// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/profiler/heap-snapshot-generator.h" #include #include "src/api/api-inl.h" #include "src/codegen/assembler-inl.h" #include "src/debug/debug.h" #include "src/handles/global-handles.h" #include "src/heap/combined-heap.h" #include "src/numbers/conversions.h" #include "src/objects/allocation-site-inl.h" #include "src/objects/api-callbacks.h" #include "src/objects/cell-inl.h" #include "src/objects/feedback-cell-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/js-array-buffer-inl.h" #include "src/objects/js-array-inl.h" #include "src/objects/js-collection-inl.h" #include "src/objects/js-generator-inl.h" #include "src/objects/js-promise-inl.h" #include "src/objects/js-regexp-inl.h" #include "src/objects/layout-descriptor.h" #include "src/objects/literal-objects-inl.h" #include "src/objects/objects-body-descriptors.h" #include "src/objects/objects-inl.h" #include "src/objects/prototype.h" #include "src/objects/slots-inl.h" #include "src/objects/struct-inl.h" #include "src/objects/transitions-inl.h" #include "src/objects/visitors.h" #include "src/profiler/allocation-tracker.h" #include "src/profiler/heap-profiler.h" #include "src/profiler/heap-snapshot-generator-inl.h" #include "src/utils/vector.h" namespace v8 { namespace internal { HeapGraphEdge::HeapGraphEdge(Type type, const char* name, HeapEntry* from, HeapEntry* to) : bit_field_(TypeField::encode(type) | FromIndexField::encode(from->index())), to_entry_(to), name_(name) { DCHECK(type == kContextVariable || type == kProperty || type == kInternal || type == kShortcut || type == kWeak); } HeapGraphEdge::HeapGraphEdge(Type type, int index, HeapEntry* from, HeapEntry* to) : bit_field_(TypeField::encode(type) | FromIndexField::encode(from->index())), to_entry_(to), index_(index) { DCHECK(type == kElement || type == kHidden); } HeapEntry::HeapEntry(HeapSnapshot* snapshot, int index, Type type, const char* name, SnapshotObjectId id, size_t self_size, unsigned trace_node_id) : type_(type), index_(index), children_count_(0), self_size_(self_size), snapshot_(snapshot), name_(name), id_(id), trace_node_id_(trace_node_id) { DCHECK_GE(index, 0); } void HeapEntry::SetNamedReference(HeapGraphEdge::Type type, const char* name, HeapEntry* entry) { ++children_count_; snapshot_->edges().emplace_back(type, name, this, entry); } void HeapEntry::SetIndexedReference(HeapGraphEdge::Type type, int index, HeapEntry* entry) { ++children_count_; snapshot_->edges().emplace_back(type, index, this, entry); } void HeapEntry::SetNamedAutoIndexReference(HeapGraphEdge::Type type, const char* description, HeapEntry* child, StringsStorage* names) { int index = children_count_ + 1; const char* name = description ? names->GetFormatted("%d / %s", index, description) : names->GetName(index); SetNamedReference(type, name, child); } void HeapEntry::Print( const char* prefix, const char* edge_name, int max_depth, int indent) { STATIC_ASSERT(sizeof(unsigned) == sizeof(id())); base::OS::Print("%6zu @%6u %*c %s%s: ", self_size(), id(), indent, ' ', prefix, edge_name); if (type() != kString) { base::OS::Print("%s %.40s\n", TypeAsString(), name_); } else { base::OS::Print("\""); const char* c = name_; while (*c && (c - name_) <= 40) { if (*c != '\n') base::OS::Print("%c", *c); else base::OS::Print("\\n"); ++c; } base::OS::Print("\"\n"); } if (--max_depth == 0) return; for (auto i = children_begin(); i != children_end(); ++i) { HeapGraphEdge& edge = **i; const char* edge_prefix = ""; EmbeddedVector index; const char* edge_name = index.begin(); switch (edge.type()) { case HeapGraphEdge::kContextVariable: edge_prefix = "#"; edge_name = edge.name(); break; case HeapGraphEdge::kElement: SNPrintF(index, "%d", edge.index()); break; case HeapGraphEdge::kInternal: edge_prefix = "$"; edge_name = edge.name(); break; case HeapGraphEdge::kProperty: edge_name = edge.name(); break; case HeapGraphEdge::kHidden: edge_prefix = "$"; SNPrintF(index, "%d", edge.index()); break; case HeapGraphEdge::kShortcut: edge_prefix = "^"; edge_name = edge.name(); break; case HeapGraphEdge::kWeak: edge_prefix = "w"; edge_name = edge.name(); break; default: SNPrintF(index, "!!! unknown edge type: %d ", edge.type()); } edge.to()->Print(edge_prefix, edge_name, max_depth, indent + 2); } } const char* HeapEntry::TypeAsString() { switch (type()) { case kHidden: return "/hidden/"; case kObject: return "/object/"; case kClosure: return "/closure/"; case kString: return "/string/"; case kCode: return "/code/"; case kArray: return "/array/"; case kRegExp: return "/regexp/"; case kHeapNumber: return "/number/"; case kNative: return "/native/"; case kSynthetic: return "/synthetic/"; case kConsString: return "/concatenated string/"; case kSlicedString: return "/sliced string/"; case kSymbol: return "/symbol/"; case kBigInt: return "/bigint/"; default: return "???"; } } HeapSnapshot::HeapSnapshot(HeapProfiler* profiler) : profiler_(profiler) { // It is very important to keep objects that form a heap snapshot // as small as possible. Check assumptions about data structure sizes. STATIC_ASSERT((kSystemPointerSize == 4 && sizeof(HeapGraphEdge) == 12) || (kSystemPointerSize == 8 && sizeof(HeapGraphEdge) == 24)); STATIC_ASSERT((kSystemPointerSize == 4 && sizeof(HeapEntry) == 28) || (kSystemPointerSize == 8 && sizeof(HeapEntry) == 40)); memset(&gc_subroot_entries_, 0, sizeof(gc_subroot_entries_)); } void HeapSnapshot::Delete() { profiler_->RemoveSnapshot(this); } void HeapSnapshot::RememberLastJSObjectId() { max_snapshot_js_object_id_ = profiler_->heap_object_map()->last_assigned_id(); } void HeapSnapshot::AddSyntheticRootEntries() { AddRootEntry(); AddGcRootsEntry(); SnapshotObjectId id = HeapObjectsMap::kGcRootsFirstSubrootId; for (int root = 0; root < static_cast(Root::kNumberOfRoots); root++) { AddGcSubrootEntry(static_cast(root), id); id += HeapObjectsMap::kObjectIdStep; } DCHECK_EQ(HeapObjectsMap::kFirstAvailableObjectId, id); } void HeapSnapshot::AddRootEntry() { DCHECK_NULL(root_entry_); DCHECK(entries_.empty()); // Root entry must be the first one. root_entry_ = AddEntry(HeapEntry::kSynthetic, "", HeapObjectsMap::kInternalRootObjectId, 0, 0); DCHECK_EQ(1u, entries_.size()); DCHECK_EQ(root_entry_, &entries_.front()); } void HeapSnapshot::AddGcRootsEntry() { DCHECK_NULL(gc_roots_entry_); gc_roots_entry_ = AddEntry(HeapEntry::kSynthetic, "(GC roots)", HeapObjectsMap::kGcRootsObjectId, 0, 0); } void HeapSnapshot::AddGcSubrootEntry(Root root, SnapshotObjectId id) { DCHECK_NULL(gc_subroot_entries_[static_cast(root)]); gc_subroot_entries_[static_cast(root)] = AddEntry(HeapEntry::kSynthetic, RootVisitor::RootName(root), id, 0, 0); } void HeapSnapshot::AddLocation(HeapEntry* entry, int scriptId, int line, int col) { locations_.emplace_back(entry->index(), scriptId, line, col); } HeapEntry* HeapSnapshot::AddEntry(HeapEntry::Type type, const char* name, SnapshotObjectId id, size_t size, unsigned trace_node_id) { DCHECK(!is_complete()); entries_.emplace_back(this, static_cast(entries_.size()), type, name, id, size, trace_node_id); return &entries_.back(); } void HeapSnapshot::FillChildren() { DCHECK(children().empty()); int children_index = 0; for (HeapEntry& entry : entries()) { children_index = entry.set_children_index(children_index); } DCHECK_EQ(edges().size(), static_cast(children_index)); children().resize(edges().size()); for (HeapGraphEdge& edge : edges()) { edge.from()->add_child(&edge); } } HeapEntry* HeapSnapshot::GetEntryById(SnapshotObjectId id) { if (entries_by_id_cache_.empty()) { CHECK(is_complete()); entries_by_id_cache_.reserve(entries_.size()); for (HeapEntry& entry : entries_) { entries_by_id_cache_.emplace(entry.id(), &entry); } } auto it = entries_by_id_cache_.find(id); return it != entries_by_id_cache_.end() ? it->second : nullptr; } void HeapSnapshot::Print(int max_depth) { root()->Print("", "", max_depth, 0); } // We split IDs on evens for embedder objects (see // HeapObjectsMap::GenerateId) and odds for native objects. const SnapshotObjectId HeapObjectsMap::kInternalRootObjectId = 1; const SnapshotObjectId HeapObjectsMap::kGcRootsObjectId = HeapObjectsMap::kInternalRootObjectId + HeapObjectsMap::kObjectIdStep; const SnapshotObjectId HeapObjectsMap::kGcRootsFirstSubrootId = HeapObjectsMap::kGcRootsObjectId + HeapObjectsMap::kObjectIdStep; const SnapshotObjectId HeapObjectsMap::kFirstAvailableObjectId = HeapObjectsMap::kGcRootsFirstSubrootId + static_cast(Root::kNumberOfRoots) * HeapObjectsMap::kObjectIdStep; HeapObjectsMap::HeapObjectsMap(Heap* heap) : next_id_(kFirstAvailableObjectId), heap_(heap) { // The dummy element at zero index is needed as entries_map_ cannot hold // an entry with zero value. Otherwise it's impossible to tell if // LookupOrInsert has added a new item or just returning exisiting one // having the value of zero. entries_.emplace_back(0, kNullAddress, 0, true); } bool HeapObjectsMap::MoveObject(Address from, Address to, int object_size) { DCHECK_NE(kNullAddress, to); DCHECK_NE(kNullAddress, from); if (from == to) return false; void* from_value = entries_map_.Remove(reinterpret_cast(from), ComputeAddressHash(from)); if (from_value == nullptr) { // It may occur that some untracked object moves to an address X and there // is a tracked object at that address. In this case we should remove the // entry as we know that the object has died. void* to_value = entries_map_.Remove(reinterpret_cast(to), ComputeAddressHash(to)); if (to_value != nullptr) { int to_entry_info_index = static_cast(reinterpret_cast(to_value)); entries_.at(to_entry_info_index).addr = kNullAddress; } } else { base::HashMap::Entry* to_entry = entries_map_.LookupOrInsert( reinterpret_cast(to), ComputeAddressHash(to)); if (to_entry->value != nullptr) { // We found the existing entry with to address for an old object. // Without this operation we will have two EntryInfo's with the same // value in addr field. It is bad because later at RemoveDeadEntries // one of this entry will be removed with the corresponding entries_map_ // entry. int to_entry_info_index = static_cast(reinterpret_cast(to_entry->value)); entries_.at(to_entry_info_index).addr = kNullAddress; } int from_entry_info_index = static_cast(reinterpret_cast(from_value)); entries_.at(from_entry_info_index).addr = to; // Size of an object can change during its life, so to keep information // about the object in entries_ consistent, we have to adjust size when the // object is migrated. if (FLAG_heap_profiler_trace_objects) { PrintF("Move object from %p to %p old size %6d new size %6d\n", reinterpret_cast(from), reinterpret_cast(to), entries_.at(from_entry_info_index).size, object_size); } entries_.at(from_entry_info_index).size = object_size; to_entry->value = from_value; } return from_value != nullptr; } void HeapObjectsMap::UpdateObjectSize(Address addr, int size) { FindOrAddEntry(addr, size, false); } SnapshotObjectId HeapObjectsMap::FindEntry(Address addr) { base::HashMap::Entry* entry = entries_map_.Lookup( reinterpret_cast(addr), ComputeAddressHash(addr)); if (entry == nullptr) return v8::HeapProfiler::kUnknownObjectId; int entry_index = static_cast(reinterpret_cast(entry->value)); EntryInfo& entry_info = entries_.at(entry_index); DCHECK(static_cast(entries_.size()) > entries_map_.occupancy()); return entry_info.id; } SnapshotObjectId HeapObjectsMap::FindOrAddEntry(Address addr, unsigned int size, bool accessed) { DCHECK(static_cast(entries_.size()) > entries_map_.occupancy()); base::HashMap::Entry* entry = entries_map_.LookupOrInsert( reinterpret_cast(addr), ComputeAddressHash(addr)); if (entry->value != nullptr) { int entry_index = static_cast(reinterpret_cast(entry->value)); EntryInfo& entry_info = entries_.at(entry_index); entry_info.accessed = accessed; if (FLAG_heap_profiler_trace_objects) { PrintF("Update object size : %p with old size %d and new size %d\n", reinterpret_cast(addr), entry_info.size, size); } entry_info.size = size; return entry_info.id; } entry->value = reinterpret_cast(entries_.size()); SnapshotObjectId id = next_id_; next_id_ += kObjectIdStep; entries_.push_back(EntryInfo(id, addr, size, accessed)); DCHECK(static_cast(entries_.size()) > entries_map_.occupancy()); return id; } SnapshotObjectId HeapObjectsMap::FindMergedNativeEntry(NativeObject addr) { auto it = merged_native_entries_map_.find(addr); if (it == merged_native_entries_map_.end()) return v8::HeapProfiler::kUnknownObjectId; return entries_[it->second].id; } void HeapObjectsMap::AddMergedNativeEntry(NativeObject addr, Address canonical_addr) { base::HashMap::Entry* entry = entries_map_.Lookup(reinterpret_cast(canonical_addr), ComputeAddressHash(canonical_addr)); auto result = merged_native_entries_map_.insert( {addr, reinterpret_cast(entry->value)}); if (!result.second) { result.first->second = reinterpret_cast(entry->value); } } void HeapObjectsMap::StopHeapObjectsTracking() { time_intervals_.clear(); } void HeapObjectsMap::UpdateHeapObjectsMap() { if (FLAG_heap_profiler_trace_objects) { PrintF("Begin HeapObjectsMap::UpdateHeapObjectsMap. map has %d entries.\n", entries_map_.occupancy()); } heap_->PreciseCollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kHeapProfiler); CombinedHeapObjectIterator iterator(heap_); for (HeapObject obj = iterator.Next(); !obj.is_null(); obj = iterator.Next()) { FindOrAddEntry(obj.address(), obj.Size()); if (FLAG_heap_profiler_trace_objects) { PrintF("Update object : %p %6d. Next address is %p\n", reinterpret_cast(obj.address()), obj.Size(), reinterpret_cast(obj.address() + obj.Size())); } } RemoveDeadEntries(); if (FLAG_heap_profiler_trace_objects) { PrintF("End HeapObjectsMap::UpdateHeapObjectsMap. map has %d entries.\n", entries_map_.occupancy()); } } SnapshotObjectId HeapObjectsMap::PushHeapObjectsStats(OutputStream* stream, int64_t* timestamp_us) { UpdateHeapObjectsMap(); time_intervals_.emplace_back(next_id_); int prefered_chunk_size = stream->GetChunkSize(); std::vector stats_buffer; DCHECK(!entries_.empty()); EntryInfo* entry_info = &entries_.front(); EntryInfo* end_entry_info = &entries_.back() + 1; for (size_t time_interval_index = 0; time_interval_index < time_intervals_.size(); ++time_interval_index) { TimeInterval& time_interval = time_intervals_[time_interval_index]; SnapshotObjectId time_interval_id = time_interval.id; uint32_t entries_size = 0; EntryInfo* start_entry_info = entry_info; while (entry_info < end_entry_info && entry_info->id < time_interval_id) { entries_size += entry_info->size; ++entry_info; } uint32_t entries_count = static_cast(entry_info - start_entry_info); if (time_interval.count != entries_count || time_interval.size != entries_size) { stats_buffer.emplace_back(static_cast(time_interval_index), time_interval.count = entries_count, time_interval.size = entries_size); if (static_cast(stats_buffer.size()) >= prefered_chunk_size) { OutputStream::WriteResult result = stream->WriteHeapStatsChunk( &stats_buffer.front(), static_cast(stats_buffer.size())); if (result == OutputStream::kAbort) return last_assigned_id(); stats_buffer.clear(); } } } DCHECK(entry_info == end_entry_info); if (!stats_buffer.empty()) { OutputStream::WriteResult result = stream->WriteHeapStatsChunk( &stats_buffer.front(), static_cast(stats_buffer.size())); if (result == OutputStream::kAbort) return last_assigned_id(); } stream->EndOfStream(); if (timestamp_us) { *timestamp_us = (time_intervals_.back().timestamp - time_intervals_.front().timestamp) .InMicroseconds(); } return last_assigned_id(); } void HeapObjectsMap::RemoveDeadEntries() { DCHECK(entries_.size() > 0 && entries_.at(0).id == 0 && entries_.at(0).addr == kNullAddress); // Build up temporary reverse map. std::unordered_map reverse_merged_native_entries_map; for (const auto& it : merged_native_entries_map_) { auto result = reverse_merged_native_entries_map.emplace(it.second, it.first); DCHECK(result.second); USE(result); } size_t first_free_entry = 1; for (size_t i = 1; i < entries_.size(); ++i) { EntryInfo& entry_info = entries_.at(i); auto merged_reverse_it = reverse_merged_native_entries_map.find(i); if (entry_info.accessed) { if (first_free_entry != i) { entries_.at(first_free_entry) = entry_info; } entries_.at(first_free_entry).accessed = false; base::HashMap::Entry* entry = entries_map_.Lookup(reinterpret_cast(entry_info.addr), ComputeAddressHash(entry_info.addr)); DCHECK(entry); entry->value = reinterpret_cast(first_free_entry); if (merged_reverse_it != reverse_merged_native_entries_map.end()) { auto it = merged_native_entries_map_.find(merged_reverse_it->second); DCHECK_NE(merged_native_entries_map_.end(), it); it->second = first_free_entry; } ++first_free_entry; } else { if (entry_info.addr) { entries_map_.Remove(reinterpret_cast(entry_info.addr), ComputeAddressHash(entry_info.addr)); if (merged_reverse_it != reverse_merged_native_entries_map.end()) { merged_native_entries_map_.erase(merged_reverse_it->second); } } } } entries_.erase(entries_.begin() + first_free_entry, entries_.end()); DCHECK(static_cast(entries_.size()) - 1 == entries_map_.occupancy()); } V8HeapExplorer::V8HeapExplorer(HeapSnapshot* snapshot, SnapshottingProgressReportingInterface* progress, v8::HeapProfiler::ObjectNameResolver* resolver) : heap_(snapshot->profiler()->heap_object_map()->heap()), snapshot_(snapshot), names_(snapshot_->profiler()->names()), heap_object_map_(snapshot_->profiler()->heap_object_map()), progress_(progress), generator_(nullptr), global_object_name_resolver_(resolver) {} HeapEntry* V8HeapExplorer::AllocateEntry(HeapThing ptr) { return AddEntry(HeapObject::cast(Object(reinterpret_cast
(ptr)))); } void V8HeapExplorer::ExtractLocation(HeapEntry* entry, HeapObject object) { if (object.IsJSFunction()) { JSFunction func = JSFunction::cast(object); ExtractLocationForJSFunction(entry, func); } else if (object.IsJSGeneratorObject()) { JSGeneratorObject gen = JSGeneratorObject::cast(object); ExtractLocationForJSFunction(entry, gen.function()); } else if (object.IsJSObject()) { JSObject obj = JSObject::cast(object); JSFunction maybe_constructor = GetConstructor(obj); if (!maybe_constructor.is_null()) { ExtractLocationForJSFunction(entry, maybe_constructor); } } } void V8HeapExplorer::ExtractLocationForJSFunction(HeapEntry* entry, JSFunction func) { if (!func.shared().script().IsScript()) return; Script script = Script::cast(func.shared().script()); int scriptId = script.id(); int start = func.shared().StartPosition(); int line = script.GetLineNumber(start); int col = script.GetColumnNumber(start); snapshot_->AddLocation(entry, scriptId, line, col); } HeapEntry* V8HeapExplorer::AddEntry(HeapObject object) { if (object.IsJSFunction()) { JSFunction func = JSFunction::cast(object); SharedFunctionInfo shared = func.shared(); const char* name = names_->GetName(shared.Name()); return AddEntry(object, HeapEntry::kClosure, name); } else if (object.IsJSBoundFunction()) { return AddEntry(object, HeapEntry::kClosure, "native_bind"); } else if (object.IsJSRegExp()) { JSRegExp re = JSRegExp::cast(object); return AddEntry(object, HeapEntry::kRegExp, names_->GetName(re.Pattern())); } else if (object.IsJSObject()) { const char* name = names_->GetName( GetConstructorName(JSObject::cast(object))); if (object.IsJSGlobalObject()) { auto it = objects_tags_.find(JSGlobalObject::cast(object)); if (it != objects_tags_.end()) { name = names_->GetFormatted("%s / %s", name, it->second); } } return AddEntry(object, HeapEntry::kObject, name); } else if (object.IsString()) { String string = String::cast(object); if (string.IsConsString()) { return AddEntry(object, HeapEntry::kConsString, "(concatenated string)"); } else if (string.IsSlicedString()) { return AddEntry(object, HeapEntry::kSlicedString, "(sliced string)"); } else { return AddEntry(object, HeapEntry::kString, names_->GetName(String::cast(object))); } } else if (object.IsSymbol()) { if (Symbol::cast(object).is_private()) return AddEntry(object, HeapEntry::kHidden, "private symbol"); else return AddEntry(object, HeapEntry::kSymbol, "symbol"); } else if (object.IsBigInt()) { return AddEntry(object, HeapEntry::kBigInt, "bigint"); } else if (object.IsCode()) { return AddEntry(object, HeapEntry::kCode, ""); } else if (object.IsSharedFunctionInfo()) { String name = SharedFunctionInfo::cast(object).Name(); return AddEntry(object, HeapEntry::kCode, names_->GetName(name)); } else if (object.IsScript()) { Object name = Script::cast(object).name(); return AddEntry(object, HeapEntry::kCode, name.IsString() ? names_->GetName(String::cast(name)) : ""); } else if (object.IsNativeContext()) { return AddEntry(object, HeapEntry::kHidden, "system / NativeContext"); } else if (object.IsContext()) { return AddEntry(object, HeapEntry::kObject, "system / Context"); } else if (object.IsFixedArray() || object.IsFixedDoubleArray() || object.IsByteArray()) { return AddEntry(object, HeapEntry::kArray, ""); } else if (object.IsHeapNumber()) { return AddEntry(object, HeapEntry::kHeapNumber, "number"); } return AddEntry(object, HeapEntry::kHidden, GetSystemEntryName(object)); } HeapEntry* V8HeapExplorer::AddEntry(HeapObject object, HeapEntry::Type type, const char* name) { return AddEntry(object.address(), type, name, object.Size()); } HeapEntry* V8HeapExplorer::AddEntry(Address address, HeapEntry::Type type, const char* name, size_t size) { SnapshotObjectId object_id = heap_object_map_->FindOrAddEntry( address, static_cast(size)); unsigned trace_node_id = 0; if (AllocationTracker* allocation_tracker = snapshot_->profiler()->allocation_tracker()) { trace_node_id = allocation_tracker->address_to_trace()->GetTraceNodeId(address); } return snapshot_->AddEntry(type, name, object_id, size, trace_node_id); } const char* V8HeapExplorer::GetSystemEntryName(HeapObject object) { switch (object.map().instance_type()) { case MAP_TYPE: switch (Map::cast(object).instance_type()) { #define MAKE_STRING_MAP_CASE(instance_type, size, name, Name) \ case instance_type: return "system / Map (" #Name ")"; STRING_TYPE_LIST(MAKE_STRING_MAP_CASE) #undef MAKE_STRING_MAP_CASE default: return "system / Map"; } case CELL_TYPE: return "system / Cell"; case PROPERTY_CELL_TYPE: return "system / PropertyCell"; case FOREIGN_TYPE: return "system / Foreign"; case ODDBALL_TYPE: return "system / Oddball"; case ALLOCATION_SITE_TYPE: return "system / AllocationSite"; #define MAKE_STRUCT_CASE(TYPE, Name, name) \ case TYPE: \ return "system / " #Name; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return "system"; } } int V8HeapExplorer::EstimateObjectsCount() { CombinedHeapObjectIterator it(heap_, HeapObjectIterator::kFilterUnreachable); int objects_count = 0; while (!it.Next().is_null()) ++objects_count; return objects_count; } class IndexedReferencesExtractor : public ObjectVisitor { public: IndexedReferencesExtractor(V8HeapExplorer* generator, HeapObject parent_obj, HeapEntry* parent) : generator_(generator), parent_obj_(parent_obj), parent_start_(parent_obj_.RawMaybeWeakField(0)), parent_end_(parent_obj_.RawMaybeWeakField(parent_obj_.Size())), parent_(parent), next_index_(0) {} void VisitPointers(HeapObject host, ObjectSlot start, ObjectSlot end) override { VisitPointers(host, MaybeObjectSlot(start), MaybeObjectSlot(end)); } void VisitPointers(HeapObject host, MaybeObjectSlot start, MaybeObjectSlot end) override { // [start,end) must be a sub-region of [parent_start_, parent_end), i.e. // all the slots must point inside the object. CHECK_LE(parent_start_, start); CHECK_LE(end, parent_end_); for (MaybeObjectSlot p = start; p < end; ++p) { int field_index = static_cast(p - parent_start_); if (generator_->visited_fields_[field_index]) { generator_->visited_fields_[field_index] = false; continue; } HeapObject heap_object; if ((*p)->GetHeapObject(&heap_object)) { VisitHeapObjectImpl(heap_object, field_index); } } } void VisitCodeTarget(Code host, RelocInfo* rinfo) override { Code target = Code::GetCodeFromTargetAddress(rinfo->target_address()); VisitHeapObjectImpl(target, -1); } void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) override { VisitHeapObjectImpl(rinfo->target_object(), -1); } private: V8_INLINE void VisitHeapObjectImpl(HeapObject heap_object, int field_index) { DCHECK_LE(-1, field_index); // The last parameter {field_offset} is only used to check some well-known // skipped references, so passing -1 * kTaggedSize for objects embedded // into code is fine. generator_->SetHiddenReference(parent_obj_, parent_, next_index_++, heap_object, field_index * kTaggedSize); } V8HeapExplorer* generator_; HeapObject parent_obj_; MaybeObjectSlot parent_start_; MaybeObjectSlot parent_end_; HeapEntry* parent_; int next_index_; }; void V8HeapExplorer::ExtractReferences(HeapEntry* entry, HeapObject obj) { if (obj.IsJSGlobalProxy()) { ExtractJSGlobalProxyReferences(entry, JSGlobalProxy::cast(obj)); } else if (obj.IsJSArrayBuffer()) { ExtractJSArrayBufferReferences(entry, JSArrayBuffer::cast(obj)); } else if (obj.IsJSObject()) { if (obj.IsJSWeakSet()) { ExtractJSWeakCollectionReferences(entry, JSWeakSet::cast(obj)); } else if (obj.IsJSWeakMap()) { ExtractJSWeakCollectionReferences(entry, JSWeakMap::cast(obj)); } else if (obj.IsJSSet()) { ExtractJSCollectionReferences(entry, JSSet::cast(obj)); } else if (obj.IsJSMap()) { ExtractJSCollectionReferences(entry, JSMap::cast(obj)); } else if (obj.IsJSPromise()) { ExtractJSPromiseReferences(entry, JSPromise::cast(obj)); } else if (obj.IsJSGeneratorObject()) { ExtractJSGeneratorObjectReferences(entry, JSGeneratorObject::cast(obj)); } ExtractJSObjectReferences(entry, JSObject::cast(obj)); } else if (obj.IsString()) { ExtractStringReferences(entry, String::cast(obj)); } else if (obj.IsSymbol()) { ExtractSymbolReferences(entry, Symbol::cast(obj)); } else if (obj.IsMap()) { ExtractMapReferences(entry, Map::cast(obj)); } else if (obj.IsSharedFunctionInfo()) { ExtractSharedFunctionInfoReferences(entry, SharedFunctionInfo::cast(obj)); } else if (obj.IsScript()) { ExtractScriptReferences(entry, Script::cast(obj)); } else if (obj.IsAccessorInfo()) { ExtractAccessorInfoReferences(entry, AccessorInfo::cast(obj)); } else if (obj.IsAccessorPair()) { ExtractAccessorPairReferences(entry, AccessorPair::cast(obj)); } else if (obj.IsCode()) { ExtractCodeReferences(entry, Code::cast(obj)); } else if (obj.IsCell()) { ExtractCellReferences(entry, Cell::cast(obj)); } else if (obj.IsFeedbackCell()) { ExtractFeedbackCellReferences(entry, FeedbackCell::cast(obj)); } else if (obj.IsPropertyCell()) { ExtractPropertyCellReferences(entry, PropertyCell::cast(obj)); } else if (obj.IsAllocationSite()) { ExtractAllocationSiteReferences(entry, AllocationSite::cast(obj)); } else if (obj.IsArrayBoilerplateDescription()) { ExtractArrayBoilerplateDescriptionReferences( entry, ArrayBoilerplateDescription::cast(obj)); } else if (obj.IsFeedbackVector()) { ExtractFeedbackVectorReferences(entry, FeedbackVector::cast(obj)); } else if (obj.IsDescriptorArray()) { ExtractDescriptorArrayReferences(entry, DescriptorArray::cast(obj)); } else if (obj.IsWeakFixedArray()) { ExtractWeakArrayReferences(WeakFixedArray::kHeaderSize, entry, WeakFixedArray::cast(obj)); } else if (obj.IsWeakArrayList()) { ExtractWeakArrayReferences(WeakArrayList::kHeaderSize, entry, WeakArrayList::cast(obj)); } else if (obj.IsContext()) { ExtractContextReferences(entry, Context::cast(obj)); } else if (obj.IsEphemeronHashTable()) { ExtractEphemeronHashTableReferences(entry, EphemeronHashTable::cast(obj)); } else if (obj.IsFixedArray()) { ExtractFixedArrayReferences(entry, FixedArray::cast(obj)); } } void V8HeapExplorer::ExtractJSGlobalProxyReferences(HeapEntry* entry, JSGlobalProxy proxy) { SetInternalReference(entry, "native_context", proxy.native_context(), JSGlobalProxy::kNativeContextOffset); } void V8HeapExplorer::ExtractJSObjectReferences(HeapEntry* entry, JSObject js_obj) { HeapObject obj = js_obj; ExtractPropertyReferences(js_obj, entry); ExtractElementReferences(js_obj, entry); ExtractInternalReferences(js_obj, entry); Isolate* isolate = Isolate::FromHeap(heap_); PrototypeIterator iter(isolate, js_obj); ReadOnlyRoots roots(isolate); SetPropertyReference(entry, roots.proto_string(), iter.GetCurrent()); if (obj.IsJSBoundFunction()) { JSBoundFunction js_fun = JSBoundFunction::cast(obj); TagObject(js_fun.bound_arguments(), "(bound arguments)"); SetInternalReference(entry, "bindings", js_fun.bound_arguments(), JSBoundFunction::kBoundArgumentsOffset); SetInternalReference(entry, "bound_this", js_fun.bound_this(), JSBoundFunction::kBoundThisOffset); SetInternalReference(entry, "bound_function", js_fun.bound_target_function(), JSBoundFunction::kBoundTargetFunctionOffset); FixedArray bindings = js_fun.bound_arguments(); for (int i = 0; i < bindings.length(); i++) { const char* reference_name = names_->GetFormatted("bound_argument_%d", i); SetNativeBindReference(entry, reference_name, bindings.get(i)); } } else if (obj.IsJSFunction()) { JSFunction js_fun = JSFunction::cast(js_obj); if (js_fun.has_prototype_slot()) { Object proto_or_map = js_fun.prototype_or_initial_map(); if (!proto_or_map.IsTheHole(isolate)) { if (!proto_or_map.IsMap()) { SetPropertyReference(entry, roots.prototype_string(), proto_or_map, nullptr, JSFunction::kPrototypeOrInitialMapOffset); } else { SetPropertyReference(entry, roots.prototype_string(), js_fun.prototype()); SetInternalReference(entry, "initial_map", proto_or_map, JSFunction::kPrototypeOrInitialMapOffset); } } } SharedFunctionInfo shared_info = js_fun.shared(); TagObject(js_fun.raw_feedback_cell(), "(function feedback cell)"); SetInternalReference(entry, "feedback_cell", js_fun.raw_feedback_cell(), JSFunction::kFeedbackCellOffset); TagObject(shared_info, "(shared function info)"); SetInternalReference(entry, "shared", shared_info, JSFunction::kSharedFunctionInfoOffset); TagObject(js_fun.context(), "(context)"); SetInternalReference(entry, "context", js_fun.context(), JSFunction::kContextOffset); SetInternalReference(entry, "code", js_fun.code(), JSFunction::kCodeOffset); } else if (obj.IsJSGlobalObject()) { JSGlobalObject global_obj = JSGlobalObject::cast(obj); SetInternalReference(entry, "native_context", global_obj.native_context(), JSGlobalObject::kNativeContextOffset); SetInternalReference(entry, "global_proxy", global_obj.global_proxy(), JSGlobalObject::kGlobalProxyOffset); STATIC_ASSERT(JSGlobalObject::kSize - JSObject::kHeaderSize == 2 * kTaggedSize); } else if (obj.IsJSArrayBufferView()) { JSArrayBufferView view = JSArrayBufferView::cast(obj); SetInternalReference(entry, "buffer", view.buffer(), JSArrayBufferView::kBufferOffset); } TagObject(js_obj.raw_properties_or_hash(), "(object properties)"); SetInternalReference(entry, "properties", js_obj.raw_properties_or_hash(), JSObject::kPropertiesOrHashOffset); TagObject(js_obj.elements(), "(object elements)"); SetInternalReference(entry, "elements", js_obj.elements(), JSObject::kElementsOffset); } void V8HeapExplorer::ExtractStringReferences(HeapEntry* entry, String string) { if (string.IsConsString()) { ConsString cs = ConsString::cast(string); SetInternalReference(entry, "first", cs.first(), ConsString::kFirstOffset); SetInternalReference(entry, "second", cs.second(), ConsString::kSecondOffset); } else if (string.IsSlicedString()) { SlicedString ss = SlicedString::cast(string); SetInternalReference(entry, "parent", ss.parent(), SlicedString::kParentOffset); } else if (string.IsThinString()) { ThinString ts = ThinString::cast(string); SetInternalReference(entry, "actual", ts.actual(), ThinString::kActualOffset); } } void V8HeapExplorer::ExtractSymbolReferences(HeapEntry* entry, Symbol symbol) { SetInternalReference(entry, "name", symbol.name(), Symbol::kNameOffset); } void V8HeapExplorer::ExtractJSCollectionReferences(HeapEntry* entry, JSCollection collection) { SetInternalReference(entry, "table", collection.table(), JSCollection::kTableOffset); } void V8HeapExplorer::ExtractJSWeakCollectionReferences(HeapEntry* entry, JSWeakCollection obj) { SetInternalReference(entry, "table", obj.table(), JSWeakCollection::kTableOffset); } void V8HeapExplorer::ExtractEphemeronHashTableReferences( HeapEntry* entry, EphemeronHashTable table) { for (int i = 0, capacity = table.Capacity(); i < capacity; ++i) { int key_index = EphemeronHashTable::EntryToIndex(i) + EphemeronHashTable::kEntryKeyIndex; int value_index = EphemeronHashTable::EntryToValueIndex(i); Object key = table.get(key_index); Object value = table.get(value_index); SetWeakReference(entry, key_index, key, table.OffsetOfElementAt(key_index)); SetWeakReference(entry, value_index, value, table.OffsetOfElementAt(value_index)); HeapEntry* key_entry = GetEntry(key); HeapEntry* value_entry = GetEntry(value); if (key_entry && value_entry) { const char* edge_name = names_->GetFormatted("key %s in WeakMap", key_entry->name()); key_entry->SetNamedAutoIndexReference(HeapGraphEdge::kInternal, edge_name, value_entry, names_); } } } // These static arrays are used to prevent excessive code-size in // ExtractContextReferences below, which would happen if we called // SetInternalReference for every native context field in a macro. static const struct { int index; const char* name; } native_context_names[] = { #define CONTEXT_FIELD_INDEX_NAME(index, _, name) {Context::index, #name}, NATIVE_CONTEXT_FIELDS(CONTEXT_FIELD_INDEX_NAME) #undef CONTEXT_FIELD_INDEX_NAME }; void V8HeapExplorer::ExtractContextReferences(HeapEntry* entry, Context context) { if (!context.IsNativeContext() && context.is_declaration_context()) { ScopeInfo scope_info = context.scope_info(); // Add context allocated locals. int context_locals = scope_info.ContextLocalCount(); for (int i = 0; i < context_locals; ++i) { String local_name = scope_info.ContextLocalName(i); int idx = Context::MIN_CONTEXT_SLOTS + i; SetContextReference(entry, local_name, context.get(idx), Context::OffsetOfElementAt(idx)); } if (scope_info.HasFunctionName()) { String name = String::cast(scope_info.FunctionName()); int idx = scope_info.FunctionContextSlotIndex(name); if (idx >= 0) { SetContextReference(entry, name, context.get(idx), Context::OffsetOfElementAt(idx)); } } } SetInternalReference( entry, "scope_info", context.get(Context::SCOPE_INFO_INDEX), FixedArray::OffsetOfElementAt(Context::SCOPE_INFO_INDEX)); SetInternalReference(entry, "previous", context.get(Context::PREVIOUS_INDEX), FixedArray::OffsetOfElementAt(Context::PREVIOUS_INDEX)); SetInternalReference(entry, "extension", context.get(Context::EXTENSION_INDEX), FixedArray::OffsetOfElementAt(Context::EXTENSION_INDEX)); SetInternalReference( entry, "native_context", context.get(Context::NATIVE_CONTEXT_INDEX), FixedArray::OffsetOfElementAt(Context::NATIVE_CONTEXT_INDEX)); if (context.IsNativeContext()) { TagObject(context.normalized_map_cache(), "(context norm. map cache)"); TagObject(context.embedder_data(), "(context data)"); for (size_t i = 0; i < arraysize(native_context_names); i++) { int index = native_context_names[i].index; const char* name = native_context_names[i].name; SetInternalReference(entry, name, context.get(index), FixedArray::OffsetOfElementAt(index)); } SetWeakReference( entry, "optimized_code_list", context.get(Context::OPTIMIZED_CODE_LIST), FixedArray::OffsetOfElementAt(Context::OPTIMIZED_CODE_LIST)); SetWeakReference( entry, "deoptimized_code_list", context.get(Context::DEOPTIMIZED_CODE_LIST), FixedArray::OffsetOfElementAt(Context::DEOPTIMIZED_CODE_LIST)); STATIC_ASSERT(Context::OPTIMIZED_CODE_LIST == Context::FIRST_WEAK_SLOT); STATIC_ASSERT(Context::NEXT_CONTEXT_LINK + 1 == Context::NATIVE_CONTEXT_SLOTS); STATIC_ASSERT(Context::FIRST_WEAK_SLOT + 3 == Context::NATIVE_CONTEXT_SLOTS); } } void V8HeapExplorer::ExtractMapReferences(HeapEntry* entry, Map map) { MaybeObject maybe_raw_transitions_or_prototype_info = map.raw_transitions(); HeapObject raw_transitions_or_prototype_info; if (maybe_raw_transitions_or_prototype_info->GetHeapObjectIfWeak( &raw_transitions_or_prototype_info)) { DCHECK(raw_transitions_or_prototype_info.IsMap()); SetWeakReference(entry, "transition", raw_transitions_or_prototype_info, Map::kTransitionsOrPrototypeInfoOffset); } else if (maybe_raw_transitions_or_prototype_info->GetHeapObjectIfStrong( &raw_transitions_or_prototype_info)) { if (raw_transitions_or_prototype_info.IsTransitionArray()) { TransitionArray transitions = TransitionArray::cast(raw_transitions_or_prototype_info); if (map.CanTransition() && transitions.HasPrototypeTransitions()) { TagObject(transitions.GetPrototypeTransitions(), "(prototype transitions)"); } TagObject(transitions, "(transition array)"); SetInternalReference(entry, "transitions", transitions, Map::kTransitionsOrPrototypeInfoOffset); } else if (raw_transitions_or_prototype_info.IsTuple3() || raw_transitions_or_prototype_info.IsFixedArray()) { TagObject(raw_transitions_or_prototype_info, "(transition)"); SetInternalReference(entry, "transition", raw_transitions_or_prototype_info, Map::kTransitionsOrPrototypeInfoOffset); } else if (map.is_prototype_map()) { TagObject(raw_transitions_or_prototype_info, "prototype_info"); SetInternalReference(entry, "prototype_info", raw_transitions_or_prototype_info, Map::kTransitionsOrPrototypeInfoOffset); } } DescriptorArray descriptors = map.instance_descriptors(); TagObject(descriptors, "(map descriptors)"); SetInternalReference(entry, "descriptors", descriptors, Map::kInstanceDescriptorsOffset); SetInternalReference(entry, "prototype", map.prototype(), Map::kPrototypeOffset); if (FLAG_unbox_double_fields) { SetInternalReference(entry, "layout_descriptor", map.layout_descriptor(), Map::kLayoutDescriptorOffset); } Object constructor_or_backpointer = map.constructor_or_backpointer(); if (constructor_or_backpointer.IsMap()) { TagObject(constructor_or_backpointer, "(back pointer)"); SetInternalReference(entry, "back_pointer", constructor_or_backpointer, Map::kConstructorOrBackPointerOffset); } else if (constructor_or_backpointer.IsFunctionTemplateInfo()) { TagObject(constructor_or_backpointer, "(constructor function data)"); SetInternalReference(entry, "constructor_function_data", constructor_or_backpointer, Map::kConstructorOrBackPointerOffset); } else { SetInternalReference(entry, "constructor", constructor_or_backpointer, Map::kConstructorOrBackPointerOffset); } TagObject(map.dependent_code(), "(dependent code)"); SetInternalReference(entry, "dependent_code", map.dependent_code(), Map::kDependentCodeOffset); } void V8HeapExplorer::ExtractSharedFunctionInfoReferences( HeapEntry* entry, SharedFunctionInfo shared) { String shared_name = shared.DebugName(); const char* name = nullptr; if (shared_name != ReadOnlyRoots(heap_).empty_string()) { name = names_->GetName(shared_name); TagObject(shared.GetCode(), names_->GetFormatted("(code for %s)", name)); } else { TagObject(shared.GetCode(), names_->GetFormatted("(%s code)", Code::Kind2String(shared.GetCode().kind()))); } if (shared.name_or_scope_info().IsScopeInfo()) { TagObject(shared.name_or_scope_info(), "(function scope info)"); } SetInternalReference(entry, "name_or_scope_info", shared.name_or_scope_info(), SharedFunctionInfo::kNameOrScopeInfoOffset); SetInternalReference(entry, "script_or_debug_info", shared.script_or_debug_info(), SharedFunctionInfo::kScriptOrDebugInfoOffset); SetInternalReference(entry, "function_data", shared.function_data(), SharedFunctionInfo::kFunctionDataOffset); SetInternalReference( entry, "raw_outer_scope_info_or_feedback_metadata", shared.raw_outer_scope_info_or_feedback_metadata(), SharedFunctionInfo::kOuterScopeInfoOrFeedbackMetadataOffset); } void V8HeapExplorer::ExtractScriptReferences(HeapEntry* entry, Script script) { SetInternalReference(entry, "source", script.source(), Script::kSourceOffset); SetInternalReference(entry, "name", script.name(), Script::kNameOffset); SetInternalReference(entry, "context_data", script.context_data(), Script::kContextOffset); TagObject(script.line_ends(), "(script line ends)"); SetInternalReference(entry, "line_ends", script.line_ends(), Script::kLineEndsOffset); } void V8HeapExplorer::ExtractAccessorInfoReferences(HeapEntry* entry, AccessorInfo accessor_info) { SetInternalReference(entry, "name", accessor_info.name(), AccessorInfo::kNameOffset); SetInternalReference(entry, "expected_receiver_type", accessor_info.expected_receiver_type(), AccessorInfo::kExpectedReceiverTypeOffset); SetInternalReference(entry, "getter", accessor_info.getter(), AccessorInfo::kGetterOffset); SetInternalReference(entry, "setter", accessor_info.setter(), AccessorInfo::kSetterOffset); SetInternalReference(entry, "data", accessor_info.data(), AccessorInfo::kDataOffset); } void V8HeapExplorer::ExtractAccessorPairReferences(HeapEntry* entry, AccessorPair accessors) { SetInternalReference(entry, "getter", accessors.getter(), AccessorPair::kGetterOffset); SetInternalReference(entry, "setter", accessors.setter(), AccessorPair::kSetterOffset); } void V8HeapExplorer::TagBuiltinCodeObject(Code code, const char* name) { TagObject(code, names_->GetFormatted("(%s builtin)", name)); } void V8HeapExplorer::ExtractCodeReferences(HeapEntry* entry, Code code) { TagObject(code.relocation_info(), "(code relocation info)"); SetInternalReference(entry, "relocation_info", code.relocation_info(), Code::kRelocationInfoOffset); TagObject(code.deoptimization_data(), "(code deopt data)"); SetInternalReference(entry, "deoptimization_data", code.deoptimization_data(), Code::kDeoptimizationDataOffset); TagObject(code.source_position_table(), "(source position table)"); SetInternalReference(entry, "source_position_table", code.source_position_table(), Code::kSourcePositionTableOffset); } void V8HeapExplorer::ExtractCellReferences(HeapEntry* entry, Cell cell) { SetInternalReference(entry, "value", cell.value(), Cell::kValueOffset); } void V8HeapExplorer::ExtractFeedbackCellReferences(HeapEntry* entry, FeedbackCell feedback_cell) { TagObject(feedback_cell, "(feedback cell)"); SetInternalReference(entry, "value", feedback_cell.value(), FeedbackCell::kValueOffset); } void V8HeapExplorer::ExtractPropertyCellReferences(HeapEntry* entry, PropertyCell cell) { SetInternalReference(entry, "value", cell.value(), PropertyCell::kValueOffset); TagObject(cell.dependent_code(), "(dependent code)"); SetInternalReference(entry, "dependent_code", cell.dependent_code(), PropertyCell::kDependentCodeOffset); } void V8HeapExplorer::ExtractAllocationSiteReferences(HeapEntry* entry, AllocationSite site) { SetInternalReference(entry, "transition_info", site.transition_info_or_boilerplate(), AllocationSite::kTransitionInfoOrBoilerplateOffset); SetInternalReference(entry, "nested_site", site.nested_site(), AllocationSite::kNestedSiteOffset); TagObject(site.dependent_code(), "(dependent code)"); SetInternalReference(entry, "dependent_code", site.dependent_code(), AllocationSite::kDependentCodeOffset); } void V8HeapExplorer::ExtractArrayBoilerplateDescriptionReferences( HeapEntry* entry, ArrayBoilerplateDescription value) { SetInternalReference(entry, "constant_elements", value.constant_elements(), ArrayBoilerplateDescription::kConstantElementsOffset); } class JSArrayBufferDataEntryAllocator : public HeapEntriesAllocator { public: JSArrayBufferDataEntryAllocator(size_t size, V8HeapExplorer* explorer) : size_(size) , explorer_(explorer) { } HeapEntry* AllocateEntry(HeapThing ptr) override { return explorer_->AddEntry(reinterpret_cast
