// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // A simple interpreter for the Irregexp byte code. #ifdef V8_INTERPRETED_REGEXP #include "src/regexp/interpreter-irregexp.h" #include "src/ast/ast.h" #include "src/objects-inl.h" #include "src/regexp/bytecodes-irregexp.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/unicode.h" #include "src/utils.h" #ifdef V8_INTL_SUPPORT #include "unicode/uchar.h" #endif // V8_INTL_SUPPORT namespace v8 { namespace internal { typedef unibrow::Mapping Canonicalize; static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len, Vector subject, bool unicode) { Address offset_a = reinterpret_cast
(const_cast(&subject.at(from))); Address offset_b = reinterpret_cast
(const_cast(&subject.at(current))); size_t length = len * kUC16Size; return RegExpMacroAssembler::CaseInsensitiveCompareUC16( offset_a, offset_b, length, unicode ? nullptr : isolate) == 1; } static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len, Vector subject, bool unicode) { // For Latin1 characters the unicode flag makes no difference. for (int i = 0; i < len; i++) { unsigned int old_char = subject[from++]; unsigned int new_char = subject[current++]; if (old_char == new_char) continue; // Convert both characters to lower case. old_char |= 0x20; new_char |= 0x20; if (old_char != new_char) return false; // Not letters in the ASCII range and Latin-1 range. if (!(old_char - 'a' <= 'z' - 'a') && !(old_char - 224 <= 254 - 224 && old_char != 247)) { return false; } } return true; } #ifdef DEBUG static void TraceInterpreter(const byte* code_base, const byte* pc, int stack_depth, int current_position, uint32_t current_char, int bytecode_length, const char* bytecode_name) { if (FLAG_trace_regexp_bytecodes) { bool printable = (current_char < 127 && current_char >= 32); const char* format = printable ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s"; PrintF(format, pc - code_base, stack_depth, current_position, current_char, printable ? current_char : '.', bytecode_name); for (int i = 0; i < bytecode_length; i++) { printf(", %02x", pc[i]); } printf(" "); for (int i = 1; i < bytecode_length; i++) { unsigned char b = pc[i]; if (b < 127 && b >= 32) { printf("%c", b); } else { printf("."); } } printf("\n"); } } #define BYTECODE(name) \ case BC_##name: \ TraceInterpreter(code_base, \ pc, \ static_cast(backtrack_sp - backtrack_stack_base), \ current, \ current_char, \ BC_##name##_LENGTH, \ #name); #else #define BYTECODE(name) \ case BC_##name: #endif static int32_t Load32Aligned(const byte* pc) { DCHECK_EQ(0, reinterpret_cast(pc) & 3); return *reinterpret_cast(pc); } static int32_t Load16Aligned(const byte* pc) { DCHECK_EQ(0, reinterpret_cast(pc) & 1); return *reinterpret_cast(pc); } // A simple abstraction over the backtracking stack used by the interpreter. // This backtracking stack does not grow automatically, but it ensures that the // the memory held by the stack is released or remembered in a cache if the // matching terminates. class BacktrackStack { public: BacktrackStack() { data_ = NewArray(kBacktrackStackSize); } ~BacktrackStack() { DeleteArray(data_); } int* data() const { return data_; } int max_size() const { return kBacktrackStackSize; } private: static const int kBacktrackStackSize = 10000; int* data_; DISALLOW_COPY_AND_ASSIGN(BacktrackStack); }; template static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate, const byte* code_base, Vector subject, int* registers, int current, uint32_t current_char) { const byte* pc = code_base; // BacktrackStack ensures that the memory allocated for the backtracking stack // is returned to the system or cached if there is no stack being cached at // the moment. BacktrackStack backtrack_stack; int* backtrack_stack_base = backtrack_stack.data(); int* backtrack_sp = backtrack_stack_base; int backtrack_stack_space = backtrack_stack.max_size(); #ifdef DEBUG if (FLAG_trace_regexp_bytecodes) { PrintF("\n\nStart bytecode interpreter\n\n"); } #endif while (true) { int32_t insn = Load32Aligned(pc); switch (insn & BYTECODE_MASK) { BYTECODE(BREAK) UNREACHABLE(); BYTECODE(PUSH_CP) if (--backtrack_stack_space < 0) { return RegExpImpl::RE_EXCEPTION; } *backtrack_sp++ = current; pc += BC_PUSH_CP_LENGTH; break; BYTECODE(PUSH_BT) if (--backtrack_stack_space < 0) { return RegExpImpl::RE_EXCEPTION; } *backtrack_sp++ = Load32Aligned(pc + 4); pc += BC_PUSH_BT_LENGTH; break; BYTECODE(PUSH_REGISTER) if (--backtrack_stack_space < 0) { return RegExpImpl::RE_EXCEPTION; } *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT]; pc += BC_PUSH_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER) registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4); pc += BC_SET_REGISTER_LENGTH; break; BYTECODE(ADVANCE_REGISTER) registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4); pc += BC_ADVANCE_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER_TO_CP) registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4); pc += BC_SET_REGISTER_TO_CP_LENGTH; break; BYTECODE(SET_CP_TO_REGISTER) current = registers[insn >> BYTECODE_SHIFT]; pc += BC_SET_CP_TO_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER_TO_SP) registers[insn >> BYTECODE_SHIFT] = static_cast(backtrack_sp - backtrack_stack_base); pc += BC_SET_REGISTER_TO_SP_LENGTH; break; BYTECODE(SET_SP_TO_REGISTER) backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT]; backtrack_stack_space = backtrack_stack.max_size() - static_cast(backtrack_sp - backtrack_stack_base); pc += BC_SET_SP_TO_REGISTER_LENGTH; break; BYTECODE(POP_CP) backtrack_stack_space++; --backtrack_sp; current = *backtrack_sp; pc += BC_POP_CP_LENGTH; break; BYTECODE(POP_BT) backtrack_stack_space++; --backtrack_sp; pc = code_base + *backtrack_sp; break; BYTECODE(POP_REGISTER) backtrack_stack_space++; --backtrack_sp; registers[insn >> BYTECODE_SHIFT] = *backtrack_sp; pc += BC_POP_REGISTER_LENGTH; break; BYTECODE(FAIL) return RegExpImpl::RE_FAILURE; BYTECODE(SUCCEED) return RegExpImpl::RE_SUCCESS; BYTECODE(ADVANCE_CP) current += insn >> BYTECODE_SHIFT; pc += BC_ADVANCE_CP_LENGTH; break; BYTECODE(GOTO) pc = code_base + Load32Aligned(pc + 4); break; BYTECODE(ADVANCE_CP_AND_GOTO) current += insn >> BYTECODE_SHIFT; pc = code_base + Load32Aligned(pc + 4); break; BYTECODE(CHECK_GREEDY) if (current == backtrack_sp[-1]) { backtrack_sp--; backtrack_stack_space++; pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_GREEDY_LENGTH; } break; BYTECODE(LOAD_CURRENT_CHAR) { int pos = current + (insn >> BYTECODE_SHIFT); if (pos >= subject.length() || pos < 0) { pc = code_base + Load32Aligned(pc + 4); } else { current_char = subject[pos]; pc += BC_LOAD_CURRENT_CHAR_LENGTH; } break; } BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) { int pos = current + (insn >> BYTECODE_SHIFT); current_char = subject[pos]; pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH; break; } BYTECODE(LOAD_2_CURRENT_CHARS) { int pos = current + (insn >> BYTECODE_SHIFT); if (pos + 2 > subject.length() || pos < 0) { pc = code_base + Load32Aligned(pc + 4); } else { Char next = subject[pos + 1]; current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); pc += BC_LOAD_2_CURRENT_CHARS_LENGTH; } break; } BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) { int pos = current + (insn >> BYTECODE_SHIFT); Char next = subject[pos + 1]; current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH; break; } BYTECODE(LOAD_4_CURRENT_CHARS) { DCHECK_EQ(1, sizeof(Char)); int pos = current + (insn >> BYTECODE_SHIFT); if (pos + 4 > subject.length() || pos < 0) { pc = code_base + Load32Aligned(pc + 4); } else { Char next1 = subject[pos + 1]; Char next2 = subject[pos + 2]; Char next3 = subject[pos + 3]; current_char = (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24)); pc += BC_LOAD_4_CURRENT_CHARS_LENGTH; } break; } BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) { DCHECK_EQ(1, sizeof(Char)); int pos = current + (insn >> BYTECODE_SHIFT); Char next1 = subject[pos + 1]; Char next2 = subject[pos + 2]; Char next3 = subject[pos + 3]; current_char = (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24)); pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH; break; } BYTECODE(CHECK_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c == current_char) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_4_CHARS_LENGTH; } break; } BYTECODE(CHECK_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c == current_char) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_CHAR_LENGTH; } break; } BYTECODE(CHECK_NOT_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c != current_char) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_NOT_4_CHARS_LENGTH; } break; } BYTECODE(CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c != current_char) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(AND_CHECK_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c == (current_char & Load32Aligned(pc + 8))) { pc = code_base + Load32Aligned(pc + 12); } else { pc += BC_AND_CHECK_4_CHARS_LENGTH; } break; } BYTECODE(AND_CHECK_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c == (current_char & Load32Aligned(pc + 4))) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_AND_CHECK_CHAR_LENGTH; } break; } BYTECODE(AND_CHECK_NOT_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c != (current_char & Load32Aligned(pc + 8))) { pc = code_base + Load32Aligned(pc + 12); } else { pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH; } break; } BYTECODE(AND_CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c != (current_char & Load32Aligned(pc + 4))) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_AND_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(MINUS_AND_CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); uint32_t minus = Load16Aligned(pc + 4); uint32_t mask = Load16Aligned(pc + 6); if (c != ((current_char - minus) & mask)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(CHECK_CHAR_IN_RANGE) { uint32_t