// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "src/objects.h" #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/base/tsan.h" #include "src/builtins/builtins.h" #include "src/contexts-inl.h" #include "src/conversions-inl.h" #include "src/feedback-vector-inl.h" #include "src/field-index-inl.h" #include "src/handles-inl.h" #include "src/heap/factory.h" #include "src/heap/heap-inl.h" #include "src/isolate-inl.h" #include "src/keys.h" #include "src/layout-descriptor-inl.h" #include "src/lookup-cache-inl.h" #include "src/lookup-inl.h" #include "src/maybe-handles-inl.h" #include "src/objects/bigint.h" #include "src/objects/descriptor-array.h" #include "src/objects/js-proxy-inl.h" #include "src/objects/literal-objects.h" #include "src/objects/maybe-object-inl.h" #include "src/objects/regexp-match-info.h" #include "src/objects/scope-info.h" #include "src/objects/template-objects.h" #include "src/objects/templates.h" #include "src/property-details.h" #include "src/property.h" #include "src/prototype-inl.h" #include "src/roots-inl.h" #include "src/transitions-inl.h" #include "src/v8memory.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi* smi) { value_ = smi->value(); } Smi* PropertyDetails::AsSmi() const { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } int PropertyDetails::field_width_in_words() const { DCHECK_EQ(location(), kField); if (!FLAG_unbox_double_fields) return 1; if (kDoubleSize == kPointerSize) return 1; return representation().IsDouble() ? kDoubleSize / kPointerSize : 1; } namespace InstanceTypeChecker { // Define type checkers for classes with single instance type. INSTANCE_TYPE_CHECKERS_SINGLE(INSTANCE_TYPE_CHECKER); #define TYPED_ARRAY_INSTANCE_TYPE_CHECKER(Type, type, TYPE, ctype) \ INSTANCE_TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE) TYPED_ARRAYS(TYPED_ARRAY_INSTANCE_TYPE_CHECKER) #undef TYPED_ARRAY_INSTANCE_TYPE_CHECKER #define STRUCT_INSTANCE_TYPE_CHECKER(TYPE, Name, name) \ INSTANCE_TYPE_CHECKER(Name, TYPE) STRUCT_LIST(STRUCT_INSTANCE_TYPE_CHECKER) #undef STRUCT_INSTANCE_TYPE_CHECKER // Define type checkers for classes with ranges of instance types. #define INSTANCE_TYPE_CHECKER_RANGE(type, first_instance_type, \ last_instance_type) \ V8_INLINE bool Is##type(InstanceType instance_type) { \ return instance_type >= first_instance_type && \ instance_type <= last_instance_type; \ } INSTANCE_TYPE_CHECKERS_RANGE(INSTANCE_TYPE_CHECKER_RANGE); #undef INSTANCE_TYPE_CHECKER_RANGE V8_INLINE bool IsFixedArrayBase(InstanceType instance_type) { return IsFixedArray(instance_type) || IsFixedDoubleArray(instance_type) || IsFixedTypedArrayBase(instance_type); } V8_INLINE bool IsHeapObject(InstanceType instance_type) { return true; } V8_INLINE bool IsInternalizedString(InstanceType instance_type) { STATIC_ASSERT(kNotInternalizedTag != 0); return (instance_type & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } V8_INLINE bool IsJSObject(InstanceType instance_type) { STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE); return instance_type >= FIRST_JS_OBJECT_TYPE; } V8_INLINE bool IsJSReceiver(InstanceType instance_type) { STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); return instance_type >= FIRST_JS_RECEIVER_TYPE; } } // namespace InstanceTypeChecker // TODO(v8:7786): For instance types that have a single map instance on the // roots, and when that map is a embedded in the binary, compare against the map // pointer rather than looking up the instance type. INSTANCE_TYPE_CHECKERS(TYPE_CHECKER); #define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype) \ TYPE_CHECKER(Fixed##Type##Array) TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER) #undef TYPED_ARRAY_TYPE_CHECKER bool HeapObject::IsUncompiledData() const { return IsUncompiledDataWithoutPreParsedScope() || IsUncompiledDataWithPreParsedScope(); } bool HeapObject::IsSloppyArgumentsElements() const { return IsFixedArrayExact(); } bool HeapObject::IsJSSloppyArgumentsObject() const { return IsJSArgumentsObject(); } bool HeapObject::IsJSGeneratorObject() const { return map()->instance_type() == JS_GENERATOR_OBJECT_TYPE || IsJSAsyncGeneratorObject(); } bool HeapObject::IsDataHandler() const { return IsLoadHandler() || IsStoreHandler(); } bool HeapObject::IsClassBoilerplate() const { return IsFixedArrayExact(); } bool HeapObject::IsExternal(Isolate* isolate) const { return map()->FindRootMap(isolate) == isolate->heap()->external_map(); } #define IS_TYPE_FUNCTION_DEF(type_) \ bool Object::Is##type_() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##type_(); \ } HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF #define IS_TYPE_FUNCTION_DEF(Type, Value) \ bool Object::Is##Type(Isolate* isolate) const { \ return Is##Type(ReadOnlyRoots(isolate->heap())); \ } \ bool Object::Is##Type(ReadOnlyRoots roots) const { \ return this == roots.Value(); \ } \ bool Object::Is##Type() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##Type(); \ } \ bool HeapObject::Is##Type(Isolate* isolate) const { \ return Object::Is##Type(isolate); \ } \ bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \ return Object::Is##Type(roots); \ } \ bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); } ODDBALL_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF bool Object::IsNullOrUndefined(Isolate* isolate) const { return IsNullOrUndefined(ReadOnlyRoots(isolate)); } bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const { return IsNull(roots) || IsUndefined(roots); } bool Object::IsNullOrUndefined() const { return IsHeapObject() && HeapObject::cast(this)->IsNullOrUndefined(); } bool HeapObject::IsNullOrUndefined(Isolate* isolate) const { return Object::IsNullOrUndefined(isolate); } bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const { return Object::IsNullOrUndefined(roots); } bool HeapObject::IsNullOrUndefined() const { return IsNullOrUndefined(GetReadOnlyRoots()); } bool HeapObject::IsUniqueName() const { return IsInternalizedString() || IsSymbol(); } bool HeapObject::IsFunction() const { STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); return map()->instance_type() >= FIRST_FUNCTION_TYPE; } bool HeapObject::IsCallable() const { return map()->is_callable(); } bool HeapObject::IsConstructor() const { return map()->is_constructor(); } bool HeapObject::IsModuleInfo() const { return map() == GetReadOnlyRoots().module_info_map(); } bool HeapObject::IsTemplateInfo() const { return IsObjectTemplateInfo() || IsFunctionTemplateInfo(); } bool HeapObject::IsConsString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsCons(); } bool