(ptr), HeapEntry::kNative, "system / JSArrayBufferData", size_); } private: size_t size_; V8HeapExplorer* explorer_; }; void V8HeapExplorer::ExtractJSArrayBufferReferences(HeapEntry* entry, JSArrayBuffer buffer) { // Setup a reference to a native memory backing_store object. if (!buffer.backing_store()) return; size_t data_size = buffer.byte_length(); JSArrayBufferDataEntryAllocator allocator(data_size, this); HeapEntry* data_entry = generator_->FindOrAddEntry(buffer.backing_store(), &allocator); entry->SetNamedReference(HeapGraphEdge::kInternal, "backing_store", data_entry); } void V8HeapExplorer::ExtractJSPromiseReferences(HeapEntry* entry, JSPromise promise) { SetInternalReference(entry, "reactions_or_result", promise.reactions_or_result(), JSPromise::kReactionsOrResultOffset); } void V8HeapExplorer::ExtractJSGeneratorObjectReferences( HeapEntry* entry, JSGeneratorObject generator) { SetInternalReference(entry, "function", generator.function(), JSGeneratorObject::kFunctionOffset); SetInternalReference(entry, "context", generator.context(), JSGeneratorObject::kContextOffset); SetInternalReference(entry, "receiver", generator.receiver(), JSGeneratorObject::kReceiverOffset); SetInternalReference(entry, "parameters_and_registers", generator.parameters_and_registers(), JSGeneratorObject::kParametersAndRegistersOffset); } void V8HeapExplorer::ExtractFixedArrayReferences(HeapEntry* entry, FixedArray array) { for (int i = 0, l = array.length(); i < l; ++i) { DCHECK(!HasWeakHeapObjectTag(array.get(i))); SetInternalReference(entry, i, array.get(i), array.OffsetOfElementAt(i)); } } void V8HeapExplorer::ExtractFeedbackVectorReferences( HeapEntry* entry, FeedbackVector feedback_vector) { MaybeObject code = feedback_vector.optimized_code_weak_or_smi(); HeapObject code_heap_object; if (code->GetHeapObjectIfWeak(&code_heap_object)) { SetWeakReference(entry, "optimized code", code_heap_object, FeedbackVector::kOptimizedCodeWeakOrSmiOffset); } } void V8HeapExplorer::ExtractDescriptorArrayReferences(HeapEntry* entry, DescriptorArray array) { SetInternalReference(entry, "enum_cache", array.enum_cache(), DescriptorArray::kEnumCacheOffset); MaybeObjectSlot start = MaybeObjectSlot(array.GetDescriptorSlot(0)); MaybeObjectSlot end = MaybeObjectSlot( array.GetDescriptorSlot(array.number_of_all_descriptors())); for (int i = 0; start + i < end; ++i) { MaybeObjectSlot slot = start + i; int offset = static_cast(slot.address() - array.address()); MaybeObject object = *slot; HeapObject heap_object; if (object->GetHeapObjectIfWeak(&heap_object)) { SetWeakReference(entry, i, heap_object, offset); } else if (object->GetHeapObjectIfStrong(&heap_object)) { SetInternalReference(entry, i, heap_object, offset); } } } template void V8HeapExplorer::ExtractWeakArrayReferences(int header_size, HeapEntry* entry, T array) { for (int i = 0; i < array.length(); ++i) { MaybeObject object = array.Get(i); HeapObject heap_object; if (object->GetHeapObjectIfWeak(&heap_object)) { SetWeakReference(entry, i, heap_object, header_size + i * kTaggedSize); } else if (object->GetHeapObjectIfStrong(&heap_object)) { SetInternalReference(entry, i, heap_object, header_size + i * kTaggedSize); } } } void V8HeapExplorer::ExtractPropertyReferences(JSObject js_obj, HeapEntry* entry) { Isolate* isolate = js_obj.GetIsolate(); if (js_obj.HasFastProperties()) { DescriptorArray descs = js_obj.map().instance_descriptors(); int real_size = js_obj.map().NumberOfOwnDescriptors(); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs.GetDetails(i); switch (details.location()) { case kField: { Representation r = details.representation(); if (r.IsSmi() || r.IsDouble()) break; Name k = descs.GetKey(i); FieldIndex field_index = FieldIndex::ForDescriptor(js_obj.map(), i); Object value = js_obj.RawFastPropertyAt(field_index); int field_offset = field_index.is_inobject() ? field_index.offset() : -1; SetDataOrAccessorPropertyReference(details.kind(), entry, k, value, nullptr, field_offset); break; } case kDescriptor: SetDataOrAccessorPropertyReference( details.kind(), entry, descs.GetKey(i), descs.GetStrongValue(i)); break; } } } else if (js_obj.IsJSGlobalObject()) { // We assume that global objects can only have slow properties. GlobalDictionary dictionary = JSGlobalObject::cast(js_obj).global_dictionary(); int length = dictionary.Capacity(); ReadOnlyRoots roots(isolate); for (int i = 0; i < length; ++i) { if (!dictionary.IsKey(roots, dictionary.KeyAt(i))) continue; PropertyCell cell = dictionary.CellAt(i); Name name = cell.name(); Object value = cell.value(); PropertyDetails details = cell.property_details(); SetDataOrAccessorPropertyReference(details.kind(), entry, name, value); } } else { NameDictionary dictionary = js_obj.property_dictionary(); int length = dictionary.Capacity(); ReadOnlyRoots roots(isolate); for (int i = 0; i < length; ++i) { Object k = dictionary.KeyAt(i); if (!dictionary.IsKey(roots, k)) continue; Object value = dictionary.ValueAt(i); PropertyDetails details = dictionary.DetailsAt(i); SetDataOrAccessorPropertyReference(details.kind(), entry, Name::cast(k), value); } } } void V8HeapExplorer::ExtractAccessorPairProperty(HeapEntry* entry, Name key, Object callback_obj, int field_offset) { if (!callback_obj.IsAccessorPair()) return; AccessorPair accessors = AccessorPair::cast(callback_obj); SetPropertyReference(entry, key, accessors, nullptr, field_offset); Object getter = accessors.getter(); if (!getter.IsOddball()) { SetPropertyReference(entry, key, getter, "get %s"); } Object setter = accessors.setter(); if (!setter.IsOddball()) { SetPropertyReference(entry, key, setter, "set %s"); } } void V8HeapExplorer::ExtractElementReferences(JSObject js_obj, HeapEntry* entry) { ReadOnlyRoots roots = js_obj.GetReadOnlyRoots(); if (js_obj.HasObjectElements()) { FixedArray elements = FixedArray::cast(js_obj.elements()); int length = js_obj.IsJSArray() ? Smi::ToInt(JSArray::cast(js_obj).length()) : elements.length(); for (int i = 0; i < length; ++i) { if (!elements.get(i).IsTheHole(roots)) { SetElementReference(entry, i, elements.get(i)); } } } else if (js_obj.HasDictionaryElements()) { NumberDictionary dictionary = js_obj.element_dictionary(); int length = dictionary.Capacity(); for (int i = 0; i < length; ++i) { Object k = dictionary.KeyAt(i); if (!dictionary.IsKey(roots, k)) continue; DCHECK(k.IsNumber()); uint32_t index = static_cast(k.Number()); SetElementReference(entry, index, dictionary.ValueAt(i)); } } } void V8HeapExplorer::ExtractInternalReferences(JSObject js_obj, HeapEntry* entry) { int length = js_obj.GetEmbedderFieldCount(); for (int i = 0; i < length; ++i) { Object o = js_obj.GetEmbedderField(i); SetInternalReference(entry, i, o, js_obj.GetEmbedderFieldOffset(i)); } } JSFunction V8HeapExplorer::GetConstructor(JSReceiver receiver) { Isolate* isolate = receiver.GetIsolate(); DisallowHeapAllocation no_gc; HandleScope scope(isolate); MaybeHandle maybe_constructor = JSReceiver::GetConstructor(handle(receiver, isolate)); if (maybe_constructor.is_null()) return JSFunction(); return *maybe_constructor.ToHandleChecked(); } String V8HeapExplorer::GetConstructorName(JSObject object) { Isolate* isolate = object.GetIsolate(); if (object.IsJSFunction()) return ReadOnlyRoots(isolate).closure_string(); DisallowHeapAllocation no_gc; HandleScope scope(isolate); return *JSReceiver::GetConstructorName(handle(object, isolate)); } HeapEntry* V8HeapExplorer::GetEntry(Object obj) { return obj.IsHeapObject() ? generator_->FindOrAddEntry( reinterpret_cast(obj.ptr()), this) : nullptr; } class RootsReferencesExtractor : public RootVisitor { public: explicit RootsReferencesExtractor(V8HeapExplorer* explorer) : explorer_(explorer), visiting_weak_roots_(false) {} void SetVisitingWeakRoots() { visiting_weak_roots_ = true; } void VisitRootPointer(Root root, const char* description, FullObjectSlot object) override { if (root == Root::kBuiltins) { explorer_->TagBuiltinCodeObject(Code::cast(*object), description); } explorer_->SetGcSubrootReference(root, description, visiting_weak_roots_, *object); } void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) { VisitRootPointer(root, description, p); } } private: V8HeapExplorer* explorer_; bool visiting_weak_roots_; }; bool V8HeapExplorer::IterateAndExtractReferences( HeapSnapshotGenerator* generator) { generator_ = generator; // Create references to the synthetic roots. SetRootGcRootsReference(); for (int root = 0; root < static_cast(Root::kNumberOfRoots); root++) { SetGcRootsReference(static_cast(root)); } // Make sure builtin code objects get their builtin tags // first. Otherwise a particular JSFunction object could set // its custom name to a generic builtin. RootsReferencesExtractor extractor(this); ReadOnlyRoots(heap_).Iterate(&extractor); heap_->IterateRoots(&extractor, VISIT_ONLY_STRONG); extractor.SetVisitingWeakRoots(); heap_->IterateWeakGlobalHandles(&extractor); bool interrupted = false; CombinedHeapObjectIterator iterator(heap_, HeapObjectIterator::kFilterUnreachable); // Heap iteration with filtering must be finished in any case. for (HeapObject obj = iterator.Next(); !obj.is_null(); obj = iterator.Next(), progress_->ProgressStep()) { if (interrupted) continue; size_t max_pointer = obj.Size() / kTaggedSize; if (max_pointer > visited_fields_.size()) { // Clear the current bits. std::vector().swap(visited_fields_); // Reallocate to right size. visited_fields_.resize(max_pointer, false); } HeapEntry* entry = GetEntry(obj); ExtractReferences(entry, obj); SetInternalReference(entry, "map", obj.map(), HeapObject::kMapOffset); // Extract unvisited fields as hidden references and restore tags // of visited fields. IndexedReferencesExtractor refs_extractor(this, obj, entry); obj.Iterate(&refs_extractor); // Ensure visited_fields_ doesn't leak to the next object. for (size_t i = 0; i < max_pointer; ++i) { DCHECK(!visited_fields_[i]); } // Extract location for specific object types ExtractLocation(entry, obj); if (!progress_->ProgressReport(false)) interrupted = true; } generator_ = nullptr; return interrupted ? false : progress_->ProgressReport(true); } bool V8HeapExplorer::IsEssentialObject(Object object) { ReadOnlyRoots roots(heap_); return object.IsHeapObject() && !object.IsOddball() && object != roots.empty_byte_array() && object != roots.empty_fixed_array() && object != roots.empty_weak_fixed_array() && object != roots.empty_descriptor_array() && object != roots.fixed_array_map() && object != roots.cell_map() && object != roots.global_property_cell_map() && object != roots.shared_function_info_map() && object != roots.free_space_map() && object != roots.one_pointer_filler_map() && object != roots.two_pointer_filler_map(); } bool V8HeapExplorer::IsEssentialHiddenReference(Object parent, int field_offset) { if (parent.IsAllocationSite() && field_offset == AllocationSite::kWeakNextOffset) return false; if (parent.IsCodeDataContainer() && field_offset == CodeDataContainer::kNextCodeLinkOffset) return false; if (parent.IsContext() && field_offset == Context::OffsetOfElementAt(Context::NEXT_CONTEXT_LINK)) return false; return true; } void V8HeapExplorer::SetContextReference(HeapEntry* parent_entry, String reference_name, Object child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; parent_entry->SetNamedReference(HeapGraphEdge::kContextVariable, names_->GetName(reference_name), child_entry); MarkVisitedField(field_offset); } void V8HeapExplorer::MarkVisitedField(int offset) { if (offset < 0) return; int index = offset / kTaggedSize; DCHECK(!visited_fields_[index]); visited_fields_[index] = true; } void V8HeapExplorer::SetNativeBindReference(HeapEntry* parent_entry, const char* reference_name, Object child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; parent_entry->SetNamedReference(HeapGraphEdge::kShortcut, reference_name, child_entry); } void V8HeapExplorer::SetElementReference(HeapEntry* parent_entry, int index, Object child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; parent_entry->SetIndexedReference(HeapGraphEdge::kElement, index, child_entry); } void V8HeapExplorer::SetInternalReference(HeapEntry* parent_entry, const char* reference_name, Object child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; if (IsEssentialObject(child_obj)) { parent_entry->SetNamedReference(HeapGraphEdge::kInternal, reference_name, child_entry); } MarkVisitedField(field_offset); } void V8HeapExplorer::SetInternalReference(HeapEntry* parent_entry, int index, Object child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; if (IsEssentialObject(child_obj)) { parent_entry->SetNamedReference(HeapGraphEdge::kInternal, names_->GetName(index), child_entry); } MarkVisitedField(field_offset); } void V8HeapExplorer::SetHiddenReference(HeapObject parent_obj, HeapEntry* parent_entry, int index, Object child_obj, int field_offset) { DCHECK_EQ(parent_entry, GetEntry(parent_obj)); HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != nullptr && IsEssentialObject(child_obj) && IsEssentialHiddenReference(parent_obj, field_offset)) { parent_entry->SetIndexedReference(HeapGraphEdge::kHidden, index, child_entry); } } void V8HeapExplorer::SetWeakReference(HeapEntry* parent_entry, const char* reference_name, Object child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; if (IsEssentialObject(child_obj)) { parent_entry->SetNamedReference(HeapGraphEdge::kWeak, reference_name, child_entry); } MarkVisitedField(field_offset); } void V8HeapExplorer::SetWeakReference(HeapEntry* parent_entry, int index, Object child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; if (IsEssentialObject(child_obj)) { parent_entry->SetNamedReference( HeapGraphEdge::kWeak, names_->GetFormatted("%d", index), child_entry); } MarkVisitedField(field_offset); } void V8HeapExplorer::SetDataOrAccessorPropertyReference( PropertyKind kind, HeapEntry* parent_entry, Name reference_name, Object child_obj, const char* name_format_string, int field_offset) { if (kind == kAccessor) { ExtractAccessorPairProperty(parent_entry, reference_name, child_obj, field_offset); } else { SetPropertyReference(parent_entry, reference_name, child_obj, name_format_string, field_offset); } } void V8HeapExplorer::SetPropertyReference(HeapEntry* parent_entry, Name reference_name, Object child_obj, const char* name_format_string, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; HeapGraphEdge::Type type = reference_name.IsSymbol() || String::cast(reference_name).length() > 0 ? HeapGraphEdge::kProperty : HeapGraphEdge::kInternal; const char* name = name_format_string != nullptr && reference_name.IsString() ? names_->GetFormatted( name_format_string, String::cast(reference_name) .ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL) .get()) : names_->GetName(reference_name); parent_entry->SetNamedReference(type, name, child_entry); MarkVisitedField(field_offset); } void V8HeapExplorer::SetRootGcRootsReference() { snapshot_->root()->SetIndexedAutoIndexReference(HeapGraphEdge::kElement, snapshot_->gc_roots()); } void V8HeapExplorer::SetUserGlobalReference(Object child_obj) { HeapEntry* child_entry = GetEntry(child_obj); DCHECK_NOT_NULL(child_entry); snapshot_->root()->SetNamedAutoIndexReference(HeapGraphEdge::kShortcut, nullptr, child_entry, names_); } void V8HeapExplorer::SetGcRootsReference(Root root) { snapshot_->gc_roots()->SetIndexedAutoIndexReference( HeapGraphEdge::kElement, snapshot_->gc_subroot(root)); } void V8HeapExplorer::SetGcSubrootReference(Root root, const char* description, bool is_weak, Object child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry == nullptr) return; const char* name = GetStrongGcSubrootName(child_obj); HeapGraphEdge::Type edge_type = is_weak ? HeapGraphEdge::kWeak : HeapGraphEdge::kInternal; if (name != nullptr) { snapshot_->gc_subroot(root)->SetNamedReference(edge_type, name, child_entry); } else { snapshot_->gc_subroot(root)->SetNamedAutoIndexReference( edge_type, description, child_entry, names_); } // For full heap snapshots we do not emit user roots but rather rely on // regular GC roots to retain objects. if (FLAG_raw_heap_snapshots) return; // Add a shortcut to JS global object reference at snapshot root. // That allows the user to easily find global objects. They are // also used as starting points in distance calculations. if (is_weak || !child_obj.IsNativeContext()) return; JSGlobalObject global = Context::cast(child_obj).global_object(); if (!global.IsJSGlobalObject()) return; if (!user_roots_.insert(global).second) return; SetUserGlobalReference(global); } const char* V8HeapExplorer::GetStrongGcSubrootName(Object object) { if (strong_gc_subroot_names_.empty()) { Isolate* isolate = Isolate::FromHeap(heap_); for (RootIndex root_index = RootIndex::kFirstStrongOrReadOnlyRoot; root_index <= RootIndex::kLastStrongOrReadOnlyRoot; ++root_index) { const char* name = RootsTable::name(root_index); strong_gc_subroot_names_.emplace(isolate->root(root_index), name); } CHECK(!strong_gc_subroot_names_.empty()); } auto it = strong_gc_subroot_names_.find(object); return it != strong_gc_subroot_names_.end() ? it->second : nullptr; } void V8HeapExplorer::TagObject(Object obj, const char* tag) { if (IsEssentialObject(obj)) { HeapEntry* entry = GetEntry(obj); if (entry->name()[0] == '\0') { entry->set_name(tag); } } } class GlobalObjectsEnumerator : public RootVisitor { public: void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) { if (!(*p).IsNativeContext()) continue; JSObject proxy = Context::cast(*p).global_proxy(); if (!proxy.IsJSGlobalProxy()) continue; Object global = proxy.map().prototype(); if (!global.IsJSGlobalObject()) continue; objects_.push_back(Handle(JSGlobalObject::cast(global), proxy.GetIsolate())); } } int count() const { return static_cast(objects_.size()); } Handle& at(int i) { return objects_[i]; } private: std::vector> objects_; }; // Modifies heap. Must not be run during heap traversal. void V8HeapExplorer::TagGlobalObjects() { Isolate* isolate = Isolate::FromHeap(heap_); HandleScope scope(isolate); GlobalObjectsEnumerator enumerator; isolate->global_handles()->IterateAllRoots(&enumerator); std::vector urls(enumerator.count()); for (int i = 0, l = enumerator.count(); i < l; ++i) { urls[i] = global_object_name_resolver_ ? global_object_name_resolver_->GetName(Utils::ToLocal( Handle::cast(enumerator.at(i)))) : nullptr; } DisallowHeapAllocation no_allocation; for (int i = 0, l = enumerator.count(); i < l; ++i) { if (urls[i]) objects_tags_.emplace(*enumerator.at(i), urls[i]); } } class EmbedderGraphImpl : public EmbedderGraph { public: struct Edge { Node* from; Node* to; const char* name; }; class V8NodeImpl : public Node { public: explicit V8NodeImpl(Object object) : object_(object) {} Object GetObject() { return object_; } // Node overrides. bool IsEmbedderNode() override { return false; } const char* Name() override { // The name should be retrieved via GetObject(). UNREACHABLE(); return ""; } size_t SizeInBytes() override { // The size should be retrieved via GetObject(). UNREACHABLE(); return 0; } private: Object object_; }; Node* V8Node(const v8::Local& value) final { Handle object = v8::Utils::OpenHandle(*value); DCHECK(!object.is_null()); return AddNode(std::unique_ptr(new V8NodeImpl(*object))); } Node* AddNode(std::unique_ptr node) final { Node* result = node.get(); nodes_.push_back(std::move(node)); return result; } void AddEdge(Node* from, Node* to, const char* name) final { edges_.push_back({from, to, name}); } const std::vector>& nodes() { return nodes_; } const std::vector& edges() { return edges_; } private: std::vector> nodes_; std::vector edges_; }; class EmbedderGraphEntriesAllocator : public HeapEntriesAllocator { public: explicit EmbedderGraphEntriesAllocator(HeapSnapshot* snapshot) : snapshot_(snapshot), names_(snapshot_->profiler()->names()), heap_object_map_(snapshot_->profiler()->heap_object_map()) {} HeapEntry* AllocateEntry(HeapThing ptr) override; private: HeapSnapshot* snapshot_; StringsStorage* names_; HeapObjectsMap* heap_object_map_; }; namespace { const char* EmbedderGraphNodeName(StringsStorage* names, EmbedderGraphImpl::Node* node) { const char* prefix = node->NamePrefix(); return prefix ? names->GetFormatted("%s %s", prefix, node->Name()) : names->GetCopy(node->Name()); } HeapEntry::Type EmbedderGraphNodeType(EmbedderGraphImpl::Node* node) { return node->IsRootNode() ? HeapEntry::kSynthetic : HeapEntry::kNative; } // Merges the names of an embedder node and its wrapper node. // If the wrapper node name contains a tag suffix (part after '/') then the // result is the embedder node name concatenated with the tag suffix. // Otherwise, the result is the embedder node name. const char* MergeNames(StringsStorage* names, const char* embedder_name, const char* wrapper_name) { const char* suffix = strchr(wrapper_name, '/'); return suffix ? names->GetFormatted("%s %s", embedder_name, suffix) : embedder_name; } } // anonymous namespace HeapEntry* EmbedderGraphEntriesAllocator::AllocateEntry(HeapThing ptr) { EmbedderGraphImpl::Node* node = reinterpret_cast(ptr); DCHECK(node->IsEmbedderNode()); size_t size = node->SizeInBytes(); Address lookup_address = reinterpret_cast
