// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "src/objects.h" #include "src/base/bits.h" #include "src/base/tsan.h" #include "src/builtins/builtins.h" #include "src/conversions.h" #include "src/double.h" #include "src/handles-inl.h" #include "src/heap/factory.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/keys.h" #include "src/lookup-inl.h" // TODO(jkummerow): Drop. #include "src/objects/bigint.h" #include "src/objects/heap-number-inl.h" #include "src/objects/heap-object.h" #include "src/objects/js-proxy-inl.h" // TODO(jkummerow): Drop. #include "src/objects/literal-objects.h" #include "src/objects/oddball.h" #include "src/objects/regexp-match-info.h" #include "src/objects/scope-info.h" #include "src/objects/shared-function-info.h" #include "src/objects/slots-inl.h" #include "src/objects/smi-inl.h" #include "src/objects/templates.h" #include "src/property-details.h" #include "src/property.h" #include "src/v8memory.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi smi) { value_ = smi->value(); } Smi PropertyDetails::AsSmi() const { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } int PropertyDetails::field_width_in_words() const { DCHECK_EQ(location(), kField); if (!FLAG_unbox_double_fields) return 1; if (kDoubleSize == kTaggedSize) return 1; return representation().IsDouble() ? kDoubleSize / kTaggedSize : 1; } bool HeapObject::IsSloppyArgumentsElements() const { return IsFixedArrayExact(); } bool HeapObject::IsJSSloppyArgumentsObject() const { return IsJSArgumentsObject(); } bool HeapObject::IsJSGeneratorObject() const { return map()->instance_type() == JS_GENERATOR_OBJECT_TYPE || IsJSAsyncFunctionObject() || IsJSAsyncGeneratorObject(); } bool HeapObject::IsDataHandler() const { return IsLoadHandler() || IsStoreHandler(); } bool HeapObject::IsClassBoilerplate() const { return IsFixedArrayExact(); } #define IS_TYPE_FUNCTION_DEF(type_) \ bool Object::Is##type_() const { \ return IsHeapObject() && HeapObject::cast(*this)->Is##type_(); \ } HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF #define IS_TYPE_FUNCTION_DEF(Type, Value) \ bool Object::Is##Type(Isolate* isolate) const { \ return Is##Type(ReadOnlyRoots(isolate->heap())); \ } \ bool Object::Is##Type(ReadOnlyRoots roots) const { \ return *this == roots.Value(); \ } \ bool Object::Is##Type() const { \ return IsHeapObject() && HeapObject::cast(*this)->Is##Type(); \ } \ bool HeapObject::Is##Type(Isolate* isolate) const { \ return Object::Is##Type(isolate); \ } \ bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \ return Object::Is##Type(roots); \ } \ bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); } ODDBALL_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF bool Object::IsNullOrUndefined(Isolate* isolate) const { return IsNullOrUndefined(ReadOnlyRoots(isolate)); } bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const { return IsNull(roots) || IsUndefined(roots); } bool Object::IsNullOrUndefined() const { return IsHeapObject() && HeapObject::cast(*this)->IsNullOrUndefined(); } bool HeapObject::IsNullOrUndefined(Isolate* isolate) const { return Object::IsNullOrUndefined(isolate); } bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const { return Object::IsNullOrUndefined(roots); } bool HeapObject::IsNullOrUndefined() const { return IsNullOrUndefined(GetReadOnlyRoots()); } bool HeapObject::IsUniqueName() const { return IsInternalizedString() || IsSymbol(); } bool HeapObject::IsFunction() const { STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); return map()->instance_type() >= FIRST_FUNCTION_TYPE; } bool HeapObject::IsCallable() const { return map()->is_callable(); } bool HeapObject::IsConstructor() const { return map()->is_constructor(); } bool HeapObject::IsModuleInfo() const { return map() == GetReadOnlyRoots().module_info_map(); } bool HeapObject::IsTemplateInfo() const { return IsObjectTemplateInfo() || IsFunctionTemplateInfo(); } bool HeapObject::IsConsString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsCons(); } bool HeapObject::IsThinString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsThin(); } bool HeapObject::IsSlicedString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsSliced(); } bool HeapObject::IsSeqString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsSequential(); } bool