HeapObject::IsThinString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsThin(); } bool HeapObject::IsSlicedString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSliced(); } bool HeapObject::IsSeqString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential(); } bool HeapObject::IsSeqOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsOneByteRepresentation(); } bool HeapObject::IsSeqTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsTwoByteRepresentation(); } bool HeapObject::IsExternalString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal(); } bool HeapObject::IsExternalOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsOneByteRepresentation(); } bool HeapObject::IsExternalTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); } bool Object::IsNumeric() const { return IsNumber() || IsBigInt(); } bool HeapObject::IsFiller() const { InstanceType instance_type = map()->instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } bool HeapObject::IsJSWeakCollection() const { return IsJSWeakMap() || IsJSWeakSet(); } bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); } bool HeapObject::IsPromiseReactionJobTask() const { return IsPromiseFulfillReactionJobTask() || IsPromiseRejectReactionJobTask(); } bool HeapObject::IsEnumCache() const { return IsTuple2(); } bool HeapObject::IsFrameArray() const { return IsFixedArrayExact(); } bool HeapObject::IsArrayList() const { return map() == GetReadOnlyRoots().array_list_map() || this == GetReadOnlyRoots().empty_fixed_array(); } bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArrayExact(); } bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); } bool HeapObject::IsDeoptimizationData() const { // Must be a fixed array. if (!IsFixedArrayExact()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(this)->length(); if (length == 0) return true; length -= DeoptimizationData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0; } bool HeapObject::IsHandlerTable() const { if (!IsFixedArrayExact()) return false; // There's actually no way to see the difference between a fixed array and // a handler table array. return true; } bool HeapObject::IsTemplateList() const { if (!IsFixedArrayExact()) return false; // There's actually no way to see the difference between a fixed array and // a template list. if (FixedArray::cast(this)->length() < 1) return false; return true; } bool HeapObject::IsDependentCode() const { if (!IsWeakFixedArray()) return false; // There's actually no way to see the difference between a weak fixed array // and a dependent codes array. return true; } bool HeapObject::IsAbstractCode() const { return IsBytecodeArray() || IsCode(); } bool HeapObject::IsStringWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsString(); } bool HeapObject::IsBooleanWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsBoolean(); } bool HeapObject::IsScriptWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsScript(); } bool HeapObject::IsNumberWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsNumber(); } bool HeapObject::IsBigIntWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsBigInt(); } bool HeapObject::IsSymbolWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsSymbol(); } bool HeapObject::IsBoolean() const { return IsOddball() && ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); } bool HeapObject::IsJSArrayBufferView() const { return IsJSDataView() || IsJSTypedArray(); } bool HeapObject::IsStringSet() const { return IsHashTable(); } bool HeapObject::IsObjectHashSet() const { return IsHashTable(); } bool HeapObject::IsNormalizedMapCache() const { return NormalizedMapCache::IsNormalizedMapCache(this); } bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); } bool HeapObject::IsMapCache() const { return IsHashTable(); } bool HeapObject::IsObjectHashTable() const { return IsHashTable(); } bool Object::IsSmallOrderedHashTable() const { return IsSmallOrderedHashSet() || IsSmallOrderedHashMap(); } bool Object::IsPrimitive() const { return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap(); } // static Maybe Object::IsArray(Handle object) { if (object->IsSmi()) return Just(false); Handle heap_object = Handle::cast(object); if (heap_object->IsJSArray()) return Just(true); if (!heap_object->IsJSProxy()) return Just(false); return JSProxy::IsArray(Handle::cast(object)); } bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); } bool HeapObject::IsAccessCheckNeeded() const { if (IsJSGlobalProxy()) { const JSGlobalProxy* proxy = JSGlobalProxy::cast(this); JSGlobalObject* global = proxy->GetIsolate()->context()->global_object(); return proxy->IsDetachedFrom(global); } return map()->is_access_check_needed(); } bool HeapObject::IsStruct() const { switch (map()->instance_type()) { #define MAKE_STRUCT_CASE(TYPE, Name, name) \ case TYPE: \ return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##Name(); \ } \ TYPE_CHECKER(Name) STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE double Object::Number() const { DCHECK(IsNumber()); return IsSmi() ? static_cast(reinterpret_cast(this)->value()) : reinterpret_cast(this)->value(); } bool Object::IsNaN() const { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value()); } bool Object::IsMinusZero() const { return this->IsHeapNumber() && i::IsMinusZero(HeapNumber::cast(this)->value()); } // ------------------------------------ // Cast operations CAST_ACCESSOR(AccessorPair) CAST_ACCESSOR(AsyncGeneratorRequest) CAST_ACCESSOR(BigInt) CAST_ACCESSOR(ObjectBoilerplateDescription) CAST_ACCESSOR(Cell) CAST_ACCESSOR(ArrayBoilerplateDescription) CAST_ACCESSOR(DataHandler) CAST_ACCESSOR(DescriptorArray) CAST_ACCESSOR(EphemeronHashTable) CAST_ACCESSOR(EnumCache) CAST_ACCESSOR(FeedbackCell) CAST_ACCESSOR(Foreign) CAST_ACCESSOR(GlobalDictionary) CAST_ACCESSOR(HeapObject) CAST_ACCESSOR(HeapNumber) CAST_ACCESSOR(LayoutDescriptor) CAST_ACCESSOR(MutableHeapNumber) CAST_ACCESSOR(NameDictionary) CAST_ACCESSOR(NormalizedMapCache) CAST_ACCESSOR(NumberDictionary) CAST_ACCESSOR(Object) CAST_ACCESSOR(ObjectHashSet) CAST_ACCESSOR(ObjectHashTable) CAST_ACCESSOR(Oddball) CAST_ACCESSOR(OrderedHashMap) CAST_ACCESSOR(OrderedHashSet) CAST_ACCESSOR(PropertyCell) CAST_ACCESSOR(RegExpMatchInfo) CAST_ACCESSOR(ScopeInfo) CAST_ACCESSOR(SimpleNumberDictionary) CAST_ACCESSOR(SmallOrderedHashMap) CAST_ACCESSOR(SmallOrderedHashSet) CAST_ACCESSOR(Smi) CAST_ACCESSOR(StringSet) CAST_ACCESSOR(StringTable) CAST_ACCESSOR(Struct) CAST_ACCESSOR(TemplateObjectDescription) CAST_ACCESSOR(Tuple2) CAST_ACCESSOR(Tuple3) bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool Object::KeyEquals(Object* second) { Object* first = this; if (second->IsNumber()) { if (first->IsNumber()) return first->Number() == second->Number(); Object* temp = first; first = second; second = temp; } if (first->IsNumber()) { DCHECK_LE(0, first->Number()); uint32_t expected = static_cast(first->Number()); uint32_t index; return Name::cast(second)->AsArrayIndex(&index) && index == expected; } return Name::cast(first)->Equals(Name::cast(second)); } bool Object::FilterKey(PropertyFilter filter) { DCHECK(!IsPropertyCell()); if (IsSymbol()) { if (filter & SKIP_SYMBOLS) return true; if (Symbol::cast(this)->is_private()) return true; } else { if (filter & SKIP_STRINGS) return true; } return false; } Handle Object::NewStorageFor(Isolate* isolate, Handle object, Representation representation) { if (!representation.IsDouble()) return object; auto result = isolate->factory()->NewMutableHeapNumberWithHoleNaN(); if (object->IsUninitialized(isolate)) { result->set_value_as_bits(kHoleNanInt64); } else if (object->IsMutableHeapNumber()) { // Ensure that all bits of the double value are preserved. result->set_value_as_bits( MutableHeapNumber::cast(*object)->value_as_bits()); } else { result->set_value(object->Number()); } return result; } Handle Object::WrapForRead(Isolate* isolate, Handle object, Representation representation) { DCHECK(!object->IsUninitialized(isolate)); if (!representation.IsDouble()) { DCHECK(object->FitsRepresentation(representation)); return object; } return isolate->factory()->NewHeapNumber( MutableHeapNumber::cast(*object)->value()); } Representation Object::OptimalRepresentation() { if (!FLAG_track_fields) return Representation::Tagged(); if (IsSmi()) { return Representation::Smi(); } else if (FLAG_track_double_fields && IsHeapNumber()) { return Representation::Double(); } else if (FLAG_track_computed_fields && IsUninitialized()) { return Representation::None(); } else if (FLAG_track_heap_object_fields) { DCHECK(IsHeapObject()); return Representation::HeapObject(); } else { return Representation::Tagged(); } } ElementsKind Object::OptimalElementsKind() { if (IsSmi()) return PACKED_SMI_ELEMENTS; if (IsNumber()) return PACKED_DOUBLE_ELEMENTS; return PACKED_ELEMENTS; } bool Object::FitsRepresentation(Representation representation) { if (FLAG_track_fields && representation.IsSmi()) { return IsSmi(); } else if (FLAG_track_double_fields && representation.IsDouble()) { return IsMutableHeapNumber() || IsNumber(); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { return IsHeapObject(); } else if (FLAG_track_fields && representation.IsNone()) { return false; } return true; } bool Object::ToUint32(uint32_t* value) const { if (IsSmi()) { int num = Smi::ToInt(this); if (num < 0) return false; *value = static_cast(num); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); return DoubleToUint32IfEqualToSelf(num, value); } return false; } // static MaybeHandle Object::ToObject(Isolate* isolate, Handle object, const char* method_name) { if (object->IsJSReceiver()) return Handle::cast(object); return ToObject(isolate, object, isolate->native_context(), method_name); } // static MaybeHandle Object::ToName(Isolate* isolate, Handle input) { if (input->IsName()) return Handle::cast(input); return ConvertToName(isolate, input); } // static MaybeHandle Object::ToPropertyKey(Isolate* isolate, Handle value) { if (value->IsSmi() || HeapObject::cast(*value)->IsName()) return value; return ConvertToPropertyKey(isolate, value); } // static MaybeHandle Object::ToPrimitive(Handle input, ToPrimitiveHint hint) { if (input->IsPrimitive()) return input; return JSReceiver::ToPrimitive(Handle::cast(input), hint); } // static MaybeHandle Object::ToNumber(Isolate* isolate, Handle input) { if (input->IsNumber()) return input; // Shortcut. return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber); } // static MaybeHandle Object::ToNumeric(Isolate* isolate, Handle input) { if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut. return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric); } // static MaybeHandle Object::ToInteger(Isolate* isolate, Handle input) { if (input->IsSmi()) return input; return ConvertToInteger(isolate, input); } // static MaybeHandle Object::ToInt32(Isolate* isolate, Handle input) { if (input->IsSmi()) return input; return ConvertToInt32(isolate, input); } // static MaybeHandle Object::ToUint32(Isolate* isolate, Handle input) { if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate); return ConvertToUint32(isolate, input); } // static MaybeHandle Object::ToString(Isolate* isolate, Handle input) { if (input->IsString()) return Handle::cast(input); return ConvertToString(isolate, input); } // static MaybeHandle Object::ToLength(Isolate* isolate, Handle input) { if (input->IsSmi()) { int value = std::max(Smi::ToInt(*input), 0); return handle(Smi::FromInt(value), isolate); } return ConvertToLength(isolate, input); } // static MaybeHandle Object::ToIndex(Isolate* isolate, Handle input, MessageTemplate::Template error_index) { if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input; return ConvertToIndex(isolate, input, error_index); } MaybeHandle Object::GetProperty(Isolate* isolate, Handle object, Handle name) { LookupIterator it(isolate, object, name); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle Object::GetElement(Isolate* isolate, Handle object, uint32_t index) { LookupIterator it(isolate, object, index); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle Object::SetElement(Isolate* isolate, Handle object, uint32_t index, Handle value, LanguageMode language_mode) { LookupIterator it(isolate, object, index); MAYBE_RETURN_NULL( SetProperty(&it, value, language_mode, StoreOrigin::kMaybeKeyed)); return value; } Object** HeapObject::RawField(const HeapObject* obj, int byte_offset) { return reinterpret_cast(FIELD_ADDR(obj, byte_offset)); } MaybeObject** HeapObject::RawMaybeWeakField(HeapObject* obj, int byte_offset) { return reinterpret_cast(FIELD_ADDR(obj, byte_offset)); } int Smi::ToInt(const Object* object) { return Smi::cast(object)->value(); } MapWord MapWord::FromMap(const Map* map) { return MapWord(reinterpret_cast(map)); } Map* MapWord::ToMap() const { return reinterpret_cast(value_); } bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(reinterpret_cast(value_)); } MapWord MapWord::FromForwardingAddress(HeapObject* object) { Address raw = reinterpret_cast
(object) - kHeapObjectTag; return MapWord(static_cast(raw)); } HeapObject* MapWord::ToForwardingAddress() { DCHECK(IsForwardingAddress()); return HeapObject::FromAddress(static_cast