(node->GetNativeObject()); SnapshotObjectId id = (lookup_address) ? heap_object_map_->FindOrAddEntry(lookup_address, 0) : static_cast( reinterpret_cast(node) << 1); return snapshot_->AddEntry(EmbedderGraphNodeType(node), EmbedderGraphNodeName(names_, node), id, static_cast(size), 0); } NativeObjectsExplorer::NativeObjectsExplorer( HeapSnapshot* snapshot, SnapshottingProgressReportingInterface* progress) : isolate_( Isolate::FromHeap(snapshot->profiler()->heap_object_map()->heap())), snapshot_(snapshot), names_(snapshot_->profiler()->names()), heap_object_map_(snapshot_->profiler()->heap_object_map()), embedder_graph_entries_allocator_( new EmbedderGraphEntriesAllocator(snapshot)) {} HeapEntry* NativeObjectsExplorer::EntryForEmbedderGraphNode( EmbedderGraphImpl::Node* node) { EmbedderGraphImpl::Node* wrapper = node->WrapperNode(); NativeObject native_object = node->GetNativeObject(); if (wrapper) { node = wrapper; } if (node->IsEmbedderNode()) { return generator_->FindOrAddEntry(node, embedder_graph_entries_allocator_.get()); } else { EmbedderGraphImpl::V8NodeImpl* v8_node = static_cast(node); Object object = v8_node->GetObject(); if (object.IsSmi()) return nullptr; HeapEntry* entry = generator_->FindEntry( reinterpret_cast(Object::cast(object).ptr())); if (native_object) { HeapObject heap_object = HeapObject::cast(object); heap_object_map_->AddMergedNativeEntry(native_object, heap_object.address()); DCHECK_EQ(entry->id(), heap_object_map_->FindMergedNativeEntry(native_object)); } return entry; } } bool NativeObjectsExplorer::IterateAndExtractReferences( HeapSnapshotGenerator* generator) { generator_ = generator; if (FLAG_heap_profiler_use_embedder_graph && snapshot_->profiler()->HasBuildEmbedderGraphCallback()) { v8::HandleScope scope(reinterpret_cast(isolate_)); DisallowHeapAllocation no_allocation; EmbedderGraphImpl graph; snapshot_->profiler()->BuildEmbedderGraph(isolate_, &graph); for (const auto& node : graph.nodes()) { if (node->IsRootNode()) { snapshot_->root()->SetIndexedAutoIndexReference( HeapGraphEdge::kElement, EntryForEmbedderGraphNode(node.get())); } // Adjust the name and the type of the V8 wrapper node. auto wrapper = node->WrapperNode(); if (wrapper) { HeapEntry* wrapper_entry = EntryForEmbedderGraphNode(wrapper); wrapper_entry->set_name( MergeNames(names_, EmbedderGraphNodeName(names_, node.get()), wrapper_entry->name())); wrapper_entry->set_type(EmbedderGraphNodeType(node.get())); } } // Fill edges of the graph. for (const auto& edge : graph.edges()) { HeapEntry* from = EntryForEmbedderGraphNode(edge.from); // |from| and |to| can be nullptr if the corresponding node is a V8 node // pointing to a Smi. if (!from) continue; HeapEntry* to = EntryForEmbedderGraphNode(edge.to); if (!to) continue; if (edge.name == nullptr) { from->SetIndexedAutoIndexReference(HeapGraphEdge::kElement, to); } else { from->SetNamedReference(HeapGraphEdge::kInternal, names_->GetCopy(edge.name), to); } } } generator_ = nullptr; return true; } HeapSnapshotGenerator::HeapSnapshotGenerator( HeapSnapshot* snapshot, v8::ActivityControl* control, v8::HeapProfiler::ObjectNameResolver* resolver, Heap* heap) : snapshot_(snapshot), control_(control), v8_heap_explorer_(snapshot_, this, resolver), dom_explorer_(snapshot_, this), heap_(heap) { } namespace { class NullContextForSnapshotScope { public: explicit NullContextForSnapshotScope(Isolate* isolate) : isolate_(isolate), prev_(isolate->context()) { isolate_->set_context(Context()); } ~NullContextForSnapshotScope() { isolate_->set_context(prev_); } private: Isolate* isolate_; Context prev_; }; } // namespace bool HeapSnapshotGenerator::GenerateSnapshot() { v8_heap_explorer_.TagGlobalObjects(); // TODO(1562) Profiler assumes that any object that is in the heap after // full GC is reachable from the root when computing dominators. // This is not true for weakly reachable objects. // As a temporary solution we call GC twice. heap_->PreciseCollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kHeapProfiler); heap_->PreciseCollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kHeapProfiler); NullContextForSnapshotScope null_context_scope(Isolate::FromHeap(heap_)); #ifdef VERIFY_HEAP Heap* debug_heap = heap_; if (FLAG_verify_heap) { debug_heap->Verify(); } #endif InitProgressCounter(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { debug_heap->Verify(); } #endif snapshot_->AddSyntheticRootEntries(); if (!FillReferences()) return false; snapshot_->FillChildren(); snapshot_->RememberLastJSObjectId(); progress_counter_ = progress_total_; if (!ProgressReport(true)) return false; return true; } void HeapSnapshotGenerator::ProgressStep() { ++progress_counter_; } bool HeapSnapshotGenerator::ProgressReport(bool force) { const int kProgressReportGranularity = 10000; if (control_ != nullptr && (force || progress_counter_ % kProgressReportGranularity == 0)) { return control_->ReportProgressValue(progress_counter_, progress_total_) == v8::ActivityControl::kContinue; } return true; } void HeapSnapshotGenerator::InitProgressCounter() { if (control_ == nullptr) return; // The +1 ensures that intermediate ProgressReport calls will never signal // that the work is finished (i.e. progress_counter_ == progress_total_). // Only the forced ProgressReport() at the end of GenerateSnapshot() // should signal that the work is finished because signalling finished twice // breaks the DevTools frontend. progress_total_ = v8_heap_explorer_.EstimateObjectsCount() + 1; progress_counter_ = 0; } bool HeapSnapshotGenerator::FillReferences() { return v8_heap_explorer_.IterateAndExtractReferences(this) && dom_explorer_.IterateAndExtractReferences(this); } template struct MaxDecimalDigitsIn; template<> struct MaxDecimalDigitsIn<4> { static const int kSigned = 11; static const int kUnsigned = 10; }; template<> struct MaxDecimalDigitsIn<8> { static const int kSigned = 20; static const int kUnsigned = 20; }; class OutputStreamWriter { public: explicit OutputStreamWriter(v8::OutputStream* stream) : stream_(stream), chunk_size_(stream->GetChunkSize()), chunk_(chunk_size_), chunk_pos_(0), aborted_(false) { DCHECK_GT(chunk_size_, 0); } bool aborted() { return aborted_; } void AddCharacter(char c) { DCHECK_NE(c, '\0'); DCHECK(chunk_pos_ < chunk_size_); chunk_[chunk_pos_++] = c; MaybeWriteChunk(); } void AddString(const char* s) { size_t len = strlen(s); DCHECK_GE(kMaxInt, len); AddSubstring(s, static_cast(len)); } void AddSubstring(const char* s, int n) { if (n <= 0) return; DCHECK_LE(n, strlen(s)); const char* s_end = s + n; while (s < s_end) { int s_chunk_size = Min(chunk_size_ - chunk_pos_, static_cast(s_end - s)); DCHECK_GT(s_chunk_size, 0); MemCopy(chunk_.begin() + chunk_pos_, s, s_chunk_size); s += s_chunk_size; chunk_pos_ += s_chunk_size; MaybeWriteChunk(); } } void AddNumber(unsigned n) { AddNumberImpl(n, "%u"); } void Finalize() { if (aborted_) return; DCHECK(chunk_pos_ < chunk_size_); if (chunk_pos_ != 0) { WriteChunk(); } stream_->EndOfStream(); } private: template void AddNumberImpl(T n, const char* format) { // Buffer for the longest value plus trailing \0 static const int kMaxNumberSize = MaxDecimalDigitsIn::kUnsigned + 1; if (chunk_size_ - chunk_pos_ >= kMaxNumberSize) { int result = SNPrintF( chunk_.SubVector(chunk_pos_, chunk_size_), format, n); DCHECK_NE(result, -1); chunk_pos_ += result; MaybeWriteChunk(); } else { EmbeddedVector buffer; int result = SNPrintF(buffer, format, n); USE(result); DCHECK_NE(result, -1); AddString(buffer.begin()); } } void MaybeWriteChunk() { DCHECK(chunk_pos_ <= chunk_size_); if (chunk_pos_ == chunk_size_) { WriteChunk(); } } void WriteChunk() { if (aborted_) return; if (stream_->WriteAsciiChunk(chunk_.begin(), chunk_pos_) == v8::OutputStream::kAbort) aborted_ = true; chunk_pos_ = 0; } v8::OutputStream* stream_; int chunk_size_; ScopedVector chunk_; int chunk_pos_; bool aborted_; }; // type, name|index, to_node. const int HeapSnapshotJSONSerializer::kEdgeFieldsCount = 3; // type, name, id, self_size, edge_count, trace_node_id. const int HeapSnapshotJSONSerializer::kNodeFieldsCount = 6; void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) { if (AllocationTracker* allocation_tracker = snapshot_->profiler()->allocation_tracker()) { allocation_tracker->PrepareForSerialization(); } DCHECK_NULL(writer_); writer_ = new OutputStreamWriter(stream); SerializeImpl(); delete writer_; writer_ = nullptr; } void HeapSnapshotJSONSerializer::SerializeImpl() { DCHECK_EQ(0, snapshot_->root()->index()); writer_->AddCharacter('{'); writer_->AddString("\"snapshot\":{"); SerializeSnapshot(); if (writer_->aborted()) return; writer_->AddString("},\n"); writer_->AddString("\"nodes\":["); SerializeNodes(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"edges\":["); SerializeEdges(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"trace_function_infos\":["); SerializeTraceNodeInfos(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"trace_tree\":["); SerializeTraceTree(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"samples\":["); SerializeSamples(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"locations\":["); SerializeLocations(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"strings\":["); SerializeStrings(); if (writer_->aborted()) return; writer_->AddCharacter(']'); writer_->AddCharacter('}'); writer_->Finalize(); } int HeapSnapshotJSONSerializer::GetStringId(const char* s) { base::HashMap::Entry* cache_entry = strings_.LookupOrInsert(const_cast(s), StringHash(s)); if (cache_entry->value == nullptr) { cache_entry->value = reinterpret_cast(next_string_id_++); } return static_cast(reinterpret_cast(cache_entry->value)); } namespace { template struct ToUnsigned; template<> struct ToUnsigned<4> { using Type = uint32_t; }; template<> struct ToUnsigned<8> { using Type = uint64_t; }; } // namespace template static int utoa_impl(T value, const Vector& buffer, int buffer_pos) { STATIC_ASSERT(static_cast(-1) > 0); // Check that T is unsigned int number_of_digits = 0; T t = value; do { ++number_of_digits; } while (t /= 10); buffer_pos += number_of_digits; int result = buffer_pos; do { int last_digit = static_cast(value % 10); buffer[--buffer_pos] = '0' + last_digit; value /= 10; } while (value); return result; } template static int utoa(T value, const Vector& buffer, int buffer_pos) { typename ToUnsigned::Type unsigned_value = value; STATIC_ASSERT(sizeof(value) == sizeof(unsigned_value)); return utoa_impl(unsigned_value, buffer, buffer_pos); } void HeapSnapshotJSONSerializer::SerializeEdge(HeapGraphEdge* edge, bool