HeapObject::IsSeqOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsSequential() && String::cast(*this)->IsOneByteRepresentation(); } bool HeapObject::IsSeqTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsSequential() && String::cast(*this)->IsTwoByteRepresentation(); } bool HeapObject::IsExternalString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsExternal(); } bool HeapObject::IsExternalOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsExternal() && String::cast(*this)->IsOneByteRepresentation(); } bool HeapObject::IsExternalTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(*this)).IsExternal() && String::cast(*this)->IsTwoByteRepresentation(); } bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); } bool Object::IsNumeric() const { return IsNumber() || IsBigInt(); } bool HeapObject::IsFiller() const { InstanceType instance_type = map()->instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } bool HeapObject::IsJSWeakCollection() const { return IsJSWeakMap() || IsJSWeakSet(); } bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); } bool HeapObject::IsPromiseReactionJobTask() const { return IsPromiseFulfillReactionJobTask() || IsPromiseRejectReactionJobTask(); } bool HeapObject::IsFrameArray() const { return IsFixedArrayExact(); } bool HeapObject::IsArrayList() const { return map() == GetReadOnlyRoots().array_list_map() || *this == GetReadOnlyRoots().empty_fixed_array(); } bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArrayExact(); } bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); } bool HeapObject::IsDeoptimizationData() const { // Must be a fixed array. if (!IsFixedArrayExact()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(*this)->length(); if (length == 0) return true; length -= DeoptimizationData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0; } bool HeapObject::IsHandlerTable() const { if (!IsFixedArrayExact()) return false; // There's actually no way to see the difference between a fixed array and // a handler table array. return true; } bool HeapObject::IsTemplateList() const { if (!IsFixedArrayExact()) return false; // There's actually no way to see the difference between a fixed array and // a template list. if (FixedArray::cast(*this)->length() < 1) return false; return true; } bool HeapObject::IsDependentCode() const { if (!IsWeakFixedArray()) return false; // There's actually no way to see the difference between a weak fixed array // and a dependent codes array. return true; } bool HeapObject::IsAbstractCode() const { return IsBytecodeArray() || IsCode(); } bool HeapObject::IsStringWrapper() const { return IsJSValue() && JSValue::cast(*this)->value()->IsString(); } bool HeapObject::IsBooleanWrapper() const { return IsJSValue() && JSValue::cast(*this)->value()->IsBoolean(); } bool HeapObject::IsScriptWrapper() const { return IsJSValue() && JSValue::cast(*this)->value()->IsScript(); } bool HeapObject::IsNumberWrapper() const { return IsJSValue() && JSValue::cast(*this)->value()->IsNumber(); } bool HeapObject::IsBigIntWrapper() const { return IsJSValue() && JSValue::cast(*this)->value()->IsBigInt(); } bool HeapObject::IsSymbolWrapper() const { return IsJSValue() && JSValue::cast(*this)->value()->IsSymbol(); } bool HeapObject::IsJSArrayBufferView() const { return IsJSDataView() || IsJSTypedArray(); } bool HeapObject::IsStringSet() const { return IsHashTable(); } bool HeapObject::IsObjectHashSet() const { return IsHashTable(); } bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); } bool HeapObject::IsMapCache() const { return IsHashTable(); } bool HeapObject::IsObjectHashTable() const { return IsHashTable(); } bool Object::IsHashTableBase() const { return IsHashTable(); } bool Object::IsSmallOrderedHashTable() const { return IsSmallOrderedHashSet() || IsSmallOrderedHashMap() || IsSmallOrderedNameDictionary(); } bool Object::IsPrimitive() const { return IsSmi() || HeapObject::cast(*this)->map()->IsPrimitiveMap(); } // static Maybe Object::IsArray(Handle object) { if (object->IsSmi()) return Just(false); Handle heap_object = Handle::cast(object); if (heap_object->IsJSArray()) return Just(true); if (!heap_object->IsJSProxy()) return Just(false); return JSProxy::IsArray(Handle::cast(object)); } bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); } bool HeapObject::IsAccessCheckNeeded() const { if (IsJSGlobalProxy()) { const JSGlobalProxy proxy = JSGlobalProxy::cast(*this); JSGlobalObject global = proxy->GetIsolate()->context()->global_object(); return proxy->IsDetachedFrom(global); } return map()->is_access_check_needed(); } bool HeapObject::IsStruct() const { switch (map()->instance_type()) { #define MAKE_STRUCT_CASE(TYPE, Name, name) \ case TYPE: \ return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE // It is hard to include ALLOCATION_SITE_TYPE in STRUCT_LIST because // that macro is used for many things and AllocationSite needs a few // special cases. case ALLOCATION_SITE_TYPE: return true; case LOAD_HANDLER_TYPE: case STORE_HANDLER_TYPE: return true; case FEEDBACK_CELL_TYPE: return true; case CALL_HANDLER_INFO_TYPE: return true; default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() const { \ return IsHeapObject() && HeapObject::cast(*this)->Is##Name(); \ } \ TYPE_CHECKER(Name) STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE double Object::Number() const { DCHECK(IsNumber()); return IsSmi() ? static_cast(Smi(this->ptr())->value()) : HeapNumber::unchecked_cast(*this)->value(); } // static bool Object::SameNumberValue(double value1, double value2) { // SameNumberValue(NaN, NaN) is true. if (value1 != value2) { return std::isnan(value1) && std::isnan(value2); } // SameNumberValue(0.0, -0.0) is false. return (std::signbit(value1) == std::signbit(value2)); } bool Object::IsNaN() const { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(*this)->value()); } bool Object::IsMinusZero() const { return this->IsHeapNumber() && i::IsMinusZero(HeapNumber::cast(*this)->value()); } OBJECT_CONSTRUCTORS_IMPL(RegExpMatchInfo, FixedArray) OBJECT_CONSTRUCTORS_IMPL(ScopeInfo, FixedArray) OBJECT_CONSTRUCTORS_IMPL(BigIntBase, HeapObject) OBJECT_CONSTRUCTORS_IMPL(BigInt, BigIntBase) OBJECT_CONSTRUCTORS_IMPL(FreshlyAllocatedBigInt, BigIntBase) // ------------------------------------ // Cast operations CAST_ACCESSOR(BigInt) CAST_ACCESSOR(RegExpMatchInfo) CAST_ACCESSOR(ScopeInfo) bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool Object::FilterKey(PropertyFilter filter) { DCHECK(!IsPropertyCell()); if (filter == PRIVATE_NAMES_ONLY) { if (!IsSymbol()) return true; return !Symbol::cast(*this)->is_private_name(); } else if (IsSymbol()) { if (filter & SKIP_SYMBOLS) return true; if (Symbol::cast(*this)->is_private()) return true; } else { if (filter & SKIP_STRINGS) return true; } return false; } Representation Object::OptimalRepresentation() { if (!FLAG_track_fields) return Representation::Tagged(); if (IsSmi()) { return Representation::Smi(); } else if (FLAG_track_double_fields && IsHeapNumber()) { return Representation::Double(); } else if (FLAG_track_computed_fields && IsUninitialized()) { return Representation::None(); } else if (FLAG_track_heap_object_fields) { DCHECK(IsHeapObject()); return Representation::HeapObject(); } else { return Representation::Tagged(); } } ElementsKind Object::OptimalElementsKind() { if (IsSmi()) return PACKED_SMI_ELEMENTS; if (IsNumber()) return PACKED_DOUBLE_ELEMENTS; return PACKED_ELEMENTS; } bool Object::FitsRepresentation(Representation representation) { if (FLAG_track_fields && representation.IsSmi()) { return IsSmi(); } else if (FLAG_track_double_fields && representation.IsDouble()) { return IsMutableHeapNumber() || IsNumber(); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { return IsHeapObject(); } else if (FLAG_track_fields && representation.IsNone()) { return false; } return true; } bool Object::ToUint32(uint32_t* value) const { if (IsSmi()) { int num = Smi::ToInt(*this); if (num < 0) return false; *value = static_cast(num); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(*this)->value(); return DoubleToUint32IfEqualToSelf(num, value); } return false; } // static MaybeHandle Object::ToObject(Isolate* isolate, Handle object, const char* method_name) { if (object->IsJSReceiver()) return Handle::cast(object); return ToObjectImpl(isolate, object, method_name); } // static MaybeHandle Object::ToName(Isolate* isolate, Handle input) { if (input->IsName()) return Handle::cast(input); return ConvertToName(isolate, input); } // static MaybeHandle Object::ToPropertyKey(Isolate* isolate, Handle value) { if (value->IsSmi() || HeapObject::cast(*value)->IsName()) return value; return ConvertToPropertyKey(isolate, value); } // static MaybeHandle Object::ToPrimitive(Handle