(value_)); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(Isolate* isolate, int offset) { VerifyPointer(isolate, READ_FIELD(this, offset)); } void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) { MaybeObject::VerifyMaybeObjectPointer(isolate, READ_WEAK_FIELD(this, offset)); } void HeapObject::VerifySmiField(int offset) { CHECK(READ_FIELD(this, offset)->IsSmi()); } #endif ReadOnlyRoots HeapObject::GetReadOnlyRoots() const { // TODO(v8:7464): When RO_SPACE is embedded, this will access a global // variable instead. return ReadOnlyRoots(MemoryChunk::FromHeapObject(this)->heap()); } Heap* NeverReadOnlySpaceObject::GetHeap() const { MemoryChunk* chunk = MemoryChunk::FromAddress(reinterpret_cast
(this)); // Make sure we are not accessing an object in RO space. SLOW_DCHECK(chunk->owner()->identity() != RO_SPACE); Heap* heap = chunk->heap(); SLOW_DCHECK(heap != nullptr); return heap; } Isolate* NeverReadOnlySpaceObject::GetIsolate() const { return GetHeap()->isolate(); } Map* HeapObject::map() const { return map_word().ToMap(); } void HeapObject::set_map(Map* value) { if (value != nullptr) { #ifdef VERIFY_HEAP Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value); #endif } set_map_word(MapWord::FromMap(value)); if (value != nullptr) { // TODO(1600) We are passing nullptr as a slot because maps can never be on // evacuation candidate. MarkingBarrier(this, nullptr, value); } } Map* HeapObject::synchronized_map() const { return synchronized_map_word().ToMap(); } void HeapObject::synchronized_set_map(Map* value) { if (value != nullptr) { #ifdef VERIFY_HEAP Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value); #endif } synchronized_set_map_word(MapWord::FromMap(value)); if (value != nullptr) { // TODO(1600) We are passing nullptr as a slot because maps can never be on // evacuation candidate. MarkingBarrier(this, nullptr, value); } } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map* value) { if (value != nullptr) { #ifdef VERIFY_HEAP Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value); #endif } set_map_word(MapWord::FromMap(value)); } void HeapObject::set_map_after_allocation(Map* value, WriteBarrierMode mode) { set_map_word(MapWord::FromMap(value)); if (mode != SKIP_WRITE_BARRIER) { DCHECK_NOT_NULL(value); // TODO(1600) We are passing nullptr as a slot because maps can never be on // evacuation candidate. MarkingBarrier(this, nullptr, value); } } HeapObject** HeapObject::map_slot() { return reinterpret_cast(FIELD_ADDR(this, kMapOffset)); } MapWord HeapObject::map_word() const { return MapWord( reinterpret_cast(RELAXED_READ_FIELD(this, kMapOffset))); } void HeapObject::set_map_word(MapWord map_word) { RELAXED_WRITE_FIELD(this, kMapOffset, reinterpret_cast(map_word.value_)); } MapWord HeapObject::synchronized_map_word() const { return MapWord( reinterpret_cast(ACQUIRE_READ_FIELD(this, kMapOffset))); } void HeapObject::synchronized_set_map_word(MapWord map_word) { RELEASE_WRITE_FIELD( this, kMapOffset, reinterpret_cast(map_word.value_)); } int HeapObject::Size() const { return SizeFromMap(map()); } double HeapNumberBase::value() const { return READ_DOUBLE_FIELD(this, kValueOffset); } void HeapNumberBase::set_value(double value) { WRITE_DOUBLE_FIELD(this, kValueOffset, value); } uint64_t HeapNumberBase::value_as_bits() const { return READ_UINT64_FIELD(this, kValueOffset); } void HeapNumberBase::set_value_as_bits(uint64_t bits) { WRITE_UINT64_FIELD(this, kValueOffset, bits); } int HeapNumberBase::get_exponent() { return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> kExponentShift) - kExponentBias; } int HeapNumberBase::get_sign() { return READ_INT_FIELD(this, kExponentOffset) & kSignMask; } double Oddball::to_number_raw() const { return READ_DOUBLE_FIELD(this, kToNumberRawOffset); } void Oddball::set_to_number_raw(double value) { WRITE_DOUBLE_FIELD(this, kToNumberRawOffset, value); } void Oddball::set_to_number_raw_as_bits(uint64_t bits) { WRITE_UINT64_FIELD(this, kToNumberRawOffset, bits); } ACCESSORS(Oddball, to_string, String, kToStringOffset) ACCESSORS(Oddball, to_number, Object, kToNumberOffset) ACCESSORS(Oddball, type_of, String, kTypeOfOffset) byte Oddball::kind() const { return Smi::ToInt(READ_FIELD(this, kKindOffset)); } void Oddball::set_kind(byte value) { WRITE_FIELD(this, kKindOffset, Smi::FromInt(value)); } // static Handle Oddball::ToNumber(Isolate* isolate, Handle input) { return handle(input->to_number(), isolate); } ACCESSORS(Cell, value, Object, kValueOffset) ACCESSORS(FeedbackCell, value, HeapObject, kValueOffset) ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(PropertyCell, name, Name, kNameOffset) ACCESSORS(PropertyCell, value, Object, kValueOffset) ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset) PropertyDetails PropertyCell::property_details() const { return PropertyDetails(Smi::cast(property_details_raw())); } void PropertyCell::set_property_details(PropertyDetails details) { set_property_details_raw(details.AsSmi()); } inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_SPECIAL_RECEIVER_TYPE; } // This should be in objects/map-inl.h, but can't, because of a cyclic // dependency. bool Map::IsSpecialReceiverMap() const { bool result = IsSpecialReceiverInstanceType(instance_type()); DCHECK_IMPLIES(!result, !has_named_interceptor() && !is_access_check_needed()); return result; } inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER; } // This should be in objects/map-inl.h, but can't, because of a cyclic // dependency. bool Map::IsCustomElementsReceiverMap() const { return IsCustomElementsReceiverInstanceType(instance_type()); } void Struct::InitializeBody(int object_size) { Object* value = GetReadOnlyRoots().undefined_value(); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool Object::ToArrayLength(uint32_t* index) const { return Object::ToUint32(index); } bool Object::ToArrayIndex(uint32_t* index) const { return Object::ToUint32(index) && *index != kMaxUInt32; } void Object::VerifyApiCallResultType() { #if DEBUG if (IsSmi()) return; DCHECK(IsHeapObject()); if (!