// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_MIPS64 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/bootstrapper.h" #include "src/callable.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/debug/debug.h" #include "src/external-reference-table.h" #include "src/frames-inl.h" #include "src/instruction-stream.h" #include "src/mips64/assembler-mips64-inl.h" #include "src/mips64/macro-assembler-mips64.h" #include "src/register-configuration.h" #include "src/runtime/runtime.h" #include "src/snapshot/snapshot.h" #include "src/wasm/wasm-code-manager.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* isolate, const AssemblerOptions& options, void* buffer, int size, CodeObjectRequired create_code_object) : TurboAssembler(isolate, options, buffer, size, create_code_object) { if (create_code_object == CodeObjectRequired::kYes) { // Unlike TurboAssembler, which can be used off the main thread and may not // allocate, macro assembler creates its own copy of the self-reference // marker in order to disambiguate between self-references during nested // code generation (e.g.: codegen of the current object triggers stub // compilation through CodeStub::GetCode()). code_object_ = Handle::New( *isolate->factory()->NewSelfReferenceMarker(), isolate); } } static inline bool IsZero(const Operand& rt) { if (rt.is_reg()) { return rt.rm() == zero_reg; } else { return rt.immediate() == 0; } } int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) const { int bytes = 0; RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = kJSCallerSaved & ~exclusions; bytes += NumRegs(list) * kPointerSize; if (fp_mode == kSaveFPRegs) { bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = kJSCallerSaved & ~exclusions; MultiPush(list); bytes += NumRegs(list) * kPointerSize; if (fp_mode == kSaveFPRegs) { MultiPushFPU(kCallerSavedFPU); bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; if (fp_mode == kSaveFPRegs) { MultiPopFPU(kCallerSavedFPU); bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; } RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = kJSCallerSaved & ~exclusions; MultiPop(list); bytes += NumRegs(list) * kPointerSize; return bytes; } void TurboAssembler::LoadRoot(Register destination, RootIndex index) { Ld(destination, MemOperand(s6, RootRegisterOffset(index))); } void TurboAssembler::LoadRoot(Register destination, RootIndex index, Condition cond, Register src1, const Operand& src2) { Branch(2, NegateCondition(cond), src1, src2); Ld(destination, MemOperand(s6, RootRegisterOffset(index))); } void TurboAssembler::PushCommonFrame(Register marker_reg) { if (marker_reg.is_valid()) { Push(ra, fp, marker_reg); Daddu(fp, sp, Operand(kPointerSize)); } else { Push(ra, fp); mov(fp, sp); } } void TurboAssembler::PushStandardFrame(Register function_reg) { int offset = -StandardFrameConstants::kContextOffset; if (function_reg.is_valid()) { Push(ra, fp, cp, function_reg); offset += kPointerSize; } else { Push(ra, fp, cp); } Daddu(fp, sp, Operand(offset)); } // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK_GE(num_unsaved, 0); if (num_unsaved > 0) { Dsubu(sp, sp, Operand(num_unsaved * kPointerSize)); } MultiPush(kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; MultiPop(kSafepointSavedRegisters); if (num_unsaved > 0) { Daddu(sp, sp, Operand(num_unsaved * kPointerSize)); } } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. return kSafepointRegisterStackIndexMap[reg_code]; } // Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved) // The register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWriteField(Register object, int offset, Register value, Register dst, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { DCHECK(!AreAliased(value, dst, t8, object)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); Daddu(dst, object, Operand(offset - kHeapObjectTag)); if (emit_debug_code()) { BlockTrampolinePoolScope block_trampoline_pool(this); Label ok; And(t8, dst, Operand(kPointerSize - 1)); Branch(&ok, eq, t8, Operand(zero_reg)); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, ra_status, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(value, Operand(bit_cast(kZapValue + 4))); li(dst, Operand(bit_cast(kZapValue + 8))); } } void TurboAssembler::SaveRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); RegList regs = 0; for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs |= Register::from_code(i).bit(); } } MultiPush(regs); } void TurboAssembler::RestoreRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); RegList regs = 0; for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs |= Register::from_code(i).bit(); } } MultiPop(regs); } void TurboAssembler::CallRecordWriteStub( Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, // i.e. always emit remember set and save FP registers in RecordWriteStub. If // large performance regression is observed, we should use these values to // avoid unnecessary work. Callable const callable = Builtins::CallableFor(isolate(), Builtins::kRecordWrite); RegList registers = callable.descriptor().allocatable_registers(); SaveRegisters(registers); Register object_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kObject)); Register slot_parameter( callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kRememberedSet)); Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kFPMode)); Push(object); Push(address); Pop(slot_parameter); Pop(object_parameter); Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); Call(callable.code(), RelocInfo::CODE_TARGET); RestoreRegisters(registers); } // Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved) // The register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite(Register object, Register address, Register value, RAStatus ra_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { DCHECK(!AreAliased(object, address, value, t8)); DCHECK(!AreAliased(object, address, value, t9)); if (emit_debug_code()) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Ld(scratch, MemOperand(address)); Assert(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite, scratch, Operand(value)); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { DCHECK_EQ(0, kSmiTag); JumpIfSmi(value, &done); } CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (ra_status == kRAHasNotBeenSaved) { push(ra); } CallRecordWriteStub(object, address, remembered_set_action, fp_mode); if (ra_status == kRAHasNotBeenSaved) { pop(ra); } bind(&done); { // Count number of write barriers in generated code. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, scratch, value); } // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { li(address, Operand(bit_cast(kZapValue + 12))); li(value, Operand(bit_cast(kZapValue + 16))); } } // --------------------------------------------------------------------------- // Instruction macros. void TurboAssembler::Addu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { addu(rd, rs, rt.rm()); } else { if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) { addiu(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); addu(rd, rs, scratch); } } } void TurboAssembler::Daddu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { daddu(rd, rs, rt.rm()); } else { if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) { daddiu(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); daddu(rd, rs, scratch); } } } void TurboAssembler::Subu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { subu(rd, rs, rt.rm()); } else { DCHECK(is_int32(rt.immediate())); if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) { addiu(rd, rs, static_cast( -rt.immediate())); // No subiu instr, use addiu(x, y, -imm). } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); if (-rt.immediate() >> 16 == 0 && !MustUseReg(rt.rmode())) { // Use load -imm and addu when loading -imm generates one instruction. li(scratch, -rt.immediate()); addu(rd, rs, scratch); } else { // li handles the relocation. li(scratch, rt); subu(rd, rs, scratch); } } } } void TurboAssembler::Dsubu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { dsubu(rd, rs, rt.rm()); } else if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) { daddiu(rd, rs, static_cast( -rt.immediate())); // No dsubiu instr, use daddiu(x, y, -imm). } else { DCHECK(rs != at); int li_count = InstrCountForLi64Bit(rt.immediate()); int li_neg_count = InstrCountForLi64Bit(-rt.immediate()); if (li_neg_count < li_count && !MustUseReg(rt.rmode())) { // Use load -imm and daddu when loading -imm generates one instruction. DCHECK(rt.immediate() != std::numeric_limits::min()); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(-rt.immediate())); Daddu(rd, rs, scratch); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rt); dsubu(rd, rs, scratch); } } } void TurboAssembler::Mul(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { mul(rd, rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); mul(rd, rs, scratch); } } void TurboAssembler::Mulh(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { mult(rs, rt.rm()); mfhi(rd); } else { muh(rd, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { mult(rs, scratch); mfhi(rd); } else { muh(rd, rs, scratch); } } } void TurboAssembler::Mulhu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { multu(rs, rt.rm()); mfhi(rd); } else { muhu(rd, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { multu(rs, scratch); mfhi(rd); } else { muhu(rd, rs, scratch); } } } void TurboAssembler::Dmul(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant == kMips64r6) { dmul(rd, rs, rt.rm()); } else { dmult(rs, rt.rm()); mflo(rd); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant == kMips64r6) { dmul(rd, rs, scratch); } else { dmult(rs, scratch); mflo(rd); } } } void TurboAssembler::Dmulh(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant == kMips64r6) { dmuh(rd, rs, rt.rm()); } else { dmult(rs, rt.rm()); mfhi(rd); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant == kMips64r6) { dmuh(rd, rs, scratch); } else { dmult(rs, scratch); mfhi(rd); } } } void TurboAssembler::Mult(Register rs, const Operand& rt) { if (rt.is_reg()) { mult(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); mult(rs, scratch); } } void TurboAssembler::Dmult(Register rs, const Operand& rt) { if (rt.is_reg()) { dmult(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); dmult(rs, scratch); } } void TurboAssembler::Multu(Register rs, const Operand& rt) { if (rt.is_reg()) { multu(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); multu(rs, scratch); } } void TurboAssembler::Dmultu(Register rs, const Operand& rt) { if (rt.is_reg()) { dmultu(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); dmultu(rs, scratch); } } void TurboAssembler::Div(Register rs, const Operand& rt) { if (rt.is_reg()) { div(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); div(rs, scratch); } } void TurboAssembler::Div(Register res, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { div(rs, rt.rm()); mflo(res); } else { div(res, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { div(rs, scratch); mflo(res); } else { div(res, rs, scratch); } } } void TurboAssembler::Mod(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { div(rs, rt.rm()); mfhi(rd); } else { mod(rd, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { div(rs, scratch); mfhi(rd); } else { mod(rd, rs, scratch); } } } void TurboAssembler::Modu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { divu(rs, rt.rm()); mfhi(rd); } else { modu(rd, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { divu(rs, scratch); mfhi(rd); } else { modu(rd, rs, scratch); } } } void TurboAssembler::Ddiv(Register rs, const Operand& rt) { if (rt.is_reg()) { ddiv(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); ddiv(rs, scratch); } } void TurboAssembler::Ddiv(Register rd, Register rs, const Operand& rt) { if (kArchVariant != kMips64r6) { if (rt.is_reg()) { ddiv(rs, rt.rm()); mflo(rd); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); ddiv(rs, scratch); mflo(rd); } } else { if (rt.is_reg()) { ddiv(rd, rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); ddiv(rd, rs, scratch); } } } void TurboAssembler::Divu(Register rs, const Operand& rt) { if (rt.is_reg()) { divu(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); divu(rs, scratch); } } void TurboAssembler::Divu(Register res, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { divu(rs, rt.rm()); mflo(res); } else { divu(res, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { divu(rs, scratch); mflo(res); } else { divu(res, rs, scratch); } } } void TurboAssembler::Ddivu(Register rs, const Operand& rt) { if (rt.is_reg()) { ddivu(rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); ddivu(rs, scratch); } } void TurboAssembler::Ddivu(Register res, Register rs, const Operand& rt) { if (rt.is_reg()) { if (kArchVariant != kMips64r6) { ddivu(rs, rt.rm()); mflo(res); } else { ddivu(res, rs, rt.rm()); } } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); if (kArchVariant != kMips64r6) { ddivu(rs, scratch); mflo(res); } else { ddivu(res, rs, scratch); } } } void TurboAssembler::Dmod(Register rd, Register rs, const Operand& rt) { if (kArchVariant != kMips64r6) { if (rt.is_reg()) { ddiv(rs, rt.rm()); mfhi(rd); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); ddiv(rs, scratch); mfhi(rd); } } else { if (rt.is_reg()) { dmod(rd, rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); dmod(rd, rs, scratch); } } } void TurboAssembler::Dmodu(Register rd, Register rs, const Operand& rt) { if (kArchVariant != kMips64r6) { if (rt.is_reg()) { ddivu(rs, rt.rm()); mfhi(rd); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); ddivu(rs, scratch); mfhi(rd); } } else { if (rt.is_reg()) { dmodu(rd, rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); dmodu(rd, rs, scratch); } } } void TurboAssembler::And(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { and_(rd, rs, rt.rm()); } else { if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) { andi(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); and_(rd, rs, scratch); } } } void TurboAssembler::Or(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { or_(rd, rs, rt.rm()); } else { if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) { ori(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); or_(rd, rs, scratch); } } } void TurboAssembler::Xor(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { xor_(rd, rs, rt.rm()); } else { if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) { xori(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); xor_(rd, rs, scratch); } } } void TurboAssembler::Nor(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { nor(rd, rs, rt.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rs != scratch); li(scratch, rt); nor(rd, rs, scratch); } } void TurboAssembler::Neg(Register rs, const Operand& rt) { dsubu(rs, zero_reg, rt.rm()); } void TurboAssembler::Slt(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { slt(rd, rs, rt.rm()); } else { if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) { slti(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; DCHECK(rs != scratch); li(scratch, rt); slt(rd, rs, scratch); } } } void TurboAssembler::Sltu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { sltu(rd, rs, rt.rm()); } else { const uint64_t int16_min = std::numeric_limits::min(); if (is_uint15(rt.immediate()) && !MustUseReg(rt.rmode())) { // Imm range is: [0, 32767]. sltiu(rd, rs, static_cast(rt.immediate())); } else if (is_uint15(rt.immediate() - int16_min) && !MustUseReg(rt.rmode())) { // Imm range is: [max_unsigned-32767,max_unsigned]. sltiu(rd, rs, static_cast(rt.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; DCHECK(rs != scratch); li(scratch, rt); sltu(rd, rs, scratch); } } } void TurboAssembler::Sle(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { slt(rd, rt.rm(), rs); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rs != scratch); li(scratch, rt); slt(rd, scratch, rs); } xori(rd, rd, 1); } void TurboAssembler::Sleu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { sltu(rd, rt.rm(), rs); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rs != scratch); li(scratch, rt); sltu(rd, scratch, rs); } xori(rd, rd, 1); } void TurboAssembler::Sge(Register rd, Register rs, const Operand& rt) { Slt(rd, rs, rt); xori(rd, rd, 1); } void TurboAssembler::Sgeu(Register rd, Register rs, const Operand& rt) { Sltu(rd, rs, rt); xori(rd, rd, 1); } void TurboAssembler::Sgt(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { slt(rd, rt.rm(), rs); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rs != scratch); li(scratch, rt); slt(rd, scratch, rs); } } void TurboAssembler::Sgtu(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { sltu(rd, rt.rm(), rs); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rs != scratch); li(scratch, rt); sltu(rd, scratch, rs); } } void TurboAssembler::Ror(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { rotrv(rd, rs, rt.rm()); } else { int64_t ror_value = rt.immediate() % 32; if (ror_value < 0) { ror_value += 32; } rotr(rd, rs, ror_value); } } void TurboAssembler::Dror(Register rd, Register rs, const Operand& rt) { if (rt.is_reg()) { drotrv(rd, rs, rt.rm()); } else { int64_t dror_value = rt.immediate() % 64; if (dror_value < 0) dror_value += 64; if (dror_value <= 31) { drotr(rd, rs, dror_value); } else { drotr32(rd, rs, dror_value - 32); } } } void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) { pref(hint, rs); } void TurboAssembler::Lsa(Register rd, Register rt, Register rs, uint8_t sa, Register scratch) { DCHECK(sa >= 1 && sa <= 31); if (kArchVariant == kMips64r6 && sa <= 4) { lsa(rd, rt, rs, sa - 1); } else { Register tmp = rd == rt ? scratch : rd; DCHECK(tmp != rt); sll(tmp, rs, sa); Addu(rd, rt, tmp); } } void TurboAssembler::Dlsa(Register rd, Register rt, Register rs, uint8_t sa, Register scratch) { DCHECK(sa >= 1 && sa <= 31); if (kArchVariant == kMips64r6 && sa <= 4) { dlsa(rd, rt, rs, sa - 1); } else { Register tmp = rd == rt ? scratch : rd; DCHECK(tmp != rt); dsll(tmp, rs, sa); Daddu(rd, rt, tmp); } } void TurboAssembler::Bovc(Register rs, Register rt, Label* L) { if (is_trampoline_emitted()) { Label skip; bnvc(rs, rt, &skip); BranchLong(L, PROTECT); bind(&skip); } else { bovc(rs, rt, L); } } void TurboAssembler::Bnvc(Register rs, Register rt, Label* L) { if (is_trampoline_emitted()) { Label skip; bovc(rs, rt, &skip); BranchLong(L, PROTECT); bind(&skip); } else { bnvc(rs, rt, L); } } // ------------Pseudo-instructions------------- // Change endianness void TurboAssembler::ByteSwapSigned(Register