from = Load16Aligned(pc + 4); uint32_t to = Load16Aligned(pc + 6); if (from <= current_char && current_char <= to) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_CHAR_IN_RANGE_LENGTH; } break; } BYTECODE(CHECK_CHAR_NOT_IN_RANGE) { uint32_t from = Load16Aligned(pc + 4); uint32_t to = Load16Aligned(pc + 6); if (from > current_char || current_char > to) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH; } break; } BYTECODE(CHECK_BIT_IN_TABLE) { int mask = RegExpMacroAssembler::kTableMask; byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)]; int bit = (current_char & (kBitsPerByte - 1)); if ((b & (1 << bit)) != 0) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_BIT_IN_TABLE_LENGTH; } break; } BYTECODE(CHECK_LT) { uint32_t limit = (insn >> BYTECODE_SHIFT); if (current_char < limit) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_LT_LENGTH; } break; } BYTECODE(CHECK_GT) { uint32_t limit = (insn >> BYTECODE_SHIFT); if (current_char > limit) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_GT_LENGTH; } break; } BYTECODE(CHECK_REGISTER_LT) if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_REGISTER_LT_LENGTH; } break; BYTECODE(CHECK_REGISTER_GE) if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_REGISTER_GE_LENGTH; } break; BYTECODE(CHECK_REGISTER_EQ_POS) if (registers[insn >> BYTECODE_SHIFT] == current) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_REGISTER_EQ_POS_LENGTH; } break; BYTECODE(CHECK_NOT_REGS_EQUAL) if (registers[insn >> BYTECODE_SHIFT] == registers[Load32Aligned(pc + 4)]) { pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH; } else { pc = code_base + Load32Aligned(pc + 8); } break; BYTECODE(CHECK_NOT_BACK_REF) { int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from >= 0 && len > 0) { if (current + len > subject.length() || CompareChars(&subject[from], &subject[current], len) != 0) { pc = code_base + Load32Aligned(pc + 4); break; } current += len; } pc += BC_CHECK_NOT_BACK_REF_LENGTH; break; } BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) { int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from >= 0 && len > 0) { if (current - len < 0 || CompareChars(&subject[from], &subject[current - len], len) != 0) { pc = code_base + Load32Aligned(pc + 4); break; } current -= len; } pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH; break; } BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE) V8_FALLTHROUGH; BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) { bool unicode = (insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE; int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from >= 0 && len > 0) { if (current + len > subject.length() || !BackRefMatchesNoCase(isolate, from, current, len, subject, unicode)) { pc = code_base + Load32Aligned(pc + 4); break; } current += len; } pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; break; } BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD) V8_FALLTHROUGH; BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) { bool unicode = (insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD; int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from >= 0 && len > 0) { if (current - len < 0 || !BackRefMatchesNoCase(isolate, from, current - len, len, subject, unicode)) { pc = code_base + Load32Aligned(pc + 4); break; } current -= len; } pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH; break; } BYTECODE(CHECK_AT_START) if (current == 0) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_AT_START_LENGTH; } break; BYTECODE(CHECK_NOT_AT_START) if (current + (insn >> BYTECODE_SHIFT) == 0) { pc += BC_CHECK_NOT_AT_START_LENGTH; } else { pc = code_base + Load32Aligned(pc + 4); } break; BYTECODE(SET_CURRENT_POSITION_FROM_END) { int by = static_cast(insn) >> BYTECODE_SHIFT; if (subject.length() - current > by) { current = subject.length() - by; current_char = subject[current - 1]; } pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH; break; } default: UNREACHABLE(); break; } } } RegExpImpl::IrregexpResult IrregexpInterpreter::Match( Isolate* isolate, Handle code_array, Handle subject, int* registers, int start_position) { DCHECK(subject->IsFlat()); DisallowHeapAllocation no_gc; const byte* code_base = code_array->GetDataStartAddress(); uc16 previous_char = '\n'; String::FlatContent subject_content = subject->GetFlatContent(); if (subject_content.IsOneByte()) { Vector subject_vector = subject_content.ToOneByteVector(); if (start_position != 0) previous_char = subject_vector[start_position - 1]; return RawMatch(isolate, code_base, subject_vector, registers, start_position, previous_char); } else { DCHECK(subject_content.IsTwoByte()); Vector subject_vector = subject_content.ToUC16Vector(); if (start_position != 0) previous_char = subject_vector[start_position - 1]; return RawMatch(isolate, code_base, subject_vector, registers, start_position, previous_char); } } } // namespace internal } // namespace v8 #endif // V8_INTERPRETED_REGEXP