(IsString() || IsSymbol() || IsJSReceiver() || IsHeapNumber() || IsBigInt() || IsUndefined() || IsTrue() || IsFalse() || IsNull())) { FATAL("API call returned invalid object"); } #endif // DEBUG } int RegExpMatchInfo::NumberOfCaptureRegisters() { DCHECK_GE(length(), kLastMatchOverhead); Object* obj = get(kNumberOfCapturesIndex); return Smi::ToInt(obj); } void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) { DCHECK_GE(length(), kLastMatchOverhead); set(kNumberOfCapturesIndex, Smi::FromInt(value)); } String* RegExpMatchInfo::LastSubject() { DCHECK_GE(length(), kLastMatchOverhead); Object* obj = get(kLastSubjectIndex); return String::cast(obj); } void RegExpMatchInfo::SetLastSubject(String* value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastSubjectIndex, value); } Object* RegExpMatchInfo::LastInput() { DCHECK_GE(length(), kLastMatchOverhead); return get(kLastInputIndex); } void RegExpMatchInfo::SetLastInput(Object* value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastInputIndex, value); } int RegExpMatchInfo::Capture(int i) { DCHECK_LT(i, NumberOfCaptureRegisters()); Object* obj = get(kFirstCaptureIndex + i); return Smi::ToInt(obj); } void RegExpMatchInfo::SetCapture(int i, int value) { DCHECK_LT(i, NumberOfCaptureRegisters()); set(kFirstCaptureIndex + i, Smi::FromInt(value)); } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowHeapAllocation& promise) { Heap* heap = Heap::FromWritableHeapObject(this); if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER; if (Heap::InNewSpace(this)) return SKIP_WRITE_BARRIER; return UPDATE_WRITE_BARRIER; } AllocationAlignment HeapObject::RequiredAlignment(Map* map) { #ifdef V8_HOST_ARCH_32_BIT int instance_type = map->instance_type(); if (instance_type == FIXED_FLOAT64_ARRAY_TYPE || instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return kDoubleAligned; } if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned; #endif // V8_HOST_ARCH_32_BIT return kWordAligned; } bool HeapObject::NeedsRehashing() const { switch (map()->instance_type()) { case DESCRIPTOR_ARRAY_TYPE: return DescriptorArray::cast(this)->number_of_descriptors() > 1; case TRANSITION_ARRAY_TYPE: return TransitionArray::cast(this)->number_of_entries() > 1; case ORDERED_HASH_MAP_TYPE: return OrderedHashMap::cast(this)->NumberOfElements() > 0; case ORDERED_HASH_SET_TYPE: return OrderedHashSet::cast(this)->NumberOfElements() > 0; case NAME_DICTIONARY_TYPE: case GLOBAL_DICTIONARY_TYPE: case NUMBER_DICTIONARY_TYPE: case SIMPLE_NUMBER_DICTIONARY_TYPE: case STRING_TABLE_TYPE: case HASH_TABLE_TYPE: case SMALL_ORDERED_HASH_MAP_TYPE: case SMALL_ORDERED_HASH_SET_TYPE: return true; default: return false; } } Address HeapObject::GetFieldAddress(int field_offset) const { return FIELD_ADDR(this, field_offset); } ACCESSORS(EnumCache, keys, FixedArray, kKeysOffset) ACCESSORS(EnumCache, indices, FixedArray, kIndicesOffset) int DescriptorArray::number_of_descriptors() const { return Smi::ToInt(get(kDescriptorLengthIndex)->cast()); } int DescriptorArray::number_of_descriptors_storage() const { return (length() - kFirstIndex) / kEntrySize; } int DescriptorArray::NumberOfSlackDescriptors() const { return number_of_descriptors_storage() - number_of_descriptors(); } void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) { set(kDescriptorLengthIndex, MaybeObject::FromObject(Smi::FromInt(number_of_descriptors))); } inline int DescriptorArray::number_of_entries() const { return number_of_descriptors(); } void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) { set(kEnumCacheIndex, array->get(kEnumCacheIndex)); } EnumCache* DescriptorArray::GetEnumCache() { return EnumCache::cast(get(kEnumCacheIndex)->GetHeapObjectAssumeStrong()); } // Perform a binary search in a fixed array. template int BinarySearch(T* array, Name* name, int valid_entries, int* out_insertion_index) { DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == nullptr); int low = 0; int high = array->number_of_entries() - 1; uint32_t hash = name->hash_field(); int limit = high; DCHECK(low <= high); while (low != high) { int mid = low + (high - low) / 2; Name* mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name->hash_field(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name* entry = array->GetKey(sort_index); uint32_t current_hash = entry->hash_field(); if (current_hash != hash) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1); } return T::kNotFound; } if (entry == name) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = limit + 1; } return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template int LinearSearch(T* array, Name* name, int valid_entries, int* out_insertion_index) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { uint32_t hash = name->hash_field(); int len = array->number_of_entries(); for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name* entry = array->GetKey(sorted_index); uint32_t current_hash = entry->hash_field(); if (current_hash > hash) { *out_insertion_index = sorted_index; return T::kNotFound; } if (entry == name) return sorted_index; } *out_insertion_index = len; return T::kNotFound; } else { DCHECK_LE(valid_entries, array->number_of_entries()); DCHECK_NULL(out_insertion_index); // Not supported here. for (int number = 0; number < valid_entries; number++) { if (array->GetKey(number) == name) return number; } return T::kNotFound; } } template int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) { SLOW_DCHECK(array->IsSortedNoDuplicates()); if (valid_entries == 0) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = 0; } return T::kNotFound; } // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if (valid_entries <= kMaxElementsForLinearSearch) { return LinearSearch(array, name, valid_entries, out_insertion_index); } // Slow case: perform binary search. return BinarySearch(array, name, valid_entries, out_insertion_index); } int DescriptorArray::Search(Name* name, int valid_descriptors) { DCHECK(name->IsUniqueName()); return internal::Search(this, name, valid_descriptors, nullptr); } int DescriptorArray::Search(Name* name, Map* map) { DCHECK(name->IsUniqueName()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) return kNotFound; return Search(name, number_of_own_descriptors); } int DescriptorArray::SearchWithCache(Isolate* isolate, Name* name, Map* map) { DCHECK(name->IsUniqueName()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) return kNotFound; DescriptorLookupCache* cache = isolate->descriptor_lookup_cache(); int number = cache->Lookup(map, name); if (number == DescriptorLookupCache::kAbsent) { number = Search(name, number_of_own_descriptors); cache->Update(map, name, number); } return number; } Object** DescriptorArray::GetKeySlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); DCHECK((*RawFieldOfElementAt(ToKeyIndex(descriptor_number)))->IsObject()); return reinterpret_cast( RawFieldOfElementAt(ToKeyIndex(descriptor_number))); } MaybeObject** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) { return