input, ToPrimitiveHint hint) { if (input->IsPrimitive()) return input; return JSReceiver::ToPrimitive(Handle::cast(input), hint); } // static MaybeHandle Object::ToNumber(Isolate* isolate, Handle input) { if (input->IsNumber()) return input; // Shortcut. return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber); } // static MaybeHandle Object::ToNumeric(Isolate* isolate, Handle input) { if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut. return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric); } // static MaybeHandle Object::ToInteger(Isolate* isolate, Handle input) { if (input->IsSmi()) return input; return ConvertToInteger(isolate, input); } // static MaybeHandle Object::ToInt32(Isolate* isolate, Handle input) { if (input->IsSmi()) return input; return ConvertToInt32(isolate, input); } // static MaybeHandle Object::ToUint32(Isolate* isolate, Handle input) { if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate); return ConvertToUint32(isolate, input); } // static MaybeHandle Object::ToString(Isolate* isolate, Handle input) { if (input->IsString()) return Handle::cast(input); return ConvertToString(isolate, input); } // static MaybeHandle Object::ToLength(Isolate* isolate, Handle input) { if (input->IsSmi()) { int value = std::max(Smi::ToInt(*input), 0); return handle(Smi::FromInt(value), isolate); } return ConvertToLength(isolate, input); } // static MaybeHandle Object::ToIndex(Isolate* isolate, Handle input, MessageTemplate error_index) { if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input; return ConvertToIndex(isolate, input, error_index); } MaybeHandle Object::GetProperty(Isolate* isolate, Handle object, Handle name) { LookupIterator it(isolate, object, name); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle Object::GetElement(Isolate* isolate, Handle object, uint32_t index) { LookupIterator it(isolate, object, index); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle Object::SetElement(Isolate* isolate, Handle object, uint32_t index, Handle value, ShouldThrow should_throw) { LookupIterator it(isolate, object, index); MAYBE_RETURN_NULL( SetProperty(&it, value, StoreOrigin::kMaybeKeyed, Just(should_throw))); return value; } ObjectSlot HeapObject::RawField(int byte_offset) const { return ObjectSlot(FIELD_ADDR(*this, byte_offset)); } MaybeObjectSlot HeapObject::RawMaybeWeakField(int byte_offset) const { return MaybeObjectSlot(FIELD_ADDR(*this, byte_offset)); } MapWord MapWord::FromMap(const Map map) { return MapWord(map.ptr()); } Map MapWord::ToMap() const { return Map::unchecked_cast(Object(value_)); } bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(value_); } MapWord MapWord::FromForwardingAddress(HeapObject object) { return MapWord(object->ptr() - kHeapObjectTag); } HeapObject MapWord::ToForwardingAddress() { DCHECK(IsForwardingAddress()); return HeapObject::FromAddress(value_); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(Isolate* isolate, int offset) { VerifyPointer(isolate, READ_FIELD(*this, offset)); STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size); } void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) { MaybeObject::VerifyMaybeObjectPointer(isolate, READ_WEAK_FIELD(*this, offset)); STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size); } void HeapObject::VerifySmiField(int offset) { CHECK(READ_FIELD(*this, offset)->IsSmi()); STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size); } #endif ReadOnlyRoots HeapObject::GetReadOnlyRoots() const { // TODO(v8:7464): When RO_SPACE is embedded, this will access a global // variable instead. return ReadOnlyRoots(GetHeapFromWritableObject(*this)); } Map HeapObject::map() const { return map_word().ToMap(); } void HeapObject::set_map(Map value) { if (!value.is_null()) { #ifdef VERIFY_HEAP GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value); #endif } set_map_word(MapWord::FromMap(value)); if (!value.is_null()) { // TODO(1600) We are passing kNullAddress as a slot because maps can never // be on an evacuation candidate. MarkingBarrier(*this, ObjectSlot(kNullAddress), value); } } Map HeapObject::synchronized_map() const { return synchronized_map_word().ToMap(); } void HeapObject::synchronized_set_map(Map value) { if (!value.is_null()) { #ifdef VERIFY_HEAP GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value); #endif } synchronized_set_map_word(MapWord::FromMap(value)); if (!value.is_null()) { // TODO(1600) We are passing kNullAddress as a slot because maps can never // be on an evacuation candidate. MarkingBarrier(*this, ObjectSlot(kNullAddress), value); } } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map value) { if (!value.is_null()) { #ifdef VERIFY_HEAP GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value); #endif } set_map_word(MapWord::FromMap(value)); } void HeapObject::set_map_after_allocation(Map value, WriteBarrierMode mode) { set_map_word(MapWord::FromMap(value)); if (mode != SKIP_WRITE_BARRIER) { DCHECK(!value.is_null()); // TODO(1600) We are passing kNullAddress as a slot because maps can never // be on an evacuation candidate. MarkingBarrier(*this, ObjectSlot(kNullAddress), value); } } MapWordSlot HeapObject::map_slot() const { return MapWordSlot(FIELD_ADDR(*this, kMapOffset)); } MapWord HeapObject::map_word() const { return MapWord(map_slot().Relaxed_Load().ptr()); } void HeapObject::set_map_word(MapWord map_word) { map_slot().Relaxed_Store(Object(map_word.value_)); } MapWord HeapObject::synchronized_map_word() const { return MapWord(map_slot().Acquire_Load().ptr()); } void HeapObject::synchronized_set_map_word(MapWord map_word) { map_slot().Release_Store(Object(map_word.value_)); } int HeapObject::Size() const { return SizeFromMap(map()); } inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_SPECIAL_RECEIVER_TYPE; } // This should be in objects/map-inl.h, but can't, because of a cyclic // dependency. bool Map::IsSpecialReceiverMap() const { bool result = IsSpecialReceiverInstanceType(instance_type()); DCHECK_IMPLIES(!result, !has_named_interceptor() && !is_access_check_needed()); return result; } inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER; } // This should be in objects/map-inl.h, but can't, because of a cyclic // dependency. bool Map::IsCustomElementsReceiverMap() const { return IsCustomElementsReceiverInstanceType(instance_type()); } bool Object::ToArrayLength(uint32_t* index) const { return Object::ToUint32(index); } bool Object::ToArrayIndex(uint32_t* index) const { return Object::ToUint32(index) && *index != kMaxUInt32; } bool Object::GetHeapObjectIfStrong(HeapObject* result) const { return GetHeapObject(result); } bool Object::GetHeapObject(HeapObject* result) const { if (!IsHeapObject()) return false; *result = HeapObject::cast(*this); return true; } HeapObject Object::GetHeapObject() const { DCHECK(IsHeapObject()); return HeapObject::cast(*this); } int RegExpMatchInfo::NumberOfCaptureRegisters() { DCHECK_GE(length(), kLastMatchOverhead); Object obj = get(kNumberOfCapturesIndex); return Smi::ToInt(obj); } void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) { DCHECK_GE(length(), kLastMatchOverhead); set(kNumberOfCapturesIndex, Smi::FromInt(value)); } String RegExpMatchInfo::LastSubject() { DCHECK_GE(length(), kLastMatchOverhead); return String::cast(get(kLastSubjectIndex)); } void RegExpMatchInfo::SetLastSubject(String value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastSubjectIndex, value); } Object RegExpMatchInfo::LastInput() { DCHECK_GE(length(), kLastMatchOverhead); return get(kLastInputIndex); } void RegExpMatchInfo::SetLastInput(Object value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastInputIndex, value); } int RegExpMatchInfo::Capture(int i) { DCHECK_LT(i, NumberOfCaptureRegisters()); Object obj = get(kFirstCaptureIndex + i); return Smi::ToInt(obj); } void RegExpMatchInfo::SetCapture(int i, int value) { DCHECK_LT(i, NumberOfCaptureRegisters()); set(kFirstCaptureIndex + i, Smi::FromInt(value)); } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowHeapAllocation& promise) { return GetWriteBarrierModeForObject(*this, &promise); } // static AllocationAlignment HeapObject::RequiredAlignment(Map map) { #ifdef V8_COMPRESS_POINTERS // TODO(ishell, v8:8875): Consider using aligned allocations once the // allocation alignment inconsistency is fixed. For now we keep using // unaligned access since both x64 and arm64 architectures (where pointer // compression is supported) allow unaligned access to doubles and full words. #endif // V8_COMPRESS_POINTERS #ifdef V8_HOST_ARCH_32_BIT int instance_type = map->instance_type(); if (instance_type == FIXED_FLOAT64_ARRAY_TYPE || instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return