dest, Register src, int operand_size) { DCHECK(operand_size == 2 || operand_size == 4 || operand_size == 8); DCHECK(kArchVariant == kMips64r6 || kArchVariant == kMips64r2); if (operand_size == 2) { wsbh(dest, src); seh(dest, dest); } else if (operand_size == 4) { wsbh(dest, src); rotr(dest, dest, 16); } else { dsbh(dest, src); dshd(dest, dest); } } void TurboAssembler::ByteSwapUnsigned(Register dest, Register src, int operand_size) { DCHECK(operand_size == 2 || operand_size == 4); if (operand_size == 2) { wsbh(dest, src); andi(dest, dest, 0xFFFF); } else { wsbh(dest, src); rotr(dest, dest, 16); dinsu_(dest, zero_reg, 32, 32); } } void TurboAssembler::Ulw(Register rd, const MemOperand& rs) { DCHECK(rd != at); DCHECK(rs.rm() != at); if (kArchVariant == kMips64r6) { Lw(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); DCHECK(kMipsLwrOffset <= 3 && kMipsLwlOffset <= 3); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 3 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 3); if (rd != source.rm()) { lwr(rd, MemOperand(source.rm(), source.offset() + kMipsLwrOffset)); lwl(rd, MemOperand(source.rm(), source.offset() + kMipsLwlOffset)); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); lwr(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLwrOffset)); lwl(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLwlOffset)); mov(rd, scratch); } } } void TurboAssembler::Ulwu(Register rd, const MemOperand& rs) { if (kArchVariant == kMips64r6) { Lwu(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); Ulw(rd, rs); Dext(rd, rd, 0, 32); } } void TurboAssembler::Usw(Register rd, const MemOperand& rs) { DCHECK(rd != at); DCHECK(rs.rm() != at); DCHECK(rd != rs.rm()); if (kArchVariant == kMips64r6) { Sw(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); DCHECK(kMipsSwrOffset <= 3 && kMipsSwlOffset <= 3); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 3 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 3); swr(rd, MemOperand(source.rm(), source.offset() + kMipsSwrOffset)); swl(rd, MemOperand(source.rm(), source.offset() + kMipsSwlOffset)); } } void TurboAssembler::Ulh(Register rd, const MemOperand& rs) { DCHECK(rd != at); DCHECK(rs.rm() != at); if (kArchVariant == kMips64r6) { Lh(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 1 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); if (source.rm() == scratch) { #if defined(V8_TARGET_LITTLE_ENDIAN) Lb(rd, MemOperand(source.rm(), source.offset() + 1)); Lbu(scratch, source); #elif defined(V8_TARGET_BIG_ENDIAN) Lb(rd, source); Lbu(scratch, MemOperand(source.rm(), source.offset() + 1)); #endif } else { #if defined(V8_TARGET_LITTLE_ENDIAN) Lbu(scratch, source); Lb(rd, MemOperand(source.rm(), source.offset() + 1)); #elif defined(V8_TARGET_BIG_ENDIAN) Lbu(scratch, MemOperand(source.rm(), source.offset() + 1)); Lb(rd, source); #endif } dsll(rd, rd, 8); or_(rd, rd, scratch); } } void TurboAssembler::Ulhu(Register rd, const MemOperand& rs) { DCHECK(rd != at); DCHECK(rs.rm() != at); if (kArchVariant == kMips64r6) { Lhu(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 1 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); if (source.rm() == scratch) { #if defined(V8_TARGET_LITTLE_ENDIAN) Lbu(rd, MemOperand(source.rm(), source.offset() + 1)); Lbu(scratch, source); #elif defined(V8_TARGET_BIG_ENDIAN) Lbu(rd, source); Lbu(scratch, MemOperand(source.rm(), source.offset() + 1)); #endif } else { #if defined(V8_TARGET_LITTLE_ENDIAN) Lbu(scratch, source); Lbu(rd, MemOperand(source.rm(), source.offset() + 1)); #elif defined(V8_TARGET_BIG_ENDIAN) Lbu(scratch, MemOperand(source.rm(), source.offset() + 1)); Lbu(rd, source); #endif } dsll(rd, rd, 8); or_(rd, rd, scratch); } } void TurboAssembler::Ush(Register rd, const MemOperand& rs, Register scratch) { DCHECK(rd != at); DCHECK(rs.rm() != at); DCHECK(rs.rm() != scratch); DCHECK(scratch != at); if (kArchVariant == kMips64r6) { Sh(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 1 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1); if (scratch != rd) { mov(scratch, rd); } #if defined(V8_TARGET_LITTLE_ENDIAN) Sb(scratch, source); srl(scratch, scratch, 8); Sb(scratch, MemOperand(source.rm(), source.offset() + 1)); #elif defined(V8_TARGET_BIG_ENDIAN) Sb(scratch, MemOperand(source.rm(), source.offset() + 1)); srl(scratch, scratch, 8); Sb(scratch, source); #endif } } void TurboAssembler::Uld(Register rd, const MemOperand& rs) { DCHECK(rd != at); DCHECK(rs.rm() != at); if (kArchVariant == kMips64r6) { Ld(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); DCHECK(kMipsLdrOffset <= 7 && kMipsLdlOffset <= 7); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 7 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 7); if (rd != source.rm()) { ldr(rd, MemOperand(source.rm(), source.offset() + kMipsLdrOffset)); ldl(rd, MemOperand(source.rm(), source.offset() + kMipsLdlOffset)); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); ldr(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLdrOffset)); ldl(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLdlOffset)); mov(rd, scratch); } } } // Load consequent 32-bit word pair in 64-bit reg. and put first word in low // bits, // second word in high bits. void MacroAssembler::LoadWordPair(Register rd, const MemOperand& rs, Register scratch) { Lwu(rd, rs); Lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2)); dsll32(scratch, scratch, 0); Daddu(rd, rd, scratch); } void TurboAssembler::Usd(Register rd, const MemOperand& rs) { DCHECK(rd != at); DCHECK(rs.rm() != at); if (kArchVariant == kMips64r6) { Sd(rd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); DCHECK(kMipsSdrOffset <= 7 && kMipsSdlOffset <= 7); MemOperand source = rs; // Adjust offset for two accesses and check if offset + 7 fits into int16_t. AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 7); sdr(rd, MemOperand(source.rm(), source.offset() + kMipsSdrOffset)); sdl(rd, MemOperand(source.rm(), source.offset() + kMipsSdlOffset)); } } // Do 64-bit store as two consequent 32-bit stores to unaligned address. void MacroAssembler::StoreWordPair(Register rd, const MemOperand& rs, Register scratch) { Sw(rd, rs); dsrl32(scratch, rd, 0); Sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2)); } void TurboAssembler::Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch) { if (kArchVariant == kMips64r6) { Lwc1(fd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); Ulw(scratch, rs); mtc1(scratch, fd); } } void TurboAssembler::Uswc1(FPURegister fd, const MemOperand& rs, Register scratch) { if (kArchVariant == kMips64r6) { Swc1(fd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); mfc1(scratch, fd); Usw(scratch, rs); } } void TurboAssembler::Uldc1(FPURegister fd, const MemOperand& rs, Register scratch) { DCHECK(scratch != at); if (kArchVariant == kMips64r6) { Ldc1(fd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); Uld(scratch, rs); dmtc1(scratch, fd); } } void TurboAssembler::Usdc1(FPURegister fd, const MemOperand& rs, Register scratch) { DCHECK(scratch != at); if (kArchVariant == kMips64r6) { Sdc1(fd, rs); } else { DCHECK_EQ(kArchVariant, kMips64r2); dmfc1(scratch, fd); Usd(scratch, rs); } } void TurboAssembler::Lb(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); lb(rd, source); } void TurboAssembler::Lbu(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); lbu(rd, source); } void TurboAssembler::Sb(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); sb(rd, source); } void TurboAssembler::Lh(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); lh(rd, source); } void TurboAssembler::Lhu(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); lhu(rd, source); } void TurboAssembler::Sh(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); sh(rd, source); } void TurboAssembler::Lw(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); lw(rd, source); } void TurboAssembler::Lwu(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); lwu(rd, source); } void TurboAssembler::Sw(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); sw(rd, source); } void TurboAssembler::Ld(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); ld(rd, source); } void TurboAssembler::Sd(Register rd, const MemOperand& rs) { MemOperand source = rs; AdjustBaseAndOffset(source); sd(rd, source); } void TurboAssembler::Lwc1(FPURegister fd, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(tmp); lwc1(fd, tmp); } void TurboAssembler::Swc1(FPURegister fs, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(tmp); swc1(fs, tmp); } void TurboAssembler::Ldc1(FPURegister fd, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(tmp); ldc1(fd, tmp); } void TurboAssembler::Sdc1(FPURegister fs, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(tmp); sdc1(fs, tmp); } void TurboAssembler::Ll(Register rd, const MemOperand& rs) { bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset()) : is_int16(rs.offset()); if (is_one_instruction) { ll(rd, rs); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rs.offset()); daddu(scratch, scratch, rs.rm()); ll(rd, MemOperand(scratch, 0)); } } void TurboAssembler::Lld(Register rd, const MemOperand& rs) { bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset()) : is_int16(rs.offset()); if (is_one_instruction) { lld(rd, rs); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rs.offset()); daddu(scratch, scratch, rs.rm()); lld(rd, MemOperand(scratch, 0)); } } void TurboAssembler::Sc(Register rd, const MemOperand& rs) { bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset()) : is_int16(rs.offset()); if (is_one_instruction) { sc(rd, rs); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rs.offset()); daddu(scratch, scratch, rs.rm()); sc(rd, MemOperand(scratch, 0)); } } void TurboAssembler::Scd(Register rd, const MemOperand& rs) { bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset()) : is_int16(rs.offset()); if (is_one_instruction) { scd(rd, rs); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rs.offset()); daddu(scratch, scratch, rs.rm()); scd(rd, MemOperand(scratch, 0)); } } void TurboAssembler::li(Register dst, Handle value, LiFlags mode) { if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code) { IndirectLoadConstant(dst, value); return; } } li(dst, Operand(value), mode); } void TurboAssembler::li(Register dst, ExternalReference value, LiFlags mode) { if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code) { IndirectLoadExternalReference(dst, value); return; } } li(dst, Operand(value), mode); } void TurboAssembler::li(Register dst, const StringConstantBase* string, LiFlags mode) { li(dst, Operand::EmbeddedStringConstant(string), mode); } static inline int InstrCountForLiLower32Bit(int64_t value) { if (!is_int16(static_cast(value)) && (value & kUpper16MaskOf64) && (value & kImm16Mask)) { return 2; } else { return 1; } } void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) { if (is_int16(static_cast(j.immediate()))) { daddiu(rd, zero_reg, (j.immediate() & kImm16Mask)); } else if (!(j.immediate() & kUpper16MaskOf64)) { ori(rd, zero_reg, j.immediate() & kImm16Mask); } else { lui(rd, j.immediate() >> kLuiShift & kImm16Mask); if (j.immediate() & kImm16Mask) { ori(rd, rd, j.immediate() & kImm16Mask); } } } static inline int InstrCountForLoadReplicatedConst32(int64_t value) { uint32_t x = static_cast(value); uint32_t y = static_cast(value >> 32); if (x == y) { return (is_uint16(x) || is_int16(x) || (x & kImm16Mask) == 0) ? 2 : 3; } return INT_MAX; } int TurboAssembler::InstrCountForLi64Bit(int64_t value) { if (is_int32(value)) { return InstrCountForLiLower32Bit(value); } else { int bit31 = value >> 31 & 0x1; if ((value & kUpper16MaskOf64) == 0 && is_int16(value >> 32) && kArchVariant == kMips64r6) { return 2; } else if ((value & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 && kArchVariant == kMips64r6) { return 2; } else if ((value & kImm16Mask) == 0 && is_int16((value >> 32) + bit31) && kArchVariant == kMips64r6) { return 2; } else if ((value & kImm16Mask) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) && kArchVariant == kMips64r6) { return 2; } else if (is_int16(static_cast(value)) && is_int16((value >> 32) + bit31) && kArchVariant == kMips64r6) { return 2; } else if (is_int16(static_cast(value)) && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) && kArchVariant == kMips64r6) { return 2; } else if (base::bits::IsPowerOfTwo(value + 1) || value == std::numeric_limits::max()) { return 2; } else { int shift_cnt = base::bits::CountTrailingZeros64(value); int rep32_count = InstrCountForLoadReplicatedConst32(value); int64_t tmp = value >> shift_cnt; if (is_uint16(tmp)) { return 2; } else if (is_int16(tmp)) { return 2; } else if (rep32_count < 3) { return 2; } else if (is_int32(tmp)) { return 3; } else { shift_cnt = 16 + base::bits::CountTrailingZeros64(value >> 16); tmp = value >> shift_cnt; if (is_uint16(tmp)) { return 3; } else if (is_int16(tmp)) { return 3; } else if (rep32_count < 4) { return 3; } else if (kArchVariant == kMips64r6) { int64_t imm = value; int count = InstrCountForLiLower32Bit(imm); imm = (imm >> 32) + bit31; if (imm & kImm16Mask) { count++; } imm = (imm >> 16) + (imm >> 15 & 0x1); if (imm & kImm16Mask) { count++; } return count; } else { if (is_int48(value)) { int64_t k = value >> 16; int count = InstrCountForLiLower32Bit(k) + 1; if (value & kImm16Mask) { count++; } return count; } else { int64_t k = value >> 32; int count = InstrCountForLiLower32Bit(k); if ((value >> 16) & kImm16Mask) { count += 3; if (value & kImm16Mask) { count++; } } else { count++; if (value & kImm16Mask) { count++; } } return count; } } } } } UNREACHABLE(); return INT_MAX; } // All changes to if...else conditions here must be added to // InstrCountForLi64Bit as well. void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) { DCHECK(!j.is_reg()); DCHECK(!MustUseReg(j.rmode())); DCHECK(mode == OPTIMIZE_SIZE); BlockTrampolinePoolScope block_trampoline_pool(this); // Normal load of an immediate value which does not need Relocation Info. if (is_int32(j.immediate())) { LiLower32BitHelper(rd, j); } else { int bit31 = j.immediate() >> 31 & 0x1; if ((j.immediate() & kUpper16MaskOf64) == 0 && is_int16(j.immediate() >> 32) && kArchVariant == kMips64r6) { // 64-bit value which consists of an unsigned 16-bit value in its // least significant 32-bits, and a signed 16-bit value in its // most significant 32-bits. ori(rd, zero_reg, j.immediate() & kImm16Mask); dahi(rd, j.immediate() >> 32 & kImm16Mask); } else if ((j.immediate() & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 && kArchVariant == kMips64r6) { // 64-bit value which consists of an unsigned 16-bit value in its // least significant 48-bits, and a signed 16-bit value in its // most significant 16-bits. ori(rd, zero_reg, j.immediate() & kImm16Mask); dati(rd, j.immediate() >> 48 & kImm16Mask); } else if ((j.immediate() & kImm16Mask) == 0 && is_int16((j.immediate() >> 32) + bit31) && kArchVariant == kMips64r6) { // 16 LSBs (Least Significant Bits) all set to zero. // 48 MSBs (Most Significant Bits) hold a signed 32-bit value. lui(rd, j.immediate() >> kLuiShift & kImm16Mask); dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask); } else if ((j.immediate() & kImm16Mask) == 0 && ((j.immediate() >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) && kArchVariant == kMips64r6) { // 16 LSBs all set to zero. // 48 MSBs hold a signed value which can't be represented by signed // 32-bit number, and the middle 16 bits are all zero, or all one. lui(rd, j.immediate() >> kLuiShift & kImm16Mask); dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask); } else if (is_int16(static_cast(j.immediate())) && is_int16((j.immediate() >> 32) + bit31) && kArchVariant == kMips64r6) { // 32 LSBs contain a signed 16-bit number. // 32 MSBs contain a signed 16-bit number. daddiu(rd, zero_reg, j.immediate() & kImm16Mask); dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask); } else if (is_int16(static_cast(j.immediate())) && ((j.immediate() >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) && kArchVariant == kMips64r6) { // 48 LSBs contain an unsigned 16-bit number. // 16 MSBs contain a signed 16-bit number. daddiu(rd, zero_reg, j.immediate() & kImm16Mask); dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask); } else if (base::bits::IsPowerOfTwo(j.immediate() + 1) || j.immediate() == std::numeric_limits::max()) { // 64-bit values which have their "n" LSBs set to one, and their // "64-n" MSBs set to zero. "n" must meet the restrictions 0 < n < 64. int shift_cnt = 64 - base::bits::CountTrailingZeros64(j.immediate() + 1); daddiu(rd, zero_reg, -1); if (shift_cnt < 32) { dsrl(rd, rd, shift_cnt); } else { dsrl32(rd, rd, shift_cnt & 31); } } else { int shift_cnt = base::bits::CountTrailingZeros64(j.immediate()); int rep32_count = InstrCountForLoadReplicatedConst32(j.immediate()); int64_t tmp = j.immediate() >> shift_cnt; if (is_uint16(tmp)) { // Value can be computed by loading a 16-bit unsigned value, and // then shifting left. ori(rd, zero_reg, tmp & kImm16Mask); if (shift_cnt < 32) { dsll(rd, rd, shift_cnt); } else { dsll32(rd, rd, shift_cnt & 31); } } else if (is_int16(tmp)) { // Value can be computed by loading a 16-bit signed value, and // then shifting left. daddiu(rd, zero_reg, static_cast(tmp)); if (shift_cnt < 32) { dsll(rd, rd, shift_cnt); } else { dsll32(rd, rd, shift_cnt & 31); } } else if (rep32_count < 3) { // Value being loaded has 32 LSBs equal to the 32 MSBs, and the // value loaded into the 32 LSBs can be loaded with a single // MIPS instruction. LiLower32BitHelper(rd, j); Dins(rd, rd, 32, 32); } else if (is_int32(tmp)) { // Loads with 3 instructions. // Value can be computed by loading a 32-bit signed value, and // then shifting left. lui(rd, tmp >> kLuiShift & kImm16Mask); ori(rd, rd, tmp & kImm16Mask); if (shift_cnt < 32) { dsll(rd, rd, shift_cnt); } else { dsll32(rd, rd, shift_cnt & 31); } } else { shift_cnt = 16 + base::bits::CountTrailingZeros64(j.immediate() >> 16); tmp = j.immediate() >> shift_cnt; if (is_uint16(tmp)) { // Value can be computed by loading a 16-bit unsigned value, // shifting left, and "or"ing in another 16-bit unsigned value. ori(rd, zero_reg, tmp & kImm16Mask); if (shift_cnt < 32) { dsll(rd, rd, shift_cnt); } else { dsll32(rd, rd, shift_cnt & 31); } ori(rd, rd, j.immediate() & kImm16Mask); } else if (is_int16(tmp)) { // Value can be computed by loading a 16-bit signed value, // shifting left, and "or"ing in a 16-bit unsigned value. daddiu(rd, zero_reg, static_cast(tmp)); if (shift_cnt < 32) { dsll(rd, rd, shift_cnt); } else { dsll32(rd, rd, shift_cnt & 31); } ori(rd, rd, j.immediate() & kImm16Mask); } else if (rep32_count < 4) { // Value being loaded has 32 LSBs equal to the 32 MSBs, and the // value in the 32 LSBs requires 2 MIPS instructions to load. LiLower32BitHelper(rd, j); Dins(rd, rd, 32, 32); } else if (kArchVariant == kMips64r6) { // Loads with 3-4 instructions. // Catch-all case to get any other 64-bit values which aren't // handled by special cases above. int64_t imm = j.immediate(); LiLower32BitHelper(rd, j); imm = (imm >> 32) + bit31; if (imm & kImm16Mask) { dahi(rd, imm & kImm16Mask); } imm = (imm >> 16) + (imm >> 15 & 0x1); if (imm & kImm16Mask) { dati(rd, imm & kImm16Mask); } } else { if (is_int48(j.immediate())) { Operand k = Operand(j.immediate() >> 16); LiLower32BitHelper(rd, k); dsll(rd, rd, 16); if (j.immediate() & kImm16Mask) { ori(rd, rd, j.immediate() & kImm16Mask); } } else { Operand k = Operand(j.immediate() >> 32); LiLower32BitHelper(rd, k); if ((j.immediate() >> 16) & kImm16Mask) { dsll(rd, rd, 16); ori(rd, rd, (j.immediate() >> 16) & kImm16Mask); dsll(rd, rd, 16); if (j.immediate() & kImm16Mask) { ori(rd, rd, j.immediate() & kImm16Mask); } } else { dsll32(rd, rd, 0); if (j.immediate() & kImm16Mask) { ori(rd, rd, j.immediate() & kImm16Mask); } } } } } } } } void TurboAssembler::li(Register rd, Operand j, LiFlags mode) { DCHECK(!j.is_reg()); BlockTrampolinePoolScope block_trampoline_pool(this); if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) { int li_count = InstrCountForLi64Bit(j.immediate()); int li_neg_count = InstrCountForLi64Bit(-j.immediate()); int li_not_count = InstrCountForLi64Bit(~j.immediate()); // Loading -MIN_INT64 could cause problems, but loading MIN_INT64 takes only // two instructions so no need to check for this. if (li_neg_count <= li_not_count && li_neg_count < li_count - 1) { DCHECK(j.immediate() != std::numeric_limits::min()); li_optimized(rd, Operand(-j.immediate()), mode); Dsubu(rd, zero_reg, rd); } else if (li_neg_count > li_not_count && li_not_count < li_count - 1) { DCHECK(j.immediate() != std::numeric_limits::min()); li_optimized(rd, Operand(~j.immediate()), mode); nor(rd, rd, rd); } else { li_optimized(rd, j, mode); } } else if (MustUseReg(j.rmode())) { int64_t immediate; if (j.IsHeapObjectRequest()) { RequestHeapObject(j.heap_object_request()); immediate = 0; } else { immediate = j.immediate(); } RecordRelocInfo(j.rmode(), immediate); lui(rd, (immediate >> 32) & kImm16Mask); ori(rd, rd, (immediate >> 16) & kImm16Mask); dsll(rd, rd, 16); ori(rd, rd, immediate & kImm16Mask); } else if (mode == ADDRESS_LOAD) { // We always need the same number of instructions as we may need to patch // this code to load another value which may need all 4 instructions. lui(rd, (j.immediate() >> 32) & kImm16Mask); ori(rd, rd, (j.immediate() >> 16) & kImm16Mask); dsll(rd, rd, 16); ori(rd, rd, j.immediate() & kImm16Mask); } else { // mode == CONSTANT_SIZE - always emit the same instruction // sequence. if (kArchVariant == kMips64r6) { int64_t imm = j.immediate(); lui(rd, imm >> kLuiShift & kImm16Mask); ori(rd, rd, (imm & kImm16Mask)); imm = (imm >> 32) + ((imm >> 31) & 0x1); dahi(rd, imm & kImm16Mask & kImm16Mask); imm = (imm >> 16) + ((imm >> 15) & 0x1); dati(rd, imm & kImm16Mask & kImm16Mask); } else { lui(rd, (j.immediate() >> 48) & kImm16Mask); ori(rd, rd, (j.immediate() >> 32) & kImm16Mask); dsll(rd, rd, 16); ori(rd, rd, (j.immediate() >> 16) & kImm16Mask); dsll(rd, rd, 16); ori(rd, rd, j.immediate() & kImm16Mask); } } } void TurboAssembler::MultiPush(RegList regs) { int16_t num_to_push = base::bits::CountPopulation(regs); int16_t stack_offset = num_to_push * kPointerSize; Dsubu(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; Sd(ToRegister(i), MemOperand(sp, stack_offset)); } } } void TurboAssembler::MultiPop(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { Ld(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } daddiu(sp, sp, stack_offset); } void TurboAssembler::MultiPushFPU(RegList regs) { int16_t num_to_push = base::bits::CountPopulation(regs); int16_t stack_offset = num_to_push * kDoubleSize; Dsubu(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kDoubleSize; Sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); } } } void TurboAssembler::MultiPopFPU(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { Ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); stack_offset += kDoubleSize; } } daddiu(sp, sp, stack_offset); } void TurboAssembler::Ext(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK_LT(pos, 32); DCHECK_LT(pos + size, 33); ext_(rt, rs, pos, size); } void TurboAssembler::Dext(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size && pos + size <= 64); if (size > 32) { dextm_(rt, rs, pos, size); } else if (pos >= 32) { dextu_(rt, rs, pos, size); } else { dext_(rt, rs, pos, size); } } void TurboAssembler::Ins(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK_LT(pos, 32); DCHECK_LE(pos + size, 32); DCHECK_NE(size, 0); ins_(rt, rs, pos, size); } void TurboAssembler::Dins(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size && pos + size <= 64); if (pos + size <= 32) { dins_(rt, rs, pos, size); } else if (pos < 32) { dinsm_(rt, rs, pos, size); } else { dinsu_(rt, rs, pos, size); } } void TurboAssembler::ExtractBits(Register dest, Register source, Register pos, int size, bool sign_extend) { srav(dest, source, pos); Dext(dest, dest, 0, size); if (sign_extend) { switch (size) { case 8: seb(dest, dest); break; case 16: seh(dest, dest); break; case 32: // sign-extend word sll(dest, dest, 0); break; default: UNREACHABLE(); } } } void TurboAssembler::InsertBits(Register dest, Register source, Register pos, int size) { Ror(dest, dest, pos); Dins(dest, source, 0, size); { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Dsubu(scratch, pos, Operand(64)); Neg(scratch, Operand(scratch)); Ror(dest, dest, scratch); } } void TurboAssembler::Neg_s(FPURegister fd, FPURegister fs) { if (kArchVariant == kMips64r6) { // r6 neg_s changes the sign for NaN-like operands as well. neg_s(fd, fs); } else { DCHECK_EQ(kArchVariant, kMips64r2); BlockTrampolinePoolScope block_trampoline_pool(this); Label is_nan, done; Register scratch1 = t8; Register scratch2 = t9; CompareIsNanF32(fs, fs); BranchTrueShortF(&is_nan); Branch(USE_DELAY_SLOT, &done); // For NaN input, neg_s will return the same NaN value, // while the sign has to be changed separately. neg_s(fd, fs); // In delay slot. bind(&is_nan); mfc1(scratch1, fs); li(scratch2, kBinary32SignMask); Xor(scratch1, scratch1, scratch2); mtc1(scratch1, fd); bind(&done); } } void TurboAssembler::Neg_d(FPURegister fd, FPURegister fs) { if (kArchVariant == kMips64r6) { // r6 neg_d changes the sign for NaN-like operands as well. neg_d(fd, fs); } else { DCHECK_EQ(kArchVariant, kMips64r2); BlockTrampolinePoolScope block_trampoline_pool(this); Label is_nan, done; Register scratch1 = t8; Register scratch2 = t9; CompareIsNanF64(fs, fs); BranchTrueShortF(&is_nan); Branch(USE_DELAY_SLOT, &done); // For NaN input, neg_d will return the same NaN value, // while the sign has to be changed separately. neg_d(fd, fs); // In delay slot. bind(&is_nan); dmfc1(scratch1, fs); li(scratch2, Double::kSignMask); Xor(scratch1, scratch1, scratch2); dmtc1(scratch1, fd); bind(&done); } } void TurboAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) { // Move the data from fs to t8. BlockTrampolinePoolScope block_trampoline_pool(this); mfc1(t8, fs); Cvt_d_uw(fd, t8); } void TurboAssembler::Cvt_d_uw(FPURegister fd, Register rs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Convert rs to a FP value in fd. DCHECK(rs != t9); DCHECK(rs != at); // Zero extend int32 in rs. Dext(t9, rs, 0, 32); dmtc1(t9, fd); cvt_d_l(fd, fd); } void TurboAssembler::Cvt_d_ul(FPURegister fd, FPURegister fs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Move the data from fs to t8. dmfc1(t8, fs); Cvt_d_ul(fd, t8); } void TurboAssembler::Cvt_d_ul(FPURegister fd, Register rs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Convert rs to a FP value in fd. DCHECK(rs != t9); DCHECK(rs != at); Label msb_clear, conversion_done; Branch(&msb_clear, ge, rs, Operand(zero_reg)); // Rs >= 2^63 andi(t9, rs, 1); dsrl(rs, rs, 1); or_(t9, t9, rs); dmtc1(t9, fd); cvt_d_l(fd, fd); Branch(USE_DELAY_SLOT, &conversion_done); add_d(fd, fd, fd); // In delay slot. bind(&msb_clear); // Rs < 2^63, we can do simple conversion. dmtc1(rs, fd); cvt_d_l(fd, fd); bind(&conversion_done); } void TurboAssembler::Cvt_s_uw(FPURegister fd, FPURegister fs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Move the data from fs to t8. mfc1(t8, fs); Cvt_s_uw(fd, t8); } void TurboAssembler::Cvt_s_uw(FPURegister fd, Register rs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Convert rs to a FP value in fd. DCHECK(rs != t9); DCHECK(rs != at); // Zero extend int32 in rs. Dext(t9, rs, 0, 32); dmtc1(t9, fd); cvt_s_l(fd, fd); } void TurboAssembler::Cvt_s_ul(FPURegister fd, FPURegister fs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Move the data from fs to t8. dmfc1(t8, fs); Cvt_s_ul(fd, t8); } void TurboAssembler::Cvt_s_ul(FPURegister fd, Register rs) { BlockTrampolinePoolScope block_trampoline_pool(this); // Convert rs to a FP value in fd. DCHECK(rs != t9); DCHECK(rs != at); Label