reinterpret_cast(GetKeySlot(descriptor_number)); } MaybeObject** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) { return GetValueSlot(descriptor_number - 1) + 1; } Name* DescriptorArray::GetKey(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return Name::cast( get(ToKeyIndex(descriptor_number))->GetHeapObjectAssumeStrong()); } int DescriptorArray::GetSortedKeyIndex(int descriptor_number) { return GetDetails(descriptor_number).pointer(); } Name* DescriptorArray::GetSortedKey(int descriptor_number) { return GetKey(GetSortedKeyIndex(descriptor_number)); } void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) { PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), MaybeObject::FromObject(details.set_pointer(pointer).AsSmi())); } MaybeObject** DescriptorArray::GetValueSlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToValueIndex(descriptor_number)); } int DescriptorArray::GetValueOffset(int descriptor_number) { return OffsetOfElementAt(ToValueIndex(descriptor_number)); } Object* DescriptorArray::GetStrongValue(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return get(ToValueIndex(descriptor_number))->cast(); } void DescriptorArray::SetValue(int descriptor_index, Object* value) { set(ToValueIndex(descriptor_index), MaybeObject::FromObject(value)); } MaybeObject* DescriptorArray::GetValue(int descriptor_number) { DCHECK_LT(descriptor_number, number_of_descriptors()); return get(ToValueIndex(descriptor_number)); } PropertyDetails DescriptorArray::GetDetails(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); MaybeObject* details = get(ToDetailsIndex(descriptor_number)); return PropertyDetails(details->cast()); } int DescriptorArray::GetFieldIndex(int descriptor_number) { DCHECK_EQ(GetDetails(descriptor_number).location(), kField); return GetDetails(descriptor_number).field_index(); } FieldType* DescriptorArray::GetFieldType(int descriptor_number) { DCHECK_EQ(GetDetails(descriptor_number).location(), kField); MaybeObject* wrapped_type = GetValue(descriptor_number); return Map::UnwrapFieldType(wrapped_type); } void DescriptorArray::Set(int descriptor_number, Name* key, MaybeObject* value, PropertyDetails details) { // Range check. DCHECK(descriptor_number < number_of_descriptors()); set(ToKeyIndex(descriptor_number), MaybeObject::FromObject(key)); set(ToValueIndex(descriptor_number), value); set(ToDetailsIndex(descriptor_number), MaybeObject::FromObject(details.AsSmi())); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { Name* key = *desc->GetKey(); MaybeObject* value = *desc->GetValue(); Set(descriptor_number, key, value, desc->GetDetails()); } void DescriptorArray::Append(Descriptor* desc) { DisallowHeapAllocation no_gc; int descriptor_number = number_of_descriptors(); SetNumberOfDescriptors(descriptor_number + 1); Set(descriptor_number, desc); uint32_t hash = desc->GetKey()->Hash(); int insertion; for (insertion = descriptor_number; insertion > 0; --insertion) { Name* key = GetSortedKey(insertion - 1); if (key->Hash() <= hash) break; SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1)); } SetSortedKey(insertion, descriptor_number); } void DescriptorArray::SwapSortedKeys(int first, int second) { int first_key = GetSortedKeyIndex(first); SetSortedKey(first, GetSortedKeyIndex(second)); SetSortedKey(second, first_key); } MaybeObject* DescriptorArray::get(int index) const { return WeakFixedArray::Get(index); } void DescriptorArray::set(int index, MaybeObject* value) { WeakFixedArray::Set(index, value); } bool StringSetShape::IsMatch(String* key, Object* value) { DCHECK(value->IsString()); return key->Equals(String::cast(value)); } uint32_t StringSetShape::Hash(Isolate* isolate, String* key) { return key->Hash(); } uint32_t StringSetShape::HashForObject(Isolate* isolate, Object* object) { return String::cast(object)->Hash(); } StringTableKey::StringTableKey(uint32_t hash_field) : HashTableKey(hash_field >> Name::kHashShift), hash_field_(hash_field) {} void StringTableKey::set_hash_field(uint32_t hash_field) { hash_field_ = hash_field; set_hash(hash_field >> Name::kHashShift); } Handle StringTableShape::AsHandle(Isolate* isolate, StringTableKey* key) { return key->AsHandle(isolate); } uint32_t StringTableShape::HashForObject(Isolate* isolate, Object* object) { return String::cast(object)->Hash(); } RootIndex StringTableShape::GetMapRootIndex() { return RootIndex::kStringTableMap; } bool NumberDictionary::requires_slow_elements() { Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return false; return 0 != (Smi::ToInt(max_index_object) & kRequiresSlowElementsMask); } uint32_t NumberDictionary::max_number_key() { DCHECK(!requires_slow_elements()); Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return 0; uint32_t value = static_cast(Smi::ToInt(max_index_object)); return value >> kRequiresSlowElementsTagSize; } void NumberDictionary::set_requires_slow_elements() { set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); } DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrBytecodeOffset, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrPcOffset, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OptimizationId, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(InliningPositions, PodArray) DEFINE_DEOPT_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi) SMI_ACCESSORS(FreeSpace, size, kSizeOffset) RELAXED_SMI_ACCESSORS(FreeSpace, size, kSizeOffset) int FreeSpace::Size() { return size(); } FreeSpace* FreeSpace::next() { DCHECK(map() == Heap::FromWritableHeapObject(this)->root( RootIndex::kFreeSpaceMap) || (!Heap::FromWritableHeapObject(this)->deserialization_complete() && map() == nullptr)); DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size()); return reinterpret_cast(Memory
(address() + kNextOffset)); } void FreeSpace::set_next(FreeSpace* next) { DCHECK(map() == Heap::FromWritableHeapObject(this)->root( RootIndex::kFreeSpaceMap) || (!Heap::FromWritableHeapObject(this)->deserialization_complete() && map() == nullptr)); DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size()); base::Relaxed_Store( reinterpret_cast(address() + kNextOffset), reinterpret_cast(next)); } FreeSpace* FreeSpace::cast(HeapObject* o) { SLOW_DCHECK(!Heap::FromWritableHeapObject(o)->deserialization_complete() || o->IsFreeSpace()); return reinterpret_cast(o); } int HeapObject::SizeFromMap(Map* map) const { int instance_size = map->instance_size(); if (instance_size != kVariableSizeSentinel) return instance_size; // Only inline the most frequent cases. InstanceType instance_type = map->instance_type(); if (instance_type >= FIRST_FIXED_ARRAY_TYPE && instance_type <= LAST_FIXED_ARRAY_TYPE) { return FixedArray::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == ONE_BYTE_STRING_TYPE || instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqOneByteString::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == BYTE_ARRAY_TYPE) { return ByteArray::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == BYTECODE_ARRAY_TYPE) { return BytecodeArray::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == FREE_SPACE_TYPE) { return reinterpret_cast(this)->relaxed_read_size(); } if (instance_type == STRING_TYPE || instance_type == INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqTwoByteString::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return FixedDoubleArray::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == FEEDBACK_METADATA_TYPE) { return FeedbackMetadata::SizeFor( reinterpret_cast(this) ->synchronized_slot_count()); } if (instance_type >= FIRST_WEAK_FIXED_ARRAY_TYPE && instance_type <= LAST_WEAK_FIXED_ARRAY_TYPE) { return WeakFixedArray::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == WEAK_ARRAY_LIST_TYPE) { return WeakArrayList::SizeForCapacity( reinterpret_cast(this)->synchronized_capacity()); } if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) { return reinterpret_cast(this)->TypedArraySize( instance_type); } if (instance_type == SMALL_ORDERED_HASH_SET_TYPE) { return SmallOrderedHashSet::SizeFor( reinterpret_cast(this)->Capacity()); } if (instance_type == PROPERTY_ARRAY_TYPE) { return PropertyArray::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == SMALL_ORDERED_HASH_MAP_TYPE) { return SmallOrderedHashMap::SizeFor( reinterpret_cast(this)->Capacity()); } if (instance_type == FEEDBACK_VECTOR_TYPE) { return FeedbackVector::SizeFor( reinterpret_cast(this)->length()); } if (instance_type == BIGINT_TYPE) { return BigInt::SizeFor(reinterpret_cast(this)->length()); } if (instance_type == PRE_PARSED_SCOPE_DATA_TYPE) { return PreParsedScopeData::SizeFor( reinterpret_cast(this)->length()); } DCHECK(instance_type == CODE_TYPE); return reinterpret_cast(this)->CodeSize(); } ACCESSORS(AsyncGeneratorRequest, next, Object, kNextOffset) SMI_ACCESSORS(AsyncGeneratorRequest, resume_mode, kResumeModeOffset) ACCESSORS(AsyncGeneratorRequest, value, Object, kValueOffset) ACCESSORS(AsyncGeneratorRequest, promise, Object, kPromiseOffset) ACCESSORS(Tuple2, value1, Object, kValue1Offset) ACCESSORS(Tuple2, value2, Object, kValue2Offset) ACCESSORS(Tuple3, value3, Object, kValue3Offset) ACCESSORS(TemplateObjectDescription, raw_strings, FixedArray, kRawStringsOffset) ACCESSORS(TemplateObjectDescription, cooked_strings, FixedArray, kCookedStringsOffset) ACCESSORS(AccessorPair, getter, Object, kGetterOffset) ACCESSORS(AccessorPair, setter, Object, kSetterOffset) // static bool Foreign::IsNormalized(Object* value) { if (value == Smi::kZero) return true; return Foreign::cast(value)->foreign_address() != kNullAddress; } Address Foreign::foreign_address() { return READ_UINTPTR_FIELD(this, kForeignAddressOffset); } void Foreign::set_foreign_address(Address value) { WRITE_UINTPTR_FIELD(this, kForeignAddressOffset, value); } template void SmallOrderedHashTable::SetDataEntry(int entry, int relative_index, Object* value) { Address entry_offset = GetDataEntryOffset(entry, relative_index); RELAXED_WRITE_FIELD(this, entry_offset, value); WRITE_BARRIER(this, static_cast(entry_offset), value); } // static Maybe Object::GreaterThan(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kEqual: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::GreaterThanOrEqual(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::LessThan(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::LessThanOrEqual(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } MaybeHandle Object::GetPropertyOrElement(Isolate* isolate, Handle object, Handle name) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name); return GetProperty(&it); } MaybeHandle Object::SetPropertyOrElement(Isolate* isolate, Handle object, Handle name, Handle value, LanguageMode language_mode, StoreOrigin store_origin) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name); MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_origin)); return value; } MaybeHandle Object::GetPropertyOrElement(Handle receiver, Handle name, Handle holder) { LookupIterator it = LookupIterator::PropertyOrElement(holder->GetIsolate(), receiver, name, holder); return GetProperty(&it); } Object* AccessorPair::get(AccessorComponent component) { return component == ACCESSOR_GETTER ? getter() : setter(); } void AccessorPair::set(AccessorComponent component, Object* value) { if (component == ACCESSOR_GETTER) { set_getter(value); } else { set_setter(value); } } void AccessorPair::SetComponents(Object* getter, Object* setter) { if (!getter->IsNull()) set_getter(getter); if (!setter->IsNull()) set_setter(setter); } bool AccessorPair::Equals(AccessorPair* pair) { return (this == pair) || pair->Equals(getter(), setter()); } bool AccessorPair::Equals(Object* getter_value, Object* setter_value) { return (getter() == getter_value) && (setter() == setter_value); } bool AccessorPair::ContainsAccessor() { return IsJSAccessor(getter()) || IsJSAccessor(setter()); } bool AccessorPair::IsJSAccessor(Object* obj) { return obj->IsCallable() || obj->IsUndefined(); } template void Dictionary::ClearEntry(Isolate* isolate, int entry) { Object* the_hole = this->GetReadOnlyRoots().the_hole_value(); PropertyDetails details = PropertyDetails::Empty(); Derived::cast(this)->SetEntry(isolate, entry, the_hole, the_hole, details); } template void Dictionary::SetEntry(Isolate* isolate, int entry, Object* key, Object* value, PropertyDetails details) { DCHECK(Dictionary::kEntrySize == 2 || Dictionary::kEntrySize == 3); DCHECK(!key->IsName() || details.dictionary_index() > 0); int index = DerivedHashTable::EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = this->GetWriteBarrierMode(no_gc); this->set(index + Derived::kEntryKeyIndex, key, mode); this->set(index + Derived::kEntryValueIndex, value, mode); if (Shape::kHasDetails) DetailsAtPut(isolate, entry, details); } Object* GlobalDictionaryShape::Unwrap(Object* object) { return PropertyCell::cast(object)->name(); } RootIndex GlobalDictionaryShape::GetMapRootIndex() { return RootIndex::kGlobalDictionaryMap; } Name* NameDictionary::NameAt(int entry) { return Name::cast(KeyAt(entry)); } RootIndex NameDictionaryShape::GetMapRootIndex() { return RootIndex::kNameDictionaryMap; } PropertyCell* GlobalDictionary::CellAt(int entry) { DCHECK(KeyAt(entry)->IsPropertyCell()); return