kDoubleAligned; } if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned; #endif // V8_HOST_ARCH_32_BIT return kWordAligned; } Address HeapObject::GetFieldAddress(int field_offset) const { return FIELD_ADDR(*this, field_offset); } // static Maybe Object::GreaterThan(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kEqual: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::GreaterThanOrEqual(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::LessThan(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::LessThanOrEqual(Isolate* isolate, Handle x, Handle y) { Maybe result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } MaybeHandle Object::GetPropertyOrElement(Isolate* isolate, Handle object, Handle name) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name); return GetProperty(&it); } MaybeHandle Object::SetPropertyOrElement( Isolate* isolate, Handle object, Handle name, Handle value, Maybe should_throw, StoreOrigin store_origin) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name); MAYBE_RETURN_NULL(SetProperty(&it, value, store_origin, should_throw)); return value; } MaybeHandle Object::GetPropertyOrElement(Handle receiver, Handle name, Handle holder) { LookupIterator it = LookupIterator::PropertyOrElement(holder->GetIsolate(), receiver, name, holder); return GetProperty(&it); } // static Object Object::GetSimpleHash(Object object) { DisallowHeapAllocation no_gc; if (object->IsSmi()) { uint32_t hash = ComputeUnseededHash(Smi::ToInt(object)); return Smi::FromInt(hash & Smi::kMaxValue); } if (object->IsHeapNumber()) { double num = HeapNumber::cast(object)->value(); if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue); // Use ComputeUnseededHash for all values in Signed32 range, including -0, // which is considered equal to 0 because collections use SameValueZero. uint32_t hash; // Check range before conversion to avoid undefined behavior. if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) { hash = ComputeUnseededHash(FastD2I(num)); } else { hash = ComputeLongHash(double_to_uint64(num)); } return Smi::FromInt(hash & Smi::kMaxValue); } if (object->IsName()) { uint32_t hash = Name::cast(object)->Hash(); return Smi::FromInt(hash); } if (object->IsOddball()) { uint32_t hash = Oddball::cast(object)->to_string()->Hash(); return Smi::FromInt(hash); } if (object->IsBigInt()) { uint32_t hash = BigInt::cast(object)->Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } if (object->IsSharedFunctionInfo()) { uint32_t hash = SharedFunctionInfo::cast(object)->Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } DCHECK(object->IsJSReceiver()); return object; } Object Object::GetHash() { DisallowHeapAllocation no_gc; Object hash = GetSimpleHash(*this); if (hash->IsSmi()) return hash; DCHECK(IsJSReceiver()); JSReceiver receiver = JSReceiver::cast(*this); return receiver->GetIdentityHash(); } Handle ObjectHashTableShape::AsHandle(Handle key) { return key; } Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { DCHECK_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } // Predictably converts HeapObject or Address to uint32 by calculating // offset of the address in respective MemoryChunk. static inline uint32_t ObjectAddressForHashing(Address object) { uint32_t value = static_cast(object); return value & kPageAlignmentMask; } static inline Handle MakeEntryPair(Isolate* isolate, uint32_t index, Handle value) { Handle key = isolate->factory()->Uint32ToString(index); Handle entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } static inline Handle MakeEntryPair(Isolate* isolate, Handle key, Handle value) { Handle entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } bool ScopeInfo::IsAsmModule() const { return IsAsmModuleField::decode(Flags()); } bool ScopeInfo::HasSimpleParameters() const { return HasSimpleParametersField::decode(Flags()); } #define FIELD_ACCESSORS(name) \ void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \ int ScopeInfo::name() const { \ if (length() > 0) { \ return Smi::ToInt(get(k##name)); \ } else { \ return 0; \ } \ } FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS) #undef FIELD_ACCESSORS FreshlyAllocatedBigInt FreshlyAllocatedBigInt::cast(Object object) { SLOW_DCHECK(object->IsBigInt()); return FreshlyAllocatedBigInt(object->ptr()); } } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_INL_H_