positive, conversion_done; Branch(&positive, ge, rs, Operand(zero_reg)); // Rs >= 2^31. andi(t9, rs, 1); dsrl(rs, rs, 1); or_(t9, t9, rs); dmtc1(t9, fd); cvt_s_l(fd, fd); Branch(USE_DELAY_SLOT, &conversion_done); add_s(fd, fd, fd); // In delay slot. bind(&positive); // Rs < 2^31, we can do simple conversion. dmtc1(rs, fd); cvt_s_l(fd, fd); bind(&conversion_done); } void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) { round_l_d(fd, fs); } void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) { floor_l_d(fd, fs); } void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) { ceil_l_d(fd, fs); } void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) { trunc_l_d(fd, fs); } void MacroAssembler::Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch) { BlockTrampolinePoolScope block_trampoline_pool(this); // Load to GPR. dmfc1(t8, fs); // Reset sign bit. { UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x7FFFFFFFFFFFFFFF); and_(t8, t8, scratch1); } dmtc1(t8, fs); trunc_l_d(fd, fs); } void TurboAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch) { BlockTrampolinePoolScope block_trampoline_pool(this); Trunc_uw_d(t8, fs, scratch); mtc1(t8, fd); } void TurboAssembler::Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch) { BlockTrampolinePoolScope block_trampoline_pool(this); Trunc_uw_s(t8, fs, scratch); mtc1(t8, fd); } void TurboAssembler::Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch, Register result) { BlockTrampolinePoolScope block_trampoline_pool(this); Trunc_ul_d(t8, fs, scratch, result); dmtc1(t8, fd); } void TurboAssembler::Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch, Register result) { BlockTrampolinePoolScope block_trampoline_pool(this); Trunc_ul_s(t8, fs, scratch, result); dmtc1(t8, fd); } void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { trunc_w_d(fd, fs); } void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { round_w_d(fd, fs); } void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { floor_w_d(fd, fs); } void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { ceil_w_d(fd, fs); } void TurboAssembler::Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch) { DCHECK(fs != scratch); DCHECK(rd != at); { // Load 2^31 into scratch as its float representation. UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x41E00000); mtc1(zero_reg, scratch); mthc1(scratch1, scratch); } // Test if scratch > fd. // If fd < 2^31 we can convert it normally. Label simple_convert; CompareF64(OLT, fs, scratch); BranchTrueShortF(&simple_convert); // First we subtract 2^31 from fd, then trunc it to rs // and add 2^31 to rs. sub_d(scratch, fs, scratch); trunc_w_d(scratch, scratch); mfc1(rd, scratch); Or(rd, rd, 1 << 31); Label done; Branch(&done); // Simple conversion. bind(&simple_convert); trunc_w_d(scratch, fs); mfc1(rd, scratch); bind(&done); } void TurboAssembler::Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch) { DCHECK(fs != scratch); DCHECK(rd != at); { // Load 2^31 into scratch as its float representation. UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x4F000000); mtc1(scratch1, scratch); } // Test if scratch > fs. // If fs < 2^31 we can convert it normally. Label simple_convert; CompareF32(OLT, fs, scratch); BranchTrueShortF(&simple_convert); // First we subtract 2^31 from fs, then trunc it to rd // and add 2^31 to rd. sub_s(scratch, fs, scratch); trunc_w_s(scratch, scratch); mfc1(rd, scratch); Or(rd, rd, 1 << 31); Label done; Branch(&done); // Simple conversion. bind(&simple_convert); trunc_w_s(scratch, fs); mfc1(rd, scratch); bind(&done); } void TurboAssembler::Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch, Register result) { DCHECK(fs != scratch); DCHECK(result.is_valid() ? !AreAliased(rd, result, at) : !AreAliased(rd, at)); Label simple_convert, done, fail; if (result.is_valid()) { mov(result, zero_reg); Move(scratch, -1.0); // If fd =< -1 or unordered, then the conversion fails. CompareF64(OLE, fs, scratch); BranchTrueShortF(&fail); CompareIsNanF64(fs, scratch); BranchTrueShortF(&fail); } // Load 2^63 into scratch as its double representation. li(at, 0x43E0000000000000); dmtc1(at, scratch); // Test if scratch > fs. // If fs < 2^63 we can convert it normally. CompareF64(OLT, fs, scratch); BranchTrueShortF(&simple_convert); // First we subtract 2^63 from fs, then trunc it to rd // and add 2^63 to rd. sub_d(scratch, fs, scratch); trunc_l_d(scratch, scratch); dmfc1(rd, scratch); Or(rd, rd, Operand(1UL << 63)); Branch(&done); // Simple conversion. bind(&simple_convert); trunc_l_d(scratch, fs); dmfc1(rd, scratch); bind(&done); if (result.is_valid()) { // Conversion is failed if the result is negative. { UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); addiu(scratch1, zero_reg, -1); dsrl(scratch1, scratch1, 1); // Load 2^62. dmfc1(result, scratch); xor_(result, result, scratch1); } Slt(result, zero_reg, result); } bind(&fail); } void TurboAssembler::Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch, Register result) { DCHECK(fs != scratch); DCHECK(result.is_valid() ? !AreAliased(rd, result, at) : !AreAliased(rd, at)); Label simple_convert, done, fail; if (result.is_valid()) { mov(result, zero_reg); Move(scratch, -1.0f); // If fd =< -1 or unordered, then the conversion fails. CompareF32(OLE, fs, scratch); BranchTrueShortF(&fail); CompareIsNanF32(fs, scratch); BranchTrueShortF(&fail); } { // Load 2^63 into scratch as its float representation. UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x5F000000); mtc1(scratch1, scratch); } // Test if scratch > fs. // If fs < 2^63 we can convert it normally. CompareF32(OLT, fs, scratch); BranchTrueShortF(&simple_convert); // First we subtract 2^63 from fs, then trunc it to rd // and add 2^63 to rd. sub_s(scratch, fs, scratch); trunc_l_s(scratch, scratch); dmfc1(rd, scratch); Or(rd, rd, Operand(1UL << 63)); Branch(&done); // Simple conversion. bind(&simple_convert); trunc_l_s(scratch, fs); dmfc1(rd, scratch); bind(&done); if (result.is_valid()) { // Conversion is failed if the result is negative or unordered. { UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); addiu(scratch1, zero_reg, -1); dsrl(scratch1, scratch1, 1); // Load 2^62. dmfc1(result, scratch); xor_(result, result, scratch1); } Slt(result, zero_reg, result); } bind(&fail); } template void TurboAssembler::RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode, RoundFunc round) { BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = t8; if (kArchVariant == kMips64r6) { cfc1(scratch, FCSR); li(at, Operand(mode)); ctc1(at, FCSR); rint_d(dst, src); ctc1(scratch, FCSR); } else { Label done; mfhc1(scratch, src); Ext(at, scratch, HeapNumber::kExponentShift, HeapNumber::kExponentBits); Branch(USE_DELAY_SLOT, &done, hs, at, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits)); mov_d(dst, src); round(this, dst, src); dmfc1(at, dst); Branch(USE_DELAY_SLOT, &done, ne, at, Operand(zero_reg)); cvt_d_l(dst, dst); srl(at, scratch, 31); sll(at, at, 31); mthc1(at, dst); bind(&done); } } void TurboAssembler::Floor_d_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_floor, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->floor_l_d(dst, src); }); } void TurboAssembler::Ceil_d_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_ceil, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->ceil_l_d(dst, src); }); } void TurboAssembler::Trunc_d_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_trunc, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->trunc_l_d(dst, src); }); } void TurboAssembler::Round_d_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_round, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->round_l_d(dst, src); }); } template void TurboAssembler::RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode, RoundFunc round) { BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = t8; if (kArchVariant == kMips64r6) { cfc1(scratch, FCSR); li(at, Operand(mode)); ctc1(at, FCSR); rint_s(dst, src); ctc1(scratch, FCSR); } else { int32_t kFloat32ExponentBias = 127; int32_t kFloat32MantissaBits = 23; int32_t kFloat32ExponentBits = 8; Label done; mfc1(scratch, src); Ext(at, scratch, kFloat32MantissaBits, kFloat32ExponentBits); Branch(USE_DELAY_SLOT, &done, hs, at, Operand(kFloat32ExponentBias + kFloat32MantissaBits)); mov_s(dst, src); round(this, dst, src); mfc1(at, dst); Branch(USE_DELAY_SLOT, &done, ne, at, Operand(zero_reg)); cvt_s_w(dst, dst); srl(at, scratch, 31); sll(at, at, 31); mtc1(at, dst); bind(&done); } } void TurboAssembler::Floor_s_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_floor, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->floor_w_s(dst, src); }); } void TurboAssembler::Ceil_s_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_ceil, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->ceil_w_s(dst, src); }); } void TurboAssembler::Trunc_s_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_trunc, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->trunc_w_s(dst, src); }); } void TurboAssembler::Round_s_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_round, [](TurboAssembler* tasm, FPURegister dst, FPURegister src) { tasm->round_w_s(dst, src); }); } void MacroAssembler::Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch) { DCHECK(fr != scratch && fs != scratch && ft != scratch); mul_s(scratch, fs, ft); add_s(fd, fr, scratch); } void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch) { DCHECK(fr != scratch && fs != scratch && ft != scratch); mul_d(scratch, fs, ft); add_d(fd, fr, scratch); } void MacroAssembler::Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch) { DCHECK(fr != scratch && fs != scratch && ft != scratch); mul_s(scratch, fs, ft); sub_s(fd, scratch, fr); } void MacroAssembler::Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch) { DCHECK(fr != scratch && fs != scratch && ft != scratch); mul_d(scratch, fs, ft); sub_d(fd, scratch, fr); } void TurboAssembler::CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1, FPURegister cmp2) { if (kArchVariant == kMips64r6) { sizeField = sizeField == D ? L : W; DCHECK(cmp1 != kDoubleCompareReg && cmp2 != kDoubleCompareReg); cmp(cc, sizeField, kDoubleCompareReg, cmp1, cmp2); } else { c(cc, sizeField, cmp1, cmp2); } } void TurboAssembler::CompareIsNanF(SecondaryField sizeField, FPURegister cmp1, FPURegister cmp2) { CompareF(sizeField, UN, cmp1, cmp2); } void TurboAssembler::BranchTrueShortF(Label* target, BranchDelaySlot bd) { if (kArchVariant == kMips64r6) { bc1nez(target, kDoubleCompareReg); } else { bc1t(target); } if (bd == PROTECT) { nop(); } } void TurboAssembler::BranchFalseShortF(Label* target, BranchDelaySlot bd) { if (kArchVariant == kMips64r6) { bc1eqz(target, kDoubleCompareReg); } else { bc1f(target); } if (bd == PROTECT) { nop(); } } void TurboAssembler::BranchTrueF(Label* target, BranchDelaySlot bd) { bool long_branch = target->is_bound() ? !is_near(target) : is_trampoline_emitted(); if (long_branch) { Label skip; BranchFalseShortF(&skip); BranchLong(target, bd); bind(&skip); } else { BranchTrueShortF(target, bd); } } void TurboAssembler::BranchFalseF(Label* target, BranchDelaySlot bd) { bool long_branch = target->is_bound() ? !is_near(target) : is_trampoline_emitted(); if (long_branch) { Label skip; BranchTrueShortF(&skip); BranchLong(target, bd); bind(&skip); } else { BranchFalseShortF(target, bd); } } void TurboAssembler::BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond, MSARegister wt, BranchDelaySlot bd) { { BlockTrampolinePoolScope block_trampoline_pool(this); if (target) { bool long_branch = target->is_bound() ? !is_near(target) : is_trampoline_emitted(); if (long_branch) { Label skip; MSABranchCondition neg_cond = NegateMSABranchCondition(cond); BranchShortMSA(df, &skip, neg_cond, wt, bd); BranchLong(target, bd); bind(&skip); } else { BranchShortMSA(df, target, cond, wt, bd); } } } } void TurboAssembler::BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond, MSARegister wt, BranchDelaySlot bd) { if (kArchVariant == kMips64r6) { BlockTrampolinePoolScope block_trampoline_pool(this); if (target) { switch (cond) { case all_not_zero: switch (df) { case MSA_BRANCH_D: bnz_d(wt, target); break; case MSA_BRANCH_W: bnz_w(wt, target); break; case MSA_BRANCH_H: bnz_h(wt, target); break; case MSA_BRANCH_B: default: bnz_b(wt, target); } break; case one_elem_not_zero: bnz_v(wt, target); break; case one_elem_zero: switch (df) { case MSA_BRANCH_D: bz_d(wt, target); break; case MSA_BRANCH_W: bz_w(wt, target); break; case MSA_BRANCH_H: bz_h(wt, target); break; case MSA_BRANCH_B: default: bz_b(wt, target); } break; case all_zero: bz_v(wt, target); break; default: UNREACHABLE(); } } } if (bd == PROTECT) { nop(); } } void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(src_low != scratch); mfhc1(scratch, dst); mtc1(src_low, dst); mthc1(scratch, dst); } void TurboAssembler::Move(FPURegister dst, uint32_t src) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(static_cast(src))); mtc1(scratch, dst); } void TurboAssembler::Move(FPURegister dst, uint64_t src) { // Handle special values first. if (src == bit_cast(0.0) && has_double_zero_reg_set_) { mov_d(dst, kDoubleRegZero); } else if (src == bit_cast(-0.0) && has_double_zero_reg_set_) { Neg_d(dst, kDoubleRegZero); } else { uint32_t lo = src & 0xFFFFFFFF; uint32_t hi = src >> 32; // Move the low part of the double into the lower of the corresponding FPU // register of FPU register pair. if (lo != 0) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(lo)); mtc1(scratch, dst); } else { mtc1(zero_reg, dst); } // Move the high part of the double into the higher of the corresponding FPU // register of FPU register pair. if (hi != 0) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(hi)); mthc1(scratch, dst); } else { mthc1(zero_reg, dst); } if (dst == kDoubleRegZero) has_double_zero_reg_set_ = true; } } void TurboAssembler::Movz(Register rd, Register rs, Register rt) { if (kArchVariant == kMips64r6) { Label done; Branch(&done, ne, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movz(rd, rs, rt); } } void TurboAssembler::Movn(Register rd, Register rs, Register rt) { if (kArchVariant == kMips64r6) { Label done; Branch(&done, eq, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movn(rd, rs, rt); } } void TurboAssembler::LoadZeroOnCondition(Register rd, Register rs, const Operand& rt, Condition cond) { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: mov(rd, zero_reg); break; case eq: if (rs == zero_reg) { if (rt.is_reg()) { LoadZeroIfConditionZero(rd, rt.rm()); } else { if (rt.immediate() == 0) { mov(rd, zero_reg); } else { nop(); } } } else if (IsZero(rt)) { LoadZeroIfConditionZero(rd, rs); } else { Dsubu(t9, rs, rt); LoadZeroIfConditionZero(rd, t9); } break; case ne: if (rs == zero_reg) { if (rt.is_reg()) { LoadZeroIfConditionNotZero(rd, rt.rm()); } else { if (rt.immediate() != 0) { mov(rd, zero_reg); } else { nop(); } } } else if (IsZero(rt)) { LoadZeroIfConditionNotZero(rd, rs); } else { Dsubu(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); } break; // Signed comparison. case greater: Sgt(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); break; case greater_equal: Sge(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs >= rt break; case less: Slt(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs < rt break; case less_equal: Sle(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs <= rt break; // Unsigned comparison. case Ugreater: Sgtu(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs > rt break; case Ugreater_equal: Sgeu(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs >= rt break; case Uless: Sltu(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs < rt break; case Uless_equal: Sleu(t9, rs, rt); LoadZeroIfConditionNotZero(rd, t9); // rs <= rt break; default: UNREACHABLE(); } } void TurboAssembler::LoadZeroIfConditionNotZero(Register dest, Register condition) { if (kArchVariant == kMips64r6) { seleqz(dest, dest, condition); } else { Movn(dest, zero_reg, condition); } } void TurboAssembler::LoadZeroIfConditionZero(Register dest, Register condition) { if (kArchVariant == kMips64r6) { selnez(dest, dest, condition); } else { Movz(dest, zero_reg, condition); } } void TurboAssembler::LoadZeroIfFPUCondition(Register dest) { if (kArchVariant == kMips64r6) { dmfc1(kScratchReg, kDoubleCompareReg); LoadZeroIfConditionNotZero(dest, kScratchReg); } else { Movt(dest, zero_reg); } } void TurboAssembler::LoadZeroIfNotFPUCondition(Register dest) { if (kArchVariant == kMips64r6) { dmfc1(kScratchReg, kDoubleCompareReg); LoadZeroIfConditionZero(dest, kScratchReg); } else { Movf(dest, zero_reg); } } void TurboAssembler::Movt(Register rd, Register rs, uint16_t cc) { movt(rd, rs, cc); } void TurboAssembler::Movf(Register rd, Register rs, uint16_t cc) { movf(rd, rs, cc); } void TurboAssembler::Clz(Register rd, Register rs) { clz(rd, rs); } void TurboAssembler::Ctz(Register rd, Register rs) { if (kArchVariant == kMips64r6) { // We don't have an instruction to count the number of trailing zeroes. // Start by flipping the bits end-for-end so we can count the number of // leading zeroes instead. rotr(rd, rs, 16); wsbh(rd, rd); bitswap(rd, rd); Clz(rd, rd); } else { // Convert trailing zeroes to trailing ones, and bits to their left // to zeroes. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Daddu(scratch, rs, -1); Xor(rd, scratch, rs); And(rd, rd, scratch); // Count number of leading zeroes. Clz(rd, rd); // Subtract number of leading zeroes from 32 to get number of trailing // ones. Remember that the trailing ones were formerly trailing zeroes. li(scratch, 32); Subu(rd, scratch, rd); } } void TurboAssembler::Dctz(Register rd, Register rs) { if (kArchVariant == kMips64r6) { // We don't have an instruction to count the number of trailing zeroes. // Start by flipping the bits end-for-end so we can count the number of // leading zeroes instead. dsbh(rd, rs); dshd(rd, rd); dbitswap(rd, rd); dclz(rd, rd); } else { // Convert trailing zeroes to trailing ones, and bits to their left // to zeroes. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Daddu(scratch, rs, -1); Xor(rd, scratch, rs); And(rd, rd, scratch); // Count number of leading zeroes. dclz(rd, rd); // Subtract number of leading zeroes from 64 to get number of trailing // ones. Remember that the trailing ones were formerly trailing zeroes. li(scratch, 64); Dsubu(rd, scratch, rd); } } void TurboAssembler::Popcnt(Register rd, Register rs) { // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // // A generalization of the best bit counting method to integers of // bit-widths up to 128 (parameterized by type T) is this: // // v = v - ((v >> 1) & (T)~(T)0/3); // temp // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; //count // // For comparison, for 32-bit quantities, this algorithm can be executed // using 20 MIPS instructions (the calls to LoadConst32() generate two // machine instructions each for the values being used in this algorithm). // A(n unrolled) loop-based algorithm requires 25 instructions. // // For a 64-bit operand this can be performed in 24 instructions compared // to a(n unrolled) loop based algorithm which requires 38 instructions. // // There are algorithms which are faster in the cases where very few // bits are set but the algorithm here attempts to minimize the total // number of instructions executed even when a large number of bits // are set. uint32_t B0 = 0x55555555; // (T)~(T)0/3 uint32_t B1 = 0x33333333; // (T)~(T)0/15*3 uint32_t B2 = 0x0F0F0F0F; // (T)~(T)0/255*15 uint32_t value = 0x01010101; // (T)~(T)0/255 uint32_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.Acquire(); Register scratch2 = t8; srl(scratch, rs, 1); li(scratch2, B0); And(scratch, scratch, scratch2); Subu(scratch, rs, scratch); li(scratch2, B1); And(rd, scratch, scratch2); srl(scratch, scratch, 2); And(scratch, scratch, scratch2); Addu(scratch, rd, scratch); srl(rd, scratch, 4); Addu(rd, rd, scratch); li(scratch2, B2); And(rd, rd, scratch2); li(scratch, value); Mul(rd, rd, scratch); srl(rd, rd, shift); } void TurboAssembler::Dpopcnt(Register rd, Register rs) { uint64_t B0 = 0x5555555555555555l; // (T)~(T)0/3 uint64_t B1 = 0x3333333333333333l; // (T)~(T)0/15*3 uint64_t B2 = 0x0F0F0F0F0F0F0F0Fl; // (T)~(T)0/255*15 uint64_t value = 0x0101010101010101l; // (T)~(T)0/255 uint64_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.Acquire(); Register scratch2 = t8; dsrl(scratch, rs, 1); li(scratch2, B0); And(scratch, scratch, scratch2); Dsubu(scratch, rs, scratch); li(scratch2, B1); And(rd, scratch, scratch2); dsrl(scratch, scratch, 2); And(scratch, scratch, scratch2); Daddu(scratch, rd, scratch); dsrl(rd, scratch, 4); Daddu(rd, rd, scratch); li(scratch2, B2); And(rd, rd, scratch2); li(scratch, value); Dmul(rd, rd, scratch); dsrl32(rd, rd, shift); } void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch, Register except_flag, CheckForInexactConversion check_inexact) { DCHECK(result != scratch); DCHECK(double_input != double_scratch); DCHECK(except_flag != scratch); Label done; // Clear the except flag (0 = no exception) mov(except_flag, zero_reg); // Test for values that can be exactly represented as a signed 32-bit integer. cvt_w_d(double_scratch, double_input); mfc1(result, double_scratch); cvt_d_w(double_scratch, double_scratch); CompareF64(EQ, double_input, double_scratch); BranchTrueShortF(&done); int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions. if (check_inexact == kDontCheckForInexactConversion) { // Ignore inexact exceptions. except_mask &= ~kFCSRInexactFlagMask; } // Save FCSR. cfc1(scratch, FCSR); // Disable FPU exceptions. ctc1(zero_reg, FCSR); // Do operation based on rounding mode. switch (rounding_mode) { case kRoundToNearest: Round_w_d(double_scratch, double_input); break; case kRoundToZero: Trunc_w_d(double_scratch, double_input); break; case kRoundToPlusInf: Ceil_w_d(double_scratch, double_input); break; case kRoundToMinusInf: Floor_w_d(double_scratch, double_input); break; } // End of switch-statement. // Retrieve FCSR. cfc1(except_flag, FCSR); // Restore FCSR. ctc1(scratch, FCSR); // Move the converted value into the result register. mfc1(result, double_scratch); // Check for fpu exceptions. And(except_flag, except_flag, Operand(except_mask)); bind(&done); } void TurboAssembler::TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done) { DoubleRegister single_scratch = kScratchDoubleReg.low(); UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.Acquire(); Register scratch2 = t9; // Clear cumulative exception flags and save the FCSR. cfc1(scratch2, FCSR); ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. trunc_w_d(single_scratch, double_input); mfc1(result, single_scratch); // Retrieve and restore the FCSR. cfc1(scratch, FCSR); ctc1(scratch2, FCSR); // Check for overflow and NaNs. And(scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions we are done. Branch(done, eq, scratch, Operand(zero_reg)); } void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. push(ra); Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack. Sdc1(double_input, MemOperand(sp, 0)); if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); } else { Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); } Ld(result, MemOperand(sp, 0)); Daddu(sp, sp, Operand(kDoubleSize)); pop(ra); bind(&done); } // Emulated condtional branches do not emit a nop in the branch delay slot. // // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. #define BRANCH_ARGS_CHECK(cond, rs, rt) \ DCHECK((cond == cc_always && rs == zero_reg && rt.rm() == zero_reg) || \ (cond != cc_always && (rs != zero_reg || rt.rm() != zero_reg))) void TurboAssembler::Branch(int32_t offset, BranchDelaySlot bdslot) { DCHECK_EQ(kArchVariant, kMips64r6 ? is_int26(offset) : is_int16(offset)); BranchShort(offset, bdslot); } void TurboAssembler::Branch(int32_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { bool is_near = BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot); DCHECK(is_near); USE(is_near); } void TurboAssembler::Branch(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near_branch(L)) { BranchShort(L, bdslot); } else { BranchLong(L, bdslot); } } else { if (is_trampoline_emitted()) { BranchLong(L, bdslot); } else { BranchShort(L, bdslot); } } } void TurboAssembler::Branch(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (!BranchShortCheck(0, L, cond, rs, rt, bdslot)) { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); BranchLong(L, bdslot); bind(&skip); } else { BranchLong(L, bdslot); } } } else { if (is_trampoline_emitted()) { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); BranchLong(L, bdslot); bind(&skip); } else { BranchLong(L, bdslot); } } else { BranchShort(L, cond, rs, rt, bdslot); } } } void TurboAssembler::Branch(Label* L, Condition cond, Register rs, RootIndex index, BranchDelaySlot bdslot) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Branch(L, cond, rs, Operand(scratch), bdslot); } void TurboAssembler::BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot) { DCHECK(L == nullptr || offset == 0); offset = GetOffset(offset, L, OffsetSize::kOffset16); b(offset); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L) { DCHECK(L == nullptr || offset == 0); offset = GetOffset(offset, L, OffsetSize::kOffset26); bc(offset); } void TurboAssembler::BranchShort(int32_t offset, BranchDelaySlot bdslot) { if (kArchVariant == kMips64r6 && bdslot == PROTECT) { DCHECK(is_int26(offset)); BranchShortHelperR6(offset, nullptr); } else { DCHECK(is_int16(offset)); BranchShortHelper(offset, nullptr, bdslot); } } void TurboAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { if (kArchVariant == kMips64r6 && bdslot == PROTECT) { BranchShortHelperR6(0, L); } else { BranchShortHelper(0, L, bdslot); } } int32_t TurboAssembler::GetOffset(int32_t offset, Label* L, OffsetSize bits) { if (L) { offset = branch_offset_helper(L, bits) >> 2; } else { DCHECK(is_intn(offset, bits)); } return offset; } Register TurboAssembler::GetRtAsRegisterHelper(const Operand& rt, Register scratch) { Register r2 = no_reg; if (rt.is_reg()) { r2 = rt.rm(); } else { r2 = scratch; li(r2, rt); } return r2; } bool TurboAssembler::CalculateOffset(Label* L, int32_t& offset, OffsetSize bits) { if (!is_near(L, bits)) return false; offset = GetOffset(offset, L, bits); return true; } bool TurboAssembler::CalculateOffset(Label* L, int32_t& offset, OffsetSize bits, Register& scratch, const Operand& rt) { if (!is_near(L, bits)) return false; scratch = GetRtAsRegisterHelper(rt, scratch); offset = GetOffset(offset, L, bits); return true; } bool TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt) { DCHECK(L == nullptr || offset == 0); UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; bc(offset); break; case eq: if (rt.is_reg() && rs.code() == rt.rm().code()) { // Pre R6 beq is used here to make the code patchable. Otherwise bc // should be used which has no condition field so is not patchable. if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; beq(rs, scratch, offset); nop(); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false; beqzc(rs, offset); } else { // We don't want any other register but scratch clobbered. if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; beqc(rs, scratch, offset); } break; case ne: if (rt.is_reg() && rs.code() == rt.rm().code()) { // Pre R6 bne is used here to make the code patchable. Otherwise we // should not generate any instruction. if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bne(rs, scratch, offset); nop(); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false; bnezc(rs, offset); } else { // We don't want any other register but scratch clobbered. if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bnec(rs, scratch, offset); } break; // Signed comparison. case greater: // rs > rt if (rt.is_reg() && rs.code() == rt.rