// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. #ifndef V8_S390_ASSEMBLER_S390_INL_H_ #define V8_S390_ASSEMBLER_S390_INL_H_ #include "src/s390/assembler-s390.h" #include "src/assembler.h" #include "src/debug/debug.h" #include "src/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return true; } bool CpuFeatures::SupportsWasmSimd128() { return false; } void RelocInfo::apply(intptr_t delta) { // Absolute code pointer inside code object moves with the code object. if (IsInternalReference(rmode_)) { // Jump table entry Address target = Memory
(pc_); Memory
(pc_) = target + delta; } else if (IsCodeTarget(rmode_)) { SixByteInstr instr = Instruction::InstructionBits(reinterpret_cast(pc_)); int32_t dis = static_cast(instr & 0xFFFFFFFF) * 2 // halfwords - static_cast(delta); instr >>= 32; // Clear the 4-byte displacement field. instr <<= 32; instr |= static_cast(dis / 2); Instruction::SetInstructionBits(reinterpret_cast(pc_), instr); } else { // mov sequence DCHECK(IsInternalReferenceEncoded(rmode_)); Address target = Assembler::target_address_at(pc_, constant_pool_); Assembler::set_target_address_at(pc_, constant_pool_, target + delta, SKIP_ICACHE_FLUSH); } } Address RelocInfo::target_internal_reference() { if (IsInternalReference(rmode_)) { // Jump table entry return Memory
(pc_); } else { // mov sequence DCHECK(IsInternalReferenceEncoded(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } } Address RelocInfo::target_internal_reference_address() { DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); return pc_; } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) || IsOffHeapTarget(rmode_)); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LIS/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. return pc_; } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } Address Assembler::target_address_from_return_address(Address pc) { // Returns the address of the call target from the return address that will // be returned to after a call. // Sequence is: // BRASL r14, RI return pc - kCallTargetAddressOffset; } Address Assembler::return_address_from_call_start(Address pc) { // Sequence is: // BRASL r14, RI return pc + kCallTargetAddressOffset; } Handle Assembler::code_target_object_handle_at(Address pc) { SixByteInstr instr = Instruction::InstructionBits(reinterpret_cast(pc)); int index = instr & 0xFFFFFFFF; return GetCodeTarget(index); } HeapObject* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return HeapObject::cast(reinterpret_cast( Assembler::target_address_at(pc_, constant_pool_))); } Handle RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); if (rmode_ == EMBEDDED_OBJECT) { return Handle(reinterpret_cast( Assembler::target_address_at(pc_, constant_pool_))); } else { return Handle::cast(origin->code_target_object_handle_at(pc_)); } } void RelocInfo::set_target_object(Heap* heap, HeapObject* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(pc_, constant_pool_, reinterpret_cast
(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) { WriteBarrierForCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); Assembler::set_target_address_at(pc_, constant_pool_, target, icache_flush_mode); } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) set_target_address(target, write_barrier_mode, icache_flush_mode); } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)); if (IsInternalReference(rmode_)) { // Jump table entry Memory
(pc_) = kNullAddress; } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) { // mov sequence // Currently used only by deserializer, no need to flush. Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress, SKIP_ICACHE_FLUSH); } else { Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); } } template void RelocInfo::Visit(ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(host(), this); } else if (RelocInfo::IsCodeTargetMode(mode)) { visitor->VisitCodeTarget(host(), this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(host(), this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { visitor->VisitInternalReference(host(), this); } else if (IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(host(), this); } else if (RelocInfo::IsOffHeapTarget(mode)) { visitor->VisitOffHeapTarget(host(), this); } } // Operand constructors Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {} // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF Address Assembler::target_address_at(Address pc, Address constant_pool) { // S390 Instruction! // We want to check for instructions generated by Asm::mov() Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast(pc)); SixByteInstr instr_1 = Instruction::InstructionBits(reinterpret_cast(pc)); if (BRASL == op1 || BRCL == op1) { int32_t dis = static_cast(instr_1 & 0xFFFFFFFF) * 2; return pc + dis; } #if V8_TARGET_ARCH_S390X int instr1_length = Instruction::InstructionLength(reinterpret_cast(pc)); Opcode op2 = Instruction::S390OpcodeValue( reinterpret_cast(pc + instr1_length)); SixByteInstr instr_2 = Instruction::InstructionBits( reinterpret_cast(pc + instr1_length)); // IIHF for hi_32, IILF for lo_32 if (IIHF == op1 && IILF == op2) { return static_cast
(((instr_1 & 0xFFFFFFFF) << 32) | ((instr_2 & 0xFFFFFFFF))); } #else // IILF loads 32-bits if (IILF == op1 || CFI == op1) { return static_cast
((instr_1 & 0xFFFFFFFF)); } #endif UNIMPLEMENTED(); return 0; } // This sets the branch destination (which gets loaded at the call address). // This is for calls and branches within generated code. The serializer // has already deserialized the mov instructions etc. // There is a FIXED_SEQUENCE assumption here void Assembler::deserialization_set_special_target_at( Address instruction_payload, Code* code, Address target) { set_target_address_at(instruction_payload, code ? code->constant_pool() : kNullAddress, target); } int Assembler::deserialization_special_target_size( Address instruction_payload) { return kSpecialTargetSize; } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { if (RelocInfo::IsInternalReferenceEncoded(mode)) { set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH); } else { Memory
(pc) = target; } } // This code assumes the FIXED_SEQUENCE of IIHF/IILF void Assembler::set_target_address_at(Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { // Check for instructions generated by Asm::mov() Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast(pc)); SixByteInstr instr_1 = Instruction::InstructionBits(reinterpret_cast(pc)); bool patched = false; if (BRASL == op1 || BRCL == op1) { instr_1 >>= 32; // Zero out the lower 32-bits instr_1 <<= 32; int32_t halfwords = (target - pc) / 2; // number of halfwords instr_1 |= static_cast(halfwords); Instruction::SetInstructionBits(reinterpret_cast(pc), instr_1); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, 6); } patched = true; } else { #if V8_TARGET_ARCH_S390X int instr1_length = Instruction::InstructionLength(reinterpret_cast(pc)); Opcode op2 = Instruction::S390OpcodeValue( reinterpret_cast(pc + instr1_length)); SixByteInstr instr_2 = Instruction::InstructionBits( reinterpret_cast(pc + instr1_length)); // IIHF for hi_32, IILF for lo_32 if (IIHF == op1 && IILF == op2) { // IIHF instr_1 >>= 32; // Zero out the lower 32-bits instr_1 <<= 32; instr_1 |= reinterpret_cast(target) >> 32; Instruction::SetInstructionBits(reinterpret_cast(pc), instr_1); // IILF instr_2 >>= 32; instr_2 <<= 32; instr_2 |= reinterpret_cast(target) & 0xFFFFFFFF; Instruction::SetInstructionBits( reinterpret_cast(pc + instr1_length), instr_2); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, 12); } patched = true; } #else // IILF loads 32-bits if (IILF == op1 || CFI == op1) { instr_1 >>= 32; // Zero out the lower 32-bits instr_1 <<= 32; instr_1 |= reinterpret_cast(target); Instruction::SetInstructionBits(reinterpret_cast(pc), instr_1); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, 6); } patched = true; } #endif } if (!patched) UNREACHABLE(); } } // namespace internal } // namespace v8 #endif // V8_S390_ASSEMBLER_S390_INL_H_