\n"; hdr_ << " D* operator->() { return static_cast(this); }\n"; hdr_ << " const D* operator->() const { return static_cast(this); " "}\n\n"; hdr_ << "protected:\n"; hdr_ << " inline explicit " << gen_name_ << "(Address ptr);\n"; inl_ << "template\n"; inl_ << "inline " << gen_name_T_ << "::" << gen_name_ << "(Address ptr)\n"; inl_ << " : P(ptr) {\n"; if (type_->IsInstantiatedAbstractClass()) { // This is a hack to prevent wrong instance type checks. inl_ << " // Instance check omitted because class is annotated with " "@dirtyInstantiatedAbstractClass.\n"; } else { inl_ << " SLOW_DCHECK(this->Is" << name_ << "());\n"; } inl_ << "}\n"; } // TODO(sigurds): Keep in sync with DECL_ACCESSORS and ACCESSORS macro. void CppClassGenerator::GenerateFieldAccessor(const Field& f) { const Type* field_type = f.name_and_type.type; if (field_type == TypeOracle::GetVoidType()) return; if (!f.name_and_type.type->IsSubtypeOf(TypeOracle::GetTaggedType())) { return GenerateFieldAccessorForUntagged(f); } if (f.name_and_type.type->IsSubtypeOf(TypeOracle::GetSmiType())) { return GenerateFieldAccessorForSmi(f); } if (f.name_and_type.type->IsSubtypeOf(TypeOracle::GetObjectType())) { return GenerateFieldAccessorForObject(f); } Error("Generation of field accessor for ", type_->name(), ":: ", f.name_and_type.name, " : ", *field_type, " is not supported.") .Position(f.pos); } void CppClassGenerator::GenerateFieldAccessorForUntagged(const Field& f) { DCHECK(!f.name_and_type.type->IsSubtypeOf(TypeOracle::GetTaggedType())); const Type* field_type = f.name_and_type.type; if (field_type == TypeOracle::GetVoidType()) return; const Type* constexpr_version = field_type->ConstexprVersion(); if (!constexpr_version) { Error("Field accessor for ", type_->name(), ":: ", f.name_and_type.name, " cannot be generated because its type ", *field_type, " is neither a subclass of Object nor does the type have a constexpr " "version.") .Position(f.pos); return; } const std::string& name = f.name_and_type.name; const std::string type = constexpr_version->GetGeneratedTypeName(); const std::string offset = "k" + CamelifyString(name) + "Offset"; // Generate declarations in header. hdr_ << " inline " << type << " " << name << "() const;\n"; hdr_ << " inline void set_" << name << "(" << type << " value);\n\n"; // Generate implementation in inline header. inl_ << "template \n"; inl_ << type << " " << gen_name_ << "::" << name << "() const {\n"; inl_ << " return this->template ReadField<" << type << ">(" << offset << ");\n"; inl_ << "}\n"; inl_ << "template \n"; inl_ << "void " << gen_name_ << "::set_" << name << "(" << type << " value) {\n"; inl_ << " this->template WriteField<" << type << ">(" << offset << ", value);\n"; inl_ << "}\n\n"; } void CppClassGenerator::GenerateFieldAccessorForSmi(const Field& f) { DCHECK(f.name_and_type.type->IsSubtypeOf(TypeOracle::GetSmiType())); const std::string type = "Smi"; const std::string& name = f.name_and_type.name; const std::string offset = "k" + CamelifyString(name) + "Offset"; // Generate declarations in header. hdr_ << " inline " << type << " " << name << "() const;\n"; hdr_ << " inline void set_" << name << "(" << type << " value);\n\n"; // Generate implementation in inline header. inl_ << "template \n"; inl_ << type << " " << gen_name_ << "::" << name << "() const {\n"; inl_ << " return TaggedField::load(*this);\n"; inl_ << "}\n"; inl_ << "template \n"; inl_ << "void " << gen_name_ << "::set_" << name << "(" << type << " value) {\n"; inl_ << " DCHECK(value.IsSmi());\n"; inl_ << " WRITE_FIELD(*this, " << offset << ", value);\n"; inl_ << "}\n\n"; } void CppClassGenerator::GenerateFieldAccessorForObject(const Field& f) { const Type* field_type = f.name_and_type.type; DCHECK(field_type->IsSubtypeOf(TypeOracle::GetObjectType())); const std::string& name = f.name_and_type.name; const std::string offset = "k" + CamelifyString(name) + "Offset"; base::Optional class_type = field_type->ClassSupertype(); std::string type = class_type ? (*class_type)->name() : "Object"; // Generate declarations in header. if (!class_type && field_type != TypeOracle::GetObjectType()) { hdr_ << " // Torque type: " << field_type->ToString() << "\n"; } hdr_ << " inline " << type << " " << name << "() const;\n"; hdr_ << " inline " << type << " " << name << "(Isolate* isolate) const;\n"; hdr_ << " inline void set_" << name << "(" << type << " value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);\n\n"; std::string type_check; for (const std::string& runtime_type : field_type->GetRuntimeTypes()) { if (!type_check.empty()) type_check += " || "; type_check += "value.Is" + runtime_type + "()"; } // Generate implementation in inline header. inl_ << "template \n"; inl_ << type << " " << gen_name_ << "::" << name << "() const {\n"; inl_ << " Isolate* isolate = GetIsolateForPtrCompr(*this);\n"; inl_ << " return " << gen_name_ << "::" << name << "(isolate);\n"; inl_ << "}\n"; inl_ << "template \n"; inl_ << type << " " << gen_name_ << "::" << name << "(Isolate* isolate) const {\n"; if (class_type) { inl_ << " return TaggedField<" << type << ", " << offset << ">::load(isolate, *this);\n"; } else { // TODO(tebbi): load value as HeapObject when possible inl_ << " Object value = TaggedField::load(isolate, *this);\n"; inl_ << " DCHECK(" << type_check << ");\n"; inl_ << " return value;\n"; } inl_ << "}\n"; inl_ << "template \n"; inl_ << "void " << gen_name_ << "::set_" << name << "(" << type << " value, WriteBarrierMode mode) {\n"; inl_ << " SLOW_DCHECK(" << type_check << ");\n"; inl_ << " WRITE_FIELD(*this, " << offset << ", value);\n"; inl_ << " CONDITIONAL_WRITE_BARRIER(*this, " << offset << ", value, mode);\n"; inl_ << "}\n\n"; } } // namespace void ImplementationVisitor::GenerateClassDefinitions( const std::string& output_directory) { std::stringstream header; std::stringstream inline_header; std::stringstream implementation; std::string basename = "class-definitions-tq"; std::string file_basename = output_directory + "/" + basename; { IncludeGuardScope header_guard(header, basename + ".h"); header << "#include \"src/objects/heap-number.h\"\n"; header << "#include \"src/objects/objects.h\"\n"; header << "#include \"src/objects/smi.h\"\n"; header << "#include \"torque-generated/field-offsets-tq.h\"\n"; header << "#include \n\n"; IncludeObjectMacrosScope header_macros(header); NamespaceScope header_namespaces(header, {"v8", "internal"}); header << "using BuiltinPtr = Smi;\n\n"; IncludeGuardScope inline_header_guard(inline_header, basename + "-inl.h"); inline_header << "#include \"torque-generated/class-definitions-tq.h\"\n\n"; inline_header << "#include \"src/objects/js-promise.h\"\n"; inline_header << "#include \"src/objects/module.h\"\n"; inline_header << "#include \"src/objects/objects-inl.h\"\n"; inline_header << "#include \"src/objects/script.h\"\n\n"; IncludeObjectMacrosScope inline_header_macros(inline_header); NamespaceScope inline_header_namespaces(inline_header, {"v8", "internal"}); implementation << "#include \"torque-generated/class-definitions-tq.h\"\n\n"; implementation << "#include \"torque-generated/class-verifiers-tq.h\"\n\n"; implementation << "#include \"src/objects/arguments-inl.h\"\n"; implementation << "#include \"src/objects/js-collection-inl.h\"\n"; implementation << "#include \"src/objects/embedder-data-array-inl.h\"\n"; implementation << "#include \"src/objects/js-generator-inl.h\"\n"; implementation << "#include \"src/objects/js-regexp-inl.h\"\n"; implementation << "#include \"src/objects/js-regexp-string-iterator-inl.h\"\n"; implementation << "#include \"src/objects/literal-objects-inl.h\"\n"; implementation << "#include \"src/objects/microtask-inl.h\"\n"; implementation << "#include \"src/objects/module-inl.h\"\n"; implementation << "#include \"src/objects/promise-inl.h\"\n"; implementation << "#include \"src/objects/stack-frame-info-inl.h\"\n"; implementation << "#include \"src/objects/struct-inl.h\"\n"; implementation << "#include \"src/objects/template-objects-inl.h\"\n\n"; implementation << "#include " "\"torque-generated/internal-class-definitions-tq-inl.h\"\n\n"; NamespaceScope implementation_namespaces(implementation, {"v8", "internal"}); // Generate forward declarations for every class. for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); header << "class " << type->name() << ";\n"; } for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); if (type->GenerateCppClassDefinitions()) { CppClassGenerator g(type, header, inline_header, implementation); g.GenerateClass(); } } } WriteFile(file_basename + ".h", header.str()); WriteFile(file_basename + "-inl.h", inline_header.str()); WriteFile(file_basename + ".cc", implementation.str()); } namespace { void GeneratePrintDefinitionsForClass(std::ostream& impl, const ClassType* type, const std::string& gen_name, const std::string& gen_name_T, const std::string template_params) { impl << template_params << "\n"; impl << "void " << gen_name_T << "::" << type->name() << "Print(std::ostream& os) {\n"; impl << " this->PrintHeader(os, \"" << gen_name << "\");\n"; auto hierarchy = type->GetHierarchy(); std::map field_names; for (const AggregateType* aggregate_type : hierarchy) { for (const Field& f : aggregate_type->fields()) { if (f.name_and_type.name == "map") continue; impl << " os << \"\\n - " << f.name_and_type.name << ": \" << " << "Brief(this->" << f.name_and_type.name << "());\n"; } } impl << " os << \"\\n\";\n"; impl << "}\n\n"; } } // namespace void ImplementationVisitor::GeneratePrintDefinitions( const std::string& output_directory) { std::stringstream impl; std::string file_name = "objects-printer-tq.cc"; { IfDefScope object_print(impl, "OBJECT_PRINT"); impl << "#include \"src/objects/objects.h\"\n\n"; impl << "#include \n\n"; impl << "#include " "\"torque-generated/internal-class-definitions-tq-inl.h\"\n"; impl << "#include \"src/objects/struct-inl.h\"\n\n"; impl << "#include \"src/objects/template-objects-inl.h\"\n\n"; NamespaceScope impl_namespaces(impl, {"v8", "internal"}); for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); if (!type->ShouldGeneratePrint()) continue; if (type->GenerateCppClassDefinitions()) { const ClassType* super = type->GetSuperClass(); std::string gen_name = "TorqueGenerated" + type->name(); std::string gen_name_T = gen_name + "<" + type->name() + ", " + super->name() + ">"; std::string template_decl = "template <>"; GeneratePrintDefinitionsForClass(impl, type, gen_name, gen_name_T, template_decl); } else { GeneratePrintDefinitionsForClass(impl, type, type->name(), type->name(), ""); } } } std::string new_contents(impl.str()); WriteFile(output_directory + "/" + file_name, new_contents); } namespace { void GenerateClassFieldVerifier(const std::string& class_name, const ClassType& class_type, const Field& f, std::ostream& h_contents, std::ostream& cc_contents) { if (!f.generate_verify) return; const Type* field_type = f.name_and_type.type; // We only verify tagged types, not raw numbers or pointers. Note that this // must check against GetObjectType not GetTaggedType, because Uninitialized // is a Tagged but should not be verified. if (!field_type->IsSubtypeOf(TypeOracle::GetObjectType())) return; if (f.index) { if ((*f.index)->name_and_type.type != TypeOracle::GetSmiType()) { ReportError("Non-SMI values are not (yet) supported as indexes."); } // We already verified the index field because it was listed earlier, so we // can assume it's safe to read here. cc_contents << " for (int i = 0; i < TaggedFieldname_and_type.name) << "Offset>::load(o).value(); ++i) {\n"; } else { cc_contents << " {\n"; } const char* object_type = f.is_weak ? "MaybeObject" : "Object"; const char* verify_fn = f.is_weak ? "VerifyMaybeObjectPointer" : "VerifyPointer"; const char* index_offset = f.index ? "i * kTaggedSize" : "0"; // Name the local var based on the field name for nicer CHECK output. const std::string value = f.name_and_type.name + "__value"; // Read the field. cc_contents << " " << object_type << " " << value << " = TaggedField<" << object_type << ", " << class_name << "::k" << CamelifyString(f.name_and_type.name) << "Offset>::load(o, " << index_offset << ");\n"; // Call VerifyPointer or VerifyMaybeObjectPointer on it. cc_contents << " " << object_type << "::" << verify_fn << "(isolate, " << value << ");\n"; // Check that the value is of an appropriate type. We can skip this part for // the Object type because it would not check anything beyond what we already // checked with VerifyPointer. if (f.name_and_type.type != TypeOracle::GetObjectType()) { std::string type_check = f.is_weak ? value + ".IsWeakOrCleared()" : ""; std::string strong_value = value + (f.is_weak ? ".GetHeapObjectOrSmi()" : ""); for (const std::string& runtime_type : field_type->GetRuntimeTypes()) { if (!type_check.empty()) type_check += " || "; type_check += strong_value + ".Is" + runtime_type + "()"; } cc_contents << " CHECK(" << type_check << ");\n"; } cc_contents << " }\n"; } } // namespace void ImplementationVisitor::GenerateClassVerifiers( const std::string& output_directory) { std::string file_name = "class-verifiers-tq"; std::stringstream h_contents; std::stringstream cc_contents; { IncludeGuardScope include_guard(h_contents, file_name + ".h"); IfDefScope verify_heap_h(h_contents, "VERIFY_HEAP"); IfDefScope verify_heap_cc(cc_contents, "VERIFY_HEAP"); cc_contents << "\n#include \"src/objects/objects.h\"\n"; for (const std::string& include_path : GlobalContext::CppIncludes()) { cc_contents << "#include " << StringLiteralQuote(include_path) << "\n"; } cc_contents << "#include \"torque-generated/" << file_name << ".h\"\n"; cc_contents << "#include " "\"torque-generated/internal-class-definitions-tq-inl.h\"\n"; IncludeObjectMacrosScope object_macros(cc_contents); NamespaceScope h_namespaces(h_contents, {"v8", "internal"}); NamespaceScope cc_namespaces(cc_contents, {"v8", "internal"}); // Generate forward declarations to avoid including any headers. h_contents << "class Isolate;\n"; for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); if (!type->ShouldGenerateVerify()) continue; h_contents << "class " << type->name() << ";\n"; } const char* verifier_class = "TorqueGeneratedClassVerifiers"; h_contents << "class " << verifier_class << "{\n"; h_contents << " public:\n"; for (const TypeAlias* alias : GlobalContext::GetClasses()) { const ClassType* type = ClassType::DynamicCast(alias->type()); std::string name = type->name(); if (!type->ShouldGenerateVerify()) continue; std::string method_name = name + "Verify"; h_contents << " static void " << method_name << "(" << name << " o, Isolate* isolate);\n"; cc_contents << "void " << verifier_class << "::" << method_name << "(" << name << " o, Isolate* isolate) {\n"; // First, do any verification for the super class. Not all classes have // verifiers, so skip to the nearest super class that has one. const ClassType* super_type = type->GetSuperClass(); while (super_type && !super_type->ShouldGenerateVerify()) { super_type = super_type->GetSuperClass(); } if (super_type) { std::string super_name = super_type->name(); if (super_name == "HeapObject") { // Special case: HeapObjectVerify checks the Map type and dispatches // to more specific types, so calling it here would cause infinite // recursion. We could consider moving that behavior into a // different method to make the contract of *Verify methods more // consistent, but for now we'll just avoid the bad case. cc_contents << " " << super_name << "Verify(o, isolate);\n"; } else { cc_contents << " o." << super_name << "Verify(isolate);\n"; } } // Second, verify that this object is what it claims to be. if (type->IsInstantiatedAbstractClass()) { cc_contents << " // Instance type check skipped because\n"; cc_contents << " // it is an instantiated abstract class.\n"; } else { cc_contents << " CHECK(o.Is" << name << "());\n"; } // Third, verify its properties. for (auto f : type->fields()) { GenerateClassFieldVerifier(name, *type, f, h_contents, cc_contents); } cc_contents << "}\n"; } h_contents << "};\n"; } WriteFile(output_directory + "/" + file_name + ".h", h_contents.str()); WriteFile(output_directory + "/" + file_name + ".cc", cc_contents.str()); } void ImplementationVisitor::GenerateExportedMacrosAssembler( const std::string& output_directory) { std::string file_name = "exported-macros-assembler-tq"; std::stringstream h_contents; std::stringstream cc_contents; { IncludeGuardScope include_guard(h_contents, file_name + ".h"); h_contents << "#include \"src/compiler/code-assembler.h\"\n"; h_contents << "#include \"src/execution/frames.h\"\n"; h_contents << "#include \"torque-generated/csa-types-tq.h\"\n"; h_contents << "#include \"torque-generated/internal-class-definitions-tq.h\"\n"; cc_contents << "#include \"torque-generated/" << file_name << ".h\"\n"; for (SourceId file : SourceFileMap::AllSources()) { cc_contents << "#include \"torque-generated/" + SourceFileMap::PathFromV8RootWithoutExtension(file) + "-tq-csa.h\"\n"; } NamespaceScope h_namespaces(h_contents, {"v8", "internal"}); NamespaceScope cc_namespaces(cc_contents, {"v8", "internal"}); h_contents << "class V8_EXPORT_PRIVATE " "TorqueGeneratedExportedMacrosAssembler {\n" << " public:\n" << " explicit TorqueGeneratedExportedMacrosAssembler" "(compiler::CodeAssemblerState* state) : state_(state) {\n" << " USE(state_);\n" << " }\n"; for (auto& declarable : GlobalContext::AllDeclarables()) { TorqueMacro* macro = TorqueMacro::DynamicCast(declarable.get()); if (!(macro && macro->IsExportedToCSA())) continue; h_contents << " "; GenerateFunctionDeclaration(h_contents, "", macro->ReadableName(), macro->signature(), macro->parameter_names(), false); h_contents << ";\n"; std::vector parameter_names = GenerateFunctionDeclaration( cc_contents, "TorqueGeneratedExportedMacrosAssembler::", macro->ReadableName(), macro->signature(), macro->parameter_names(), false); cc_contents << "{\n"; cc_contents << "return " << macro->ExternalName() << "(state_"; for (auto& name : parameter_names) { cc_contents << ", " << name; } cc_contents << ");\n"; cc_contents << "}\n"; } h_contents << " private:\n" << " compiler::CodeAssemblerState* state_;\n" << "};\n"; } WriteFile(output_directory + "/" + file_name + ".h", h_contents.str()); WriteFile(output_directory + "/" + file_name + ".cc", cc_contents.str()); } void ImplementationVisitor::GenerateCSATypes( const std::string& output_directory) { std::string file_name = "csa-types-tq"; std::stringstream h_contents; { IncludeGuardScope include_guard(h_contents, file_name + ".h"); h_contents << "#include \"src/compiler/code-assembler.h\"\n\n"; NamespaceScope h_namespaces(h_contents, {"v8", "internal"}); // Generates headers for all structs in a topologically-sorted order, since // TypeOracle keeps them in the order of their resolution for (auto& type : *TypeOracle::GetAggregateTypes()) { const StructType* struct_type = StructType::DynamicCast(type.get()); if (!struct_type) continue; h_contents << "struct " << struct_type->GetGeneratedTypeNameImpl() << " {\n"; for (auto& field : struct_type->fields()) { h_contents << " " << field.name_and_type.type->GetGeneratedTypeName(); h_contents << " " << field.name_and_type.name << ";\n"; } h_contents << "\n std::tuple<"; bool first = true; for (const Type* type : LowerType(struct_type)) { if (!first) { h_contents << ", "; } first = false; h_contents << type->GetGeneratedTypeName(); } h_contents << "> Flatten() const {\n" << " return std::tuple_cat("; first = true; for (auto& field : struct_type->fields()) { if (!first) { h_contents << ", "; } first = false; if (field.name_and_type.type->IsStructType()) { h_contents << field.name_and_type.name << ".Flatten()"; } else { h_contents << "std::make_tuple(" << field.name_and_type.name << ")"; } } h_contents << ");\n"; h_contents << " }\n"; h_contents << "};\n"; } } WriteFile(output_directory + "/" + file_name + ".h", h_contents.str()); } void ReportAllUnusedMacros() { for (const auto& declarable : GlobalContext::AllDeclarables()) { if (!declarable->IsMacro() || declarable->IsExternMacro()) continue; Macro* macro = Macro::cast(declarable.get()); if (macro->IsUsed()) continue; if (macro->IsTorqueMacro() && TorqueMacro::cast(macro)->IsExportedToCSA()) { continue; } // TODO(gsps): Mark methods of generic structs used if they are used in any // instantiation if (Method* method = Method::DynamicCast(macro)) { if (StructType* struct_type = StructType::DynamicCast(method->aggregate_type())) { if (struct_type->GetSpecializedFrom().has_value()) { continue; } } } std::vector ignored_prefixes = {"Convert<", "Cast<", "FromConstexpr<"}; const std::string name = macro->ReadableName(); const bool ignore = std::any_of(ignored_prefixes.begin(), ignored_prefixes.end(), [&name](const std::string& prefix) { return StringStartsWith(name, prefix); }); if (!ignore) { Lint("Macro '", macro->ReadableName(), "' is never used.") .Position(macro->IdentifierPosition()); } } } } // namespace torque } // namespace internal } // namespace v8