first_edge) { // The buffer needs space for 3 unsigned ints, 3 commas, \n and \0 static const int kBufferSize = MaxDecimalDigitsIn::kUnsigned * 3 + 3 + 2; // NOLINT EmbeddedVector buffer; int edge_name_or_index = edge->type() == HeapGraphEdge::kElement || edge->type() == HeapGraphEdge::kHidden ? edge->index() : GetStringId(edge->name()); int buffer_pos = 0; if (!first_edge) { buffer[buffer_pos++] = ','; } buffer_pos = utoa(edge->type(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(edge_name_or_index, buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(to_node_index(edge->to()), buffer, buffer_pos); buffer[buffer_pos++] = '\n'; buffer[buffer_pos++] = '\0'; writer_->AddString(buffer.begin()); } void HeapSnapshotJSONSerializer::SerializeEdges() { std::vector& edges = snapshot_->children(); for (size_t i = 0; i < edges.size(); ++i) { DCHECK(i == 0 || edges[i - 1]->from()->index() <= edges[i]->from()->index()); SerializeEdge(edges[i], i == 0); if (writer_->aborted()) return; } } void HeapSnapshotJSONSerializer::SerializeNode(const HeapEntry* entry) { // The buffer needs space for 4 unsigned ints, 1 size_t, 5 commas, \n and \0 static const int kBufferSize = 5 * MaxDecimalDigitsIn::kUnsigned // NOLINT + MaxDecimalDigitsIn::kUnsigned // NOLINT + 6 + 1 + 1; EmbeddedVector buffer; int buffer_pos = 0; if (to_node_index(entry) != 0) { buffer[buffer_pos++] = ','; } buffer_pos = utoa(entry->type(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(GetStringId(entry->name()), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(entry->id(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(entry->self_size(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(entry->children_count(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(entry->trace_node_id(), buffer, buffer_pos); buffer[buffer_pos++] = '\n'; buffer[buffer_pos++] = '\0'; writer_->AddString(buffer.begin()); } void HeapSnapshotJSONSerializer::SerializeNodes() { const std::deque& entries = snapshot_->entries(); for (const HeapEntry& entry : entries) { SerializeNode(&entry); if (writer_->aborted()) return; } } void HeapSnapshotJSONSerializer::SerializeSnapshot() { writer_->AddString("\"meta\":"); // The object describing node serialization layout. // We use a set of macros to improve readability. // clang-format off #define JSON_A(s) "[" s "]" #define JSON_O(s) "{" s "}" #define JSON_S(s) "\"" s "\"" writer_->AddString(JSON_O( JSON_S("node_fields") ":" JSON_A( JSON_S("type") "," JSON_S("name") "," JSON_S("id") "," JSON_S("self_size") "," JSON_S("edge_count") "," JSON_S("trace_node_id")) "," JSON_S("node_types") ":" JSON_A( JSON_A( JSON_S("hidden") "," JSON_S("array") "," JSON_S("string") "," JSON_S("object") "," JSON_S("code") "," JSON_S("closure") "," JSON_S("regexp") "," JSON_S("number") "," JSON_S("native") "," JSON_S("synthetic") "," JSON_S("concatenated string") "," JSON_S("sliced string") "," JSON_S("symbol") "," JSON_S("bigint")) "," JSON_S("string") "," JSON_S("number") "," JSON_S("number") "," JSON_S("number") "," JSON_S("number") "," JSON_S("number")) "," JSON_S("edge_fields") ":" JSON_A( JSON_S("type") "," JSON_S("name_or_index") "," JSON_S("to_node")) "," JSON_S("edge_types") ":" JSON_A( JSON_A( JSON_S("context") "," JSON_S("element") "," JSON_S("property") "," JSON_S("internal") "," JSON_S("hidden") "," JSON_S("shortcut") "," JSON_S("weak")) "," JSON_S("string_or_number") "," JSON_S("node")) "," JSON_S("trace_function_info_fields") ":" JSON_A( JSON_S("function_id") "," JSON_S("name") "," JSON_S("script_name") "," JSON_S("script_id") "," JSON_S("line") "," JSON_S("column")) "," JSON_S("trace_node_fields") ":" JSON_A( JSON_S("id") "," JSON_S("function_info_index") "," JSON_S("count") "," JSON_S("size") "," JSON_S("children")) "," JSON_S("sample_fields") ":" JSON_A( JSON_S("timestamp_us") "," JSON_S("last_assigned_id")) "," JSON_S("location_fields") ":" JSON_A( JSON_S("object_index") "," JSON_S("script_id") "," JSON_S("line") "," JSON_S("column")))); // clang-format on #undef JSON_S #undef JSON_O #undef JSON_A writer_->AddString(",\"node_count\":"); writer_->AddNumber(static_cast(snapshot_->entries().size())); writer_->AddString(",\"edge_count\":"); writer_->AddNumber(static_cast(snapshot_->edges().size())); writer_->AddString(",\"trace_function_count\":"); uint32_t count = 0; AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker(); if (tracker) { count = static_cast(tracker->function_info_list().size()); } writer_->AddNumber(count); } static void WriteUChar(OutputStreamWriter* w, unibrow::uchar u) { static const char hex_chars[] = "0123456789ABCDEF"; w->AddString("\\u"); w->AddCharacter(hex_chars[(u >> 12) & 0xF]); w->AddCharacter(hex_chars[(u >> 8) & 0xF]); w->AddCharacter(hex_chars[(u >> 4) & 0xF]); w->AddCharacter(hex_chars[u & 0xF]); } void HeapSnapshotJSONSerializer::SerializeTraceTree() { AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker(); if (!tracker) return; AllocationTraceTree* traces = tracker->trace_tree(); SerializeTraceNode(traces->root()); } void HeapSnapshotJSONSerializer::SerializeTraceNode(AllocationTraceNode* node) { // The buffer needs space for 4 unsigned ints, 4 commas, [ and \0 const int kBufferSize = 4 * MaxDecimalDigitsIn::kUnsigned // NOLINT + 4 + 1 + 1; EmbeddedVector buffer; int buffer_pos = 0; buffer_pos = utoa(node->id(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(node->function_info_index(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(node->allocation_count(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(node->allocation_size(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer[buffer_pos++] = '['; buffer[buffer_pos++] = '\0'; writer_->AddString(buffer.begin()); int i = 0; for (AllocationTraceNode* child : node->children()) { if (i++ > 0) { writer_->AddCharacter(','); } SerializeTraceNode(child); } writer_->AddCharacter(']'); } // 0-based position is converted to 1-based during the serialization. static int SerializePosition(int position, const Vector& buffer, int buffer_pos) { if (position == -1) { buffer[buffer_pos++] = '0'; } else { DCHECK_GE(position, 0); buffer_pos = utoa(static_cast(position + 1), buffer, buffer_pos); } return buffer_pos; } void HeapSnapshotJSONSerializer::SerializeTraceNodeInfos() { AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker(); if (!tracker) return; // The buffer needs space for 6 unsigned ints, 6 commas, \n and \0 const int kBufferSize = 6 * MaxDecimalDigitsIn::kUnsigned // NOLINT + 6 + 1 + 1; EmbeddedVector buffer; int i = 0; for (AllocationTracker::FunctionInfo* info : tracker->function_info_list()) { int buffer_pos = 0; if (i++ > 0) { buffer[buffer_pos++] = ','; } buffer_pos = utoa(info->function_id, buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(GetStringId(info->name), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(GetStringId(info->script_name), buffer, buffer_pos); buffer[buffer_pos++] = ','; // The cast is safe because script id is a non-negative Smi. buffer_pos = utoa(static_cast(info->script_id), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = SerializePosition(info->line, buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = SerializePosition(info->column, buffer, buffer_pos); buffer[buffer_pos++] = '\n'; buffer[buffer_pos++] = '\0'; writer_->AddString(buffer.begin()); } } void HeapSnapshotJSONSerializer::SerializeSamples() { const std::vector& samples = snapshot_->profiler()->heap_object_map()->samples(); if (samples.empty()) return; base::TimeTicks start_time = samples[0].timestamp; // The buffer needs space for 2 unsigned ints, 2 commas, \n and \0 const int kBufferSize = MaxDecimalDigitsIn::kUnsigned + MaxDecimalDigitsIn::kUnsigned + 2 + 1 + 1; EmbeddedVector buffer; int i = 0; for (const HeapObjectsMap::TimeInterval& sample : samples) { int buffer_pos = 0; if (i++ > 0) { buffer[buffer_pos++] = ','; } base::TimeDelta time_delta = sample.timestamp - start_time; buffer_pos = utoa(time_delta.InMicroseconds(), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(sample.last_assigned_id(), buffer, buffer_pos); buffer[buffer_pos++] = '\n'; buffer[buffer_pos++] = '\0'; writer_->AddString(buffer.begin()); } } void HeapSnapshotJSONSerializer::SerializeString(const unsigned char* s) { writer_->AddCharacter('\n'); writer_->AddCharacter('\"'); for ( ; *s != '\0'; ++s) { switch (*s) { case '\b': writer_->AddString("\\b"); continue; case '\f': writer_->AddString("\\f"); continue; case '\n': writer_->AddString("\\n"); continue; case '\r': writer_->AddString("\\r"); continue; case '\t': writer_->AddString("\\t"); continue; case '\"': case '\\': writer_->AddCharacter('\\'); writer_->AddCharacter(*s); continue; default: if (*s > 31 && *s < 128) { writer_->AddCharacter(*s); } else if (*s <= 31) { // Special character with no dedicated literal. WriteUChar(writer_, *s); } else { // Convert UTF-8 into \u UTF-16 literal. size_t length = 1, cursor = 0; for ( ; length <= 4 && *(s + length) != '\0'; ++length) { } unibrow::uchar c = unibrow::Utf8::CalculateValue(s, length, &cursor); if (c != unibrow::Utf8::kBadChar) { WriteUChar(writer_, c); DCHECK_NE(cursor, 0); s += cursor - 1; } else { writer_->AddCharacter('?'); } } } } writer_->AddCharacter('\"'); } void HeapSnapshotJSONSerializer::SerializeStrings() { ScopedVector sorted_strings( strings_.occupancy() + 1); for (base::HashMap::Entry* entry = strings_.Start(); entry != nullptr; entry = strings_.Next(entry)) { int index = static_cast(reinterpret_cast(entry->value)); sorted_strings[index] = reinterpret_cast(entry->key); } writer_->AddString("\"\""); for (int i = 1; i < sorted_strings.length(); ++i) { writer_->AddCharacter(','); SerializeString(sorted_strings[i]); if (writer_->aborted()) return; } } void HeapSnapshotJSONSerializer::SerializeLocation( const SourceLocation& location) { // The buffer needs space for 4 unsigned ints, 3 commas, \n and \0 static const int kBufferSize = MaxDecimalDigitsIn::kUnsigned * 4 + 3 + 2; EmbeddedVector buffer; int buffer_pos = 0; buffer_pos = utoa(to_node_index(location.entry_index), buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(location.scriptId, buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(location.line, buffer, buffer_pos); buffer[buffer_pos++] = ','; buffer_pos = utoa(location.col, buffer, buffer_pos); buffer[buffer_pos++] = '\n'; buffer[buffer_pos++] = '\0'; writer_->AddString(buffer.begin()); } void HeapSnapshotJSONSerializer::SerializeLocations() { const std::vector& locations = snapshot_->locations(); for (size_t i = 0; i < locations.size(); i++) { if (i > 0) writer_->AddCharacter(','); SerializeLocation(locations[i]); if (writer_->aborted()) return; } } } // namespace internal } // namespace v8