// Copyright 2007-2010 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_STRINGS_UNICODE_INL_H_ #define V8_STRINGS_UNICODE_INL_H_ #include "src/base/logging.h" #include "src/strings/unicode.h" #include "src/utils/utils.h" namespace unibrow { #ifndef V8_INTL_SUPPORT template bool Predicate::get(uchar code_point) { CacheEntry entry = entries_[code_point & kMask]; if (entry.code_point() == code_point) return entry.value(); return CalculateValue(code_point); } template bool Predicate::CalculateValue(uchar code_point) { bool result = T::Is(code_point); entries_[code_point & kMask] = CacheEntry(code_point, result); return result; } template int Mapping::get(uchar c, uchar n, uchar* result) { CacheEntry entry = entries_[c & kMask]; if (entry.code_point_ == c) { if (entry.offset_ == 0) { return 0; } else { result[0] = c + entry.offset_; return 1; } } else { return CalculateValue(c, n, result); } } template int Mapping::CalculateValue(uchar c, uchar n, uchar* result) { bool allow_caching = true; int length = T::Convert(c, n, result, &allow_caching); if (allow_caching) { if (length == 1) { entries_[c & kMask] = CacheEntry(c, result[0] - c); return 1; } else { entries_[c & kMask] = CacheEntry(c, 0); return 0; } } else { return length; } } #endif // !V8_INTL_SUPPORT // Decodes UTF-8 bytes incrementally, allowing the decoding of bytes as they // stream in. This **must** be followed by a call to ValueOfIncrementalFinish // when the stream is complete, to ensure incomplete sequences are handled. uchar Utf8::ValueOfIncremental(const byte** cursor, State* state, Utf8IncrementalBuffer* buffer) { DCHECK_NOT_NULL(buffer); State old_state = *state; byte next = **cursor; *cursor += 1; if (V8_LIKELY(next <= kMaxOneByteChar && old_state == State::kAccept)) { DCHECK_EQ(0u, *buffer); return static_cast(next); } // So we're at the lead byte of a 2/3/4 sequence, or we're at a continuation // char in that sequence. Utf8DfaDecoder::Decode(next, state, buffer); switch (*state) { case State::kAccept: { uchar t = *buffer; *buffer = 0; return t; } case State::kReject: *state = State::kAccept; *buffer = 0; // If we hit a bad byte, we need to determine if we were trying to start // a sequence or continue one. If we were trying to start a sequence, // that means it's just an invalid lead byte and we need to continue to // the next (which we already did above). If we were already in a // sequence, we need to reprocess this same byte after resetting to the // initial state. if (old_state != State::kAccept) { // We were trying to continue a sequence, so let's reprocess this byte // next time. *cursor -= 1; } return kBadChar; default: return kIncomplete; } } unsigned Utf8::EncodeOneByte(char* str, uint8_t c) { static const int kMask = ~(1 << 6); if (c <= kMaxOneByteChar) { str[0] = c; return 1; } str[0] = 0xC0 | (c >> 6); str[1] = 0x80 | (c & kMask); return 2; } // Encode encodes the UTF-16 code units c and previous into the given str // buffer, and combines surrogate code units into single code points. If // replace_invalid is set to true, orphan surrogate code units will be replaced // with kBadChar. unsigned Utf8::Encode(char* str, uchar c, int previous, bool replace_invalid) { static const int kMask = ~(1 << 6); if (c <= kMaxOneByteChar) { str[0] = c; return 1; } else if (c <= kMaxTwoByteChar) { str[0] = 0xC0 | (c >> 6); str[1] = 0x80 | (c & kMask); return 2; } else if (c <= kMaxThreeByteChar) { DCHECK(!Utf16::IsLeadSurrogate(Utf16::kNoPreviousCharacter)); if (Utf16::IsSurrogatePair(previous, c)) { const int kUnmatchedSize = kSizeOfUnmatchedSurrogate; return Encode(str - kUnmatchedSize, Utf16::CombineSurrogatePair(previous, c), Utf16::kNoPreviousCharacter, replace_invalid) - kUnmatchedSize; } else if (replace_invalid && (Utf16::IsLeadSurrogate(c) || Utf16::IsTrailSurrogate(c))) { c = kBadChar; } str[0] = 0xE0 | (c >> 12); str[1] = 0x80 | ((c >> 6) & kMask); str[2] = 0x80 | (c & kMask); return 3; } else { str[0] = 0xF0 | (c >> 18); str[1] = 0x80 | ((c >> 12) & kMask); str[2] = 0x80 | ((c >> 6) & kMask); str[3] = 0x80 | (c & kMask); return 4; } } uchar Utf8::ValueOf(const byte* bytes, size_t length, size_t* cursor) { if (length <= 0) return kBadChar; byte first = bytes[0]; // Characters between 0000 and 007F are encoded as a single character if (V8_LIKELY(first <= kMaxOneByteChar)) { *cursor += 1; return first; } return CalculateValue(bytes, length, cursor); } unsigned Utf8::Length(uchar c, int previous) { if (c <= kMaxOneByteChar) { return 1; } else if (c <= kMaxTwoByteChar) { return 2; } else if (c <= kMaxThreeByteChar) { DCHECK(!Utf16::IsLeadSurrogate(Utf16::kNoPreviousCharacter)); if (Utf16::IsSurrogatePair(previous, c)) { return kSizeOfUnmatchedSurrogate - kBytesSavedByCombiningSurrogates; } return 3; } else { return 4; } } bool Utf8::IsValidCharacter(uchar c) { return c < 0xD800u || (c >= 0xE000u && c < 0xFDD0u) || (c > 0xFDEFu && c <= 0x10FFFFu && (c & 0xFFFEu) != 0xFFFEu && c != kBadChar); } } // namespace unibrow #endif // V8_STRINGS_UNICODE_INL_H_