PropertyCell::cast(KeyAt(entry)); } bool GlobalDictionaryShape::IsLive(ReadOnlyRoots roots, Object* k) { DCHECK_NE(roots.the_hole_value(), k); return k != roots.undefined_value(); } bool GlobalDictionaryShape::IsKey(ReadOnlyRoots roots, Object* k) { return IsLive(roots, k) && !PropertyCell::cast(k)->value()->IsTheHole(roots); } Name* GlobalDictionary::NameAt(int entry) { return CellAt(entry)->name(); } Object* GlobalDictionary::ValueAt(int entry) { return CellAt(entry)->value(); } void GlobalDictionary::SetEntry(Isolate* isolate, int entry, Object* key, Object* value, PropertyDetails details) { DCHECK_EQ(key, PropertyCell::cast(value)->name()); set(EntryToIndex(entry) + kEntryKeyIndex, value); DetailsAtPut(isolate, entry, details); } void GlobalDictionary::ValueAtPut(int entry, Object* value) { set(EntryToIndex(entry), value); } bool NumberDictionaryBaseShape::IsMatch(uint32_t key, Object* other) { DCHECK(other->IsNumber()); return key == static_cast(other->Number()); } uint32_t NumberDictionaryBaseShape::Hash(Isolate* isolate, uint32_t key) { return ComputeSeededHash(key, isolate->heap()->HashSeed()); } uint32_t NumberDictionaryBaseShape::HashForObject(Isolate* isolate, Object* other) { DCHECK(other->IsNumber()); return ComputeSeededHash(static_cast(other->Number()), isolate->heap()->HashSeed()); } Handle NumberDictionaryBaseShape::AsHandle(Isolate* isolate, uint32_t key) { return isolate->factory()->NewNumberFromUint(key); } RootIndex NumberDictionaryShape::GetMapRootIndex() { return RootIndex::kNumberDictionaryMap; } RootIndex SimpleNumberDictionaryShape::GetMapRootIndex() { return RootIndex::kSimpleNumberDictionaryMap; } bool NameDictionaryShape::IsMatch(Handle key, Object* other) { DCHECK(other->IsTheHole() || Name::cast(other)->IsUniqueName()); DCHECK(key->IsUniqueName()); return *key == other; } uint32_t NameDictionaryShape::Hash(Isolate* isolate, Handle key) { return key->Hash(); } uint32_t NameDictionaryShape::HashForObject(Isolate* isolate, Object* other) { return Name::cast(other)->Hash(); } bool GlobalDictionaryShape::IsMatch(Handle key, Object* other) { DCHECK(PropertyCell::cast(other)->name()->IsUniqueName()); return *key == PropertyCell::cast(other)->name(); } uint32_t GlobalDictionaryShape::HashForObject(Isolate* isolate, Object* other) { return PropertyCell::cast(other)->name()->Hash(); } Handle NameDictionaryShape::AsHandle(Isolate* isolate, Handle key) { DCHECK(key->IsUniqueName()); return key; } template PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) { DCHECK_LE(0, entry); // Not found is -1, which is not caught by get(). return dict->CellAt(entry)->property_details(); } template void GlobalDictionaryShape::DetailsAtPut(Isolate* isolate, Dictionary* dict, int entry, PropertyDetails value) { DCHECK_LE(0, entry); // Not found is -1, which is not caught by get(). PropertyCell* cell = dict->CellAt(entry); if (cell->property_details().IsReadOnly() != value.IsReadOnly()) { cell->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kPropertyCellChangedGroup); } cell->set_property_details(value); } bool ObjectHashTableShape::IsMatch(Handle key, Object* other) { return key->SameValue(other); } uint32_t ObjectHashTableShape::Hash(Isolate* isolate, Handle key) { return Smi::ToInt(key->GetHash()); } uint32_t ObjectHashTableShape::HashForObject(Isolate* isolate, Object* other) { return Smi::ToInt(other->GetHash()); } // static Object* Object::GetSimpleHash(Object* object) { DisallowHeapAllocation no_gc; if (object->IsSmi()) { uint32_t hash = ComputeUnseededHash(Smi::ToInt(object)); return Smi::FromInt(hash & Smi::kMaxValue); } if (object->IsHeapNumber()) { double num = HeapNumber::cast(object)->value(); if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue); // Use ComputeUnseededHash for all values in Signed32 range, including -0, // which is considered equal to 0 because collections use SameValueZero. uint32_t hash; // Check range before conversion to avoid undefined behavior. if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) { hash = ComputeUnseededHash(FastD2I(num)); } else { hash = ComputeLongHash(double_to_uint64(num)); } return Smi::FromInt(hash & Smi::kMaxValue); } if (object->IsName()) { uint32_t hash = Name::cast(object)->Hash(); return Smi::FromInt(hash); } if (object->IsOddball()) { uint32_t hash = Oddball::cast(object)->to_string()->Hash(); return Smi::FromInt(hash); } if (object->IsBigInt()) { uint32_t hash = BigInt::cast(object)->Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } DCHECK(object->IsJSReceiver()); return object; } Object* Object::GetHash() { DisallowHeapAllocation no_gc; Object* hash = GetSimpleHash(this); if (hash->IsSmi()) return hash; DCHECK(IsJSReceiver()); JSReceiver* receiver = JSReceiver::cast(this); Isolate* isolate = receiver->GetIsolate(); return receiver->GetIdentityHash(isolate); } Handle ObjectHashTableShape::AsHandle(Handle key) { return key; } Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { DCHECK_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } template Object* OrderedHashTableIterator::CurrentKey() { TableType* table(TableType::cast(this->table())); int index = Smi::ToInt(this->index()); Object* key = table->KeyAt(index); DCHECK(!key->IsTheHole()); return key; } // Predictably converts HeapObject* or Address to uint32 by calculating // offset of the address in respective MemoryChunk. static inline uint32_t ObjectAddressForHashing(void* object) { uint32_t value = static_cast(reinterpret_cast(object)); return value & MemoryChunk::kAlignmentMask; } static inline Handle MakeEntryPair(Isolate* isolate, uint32_t index, Handle value) { Handle key = isolate->factory()->Uint32ToString(index); Handle entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } static inline Handle MakeEntryPair(Isolate* isolate, Handle key, Handle value) { Handle entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } bool ScopeInfo::IsAsmModule() const { return AsmModuleField::decode(Flags()); } bool ScopeInfo::HasSimpleParameters() const { return HasSimpleParametersField::decode(Flags()); } #define FIELD_ACCESSORS(name) \ void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \ int ScopeInfo::name() const { \ if (length() > 0) { \ return Smi::ToInt(get(k##name)); \ } else { \ return 0; \ } \ } FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS) #undef FIELD_ACCESSORS FreshlyAllocatedBigInt* FreshlyAllocatedBigInt::cast(Object* object) { SLOW_DCHECK(object->IsBigInt()); return reinterpret_cast(object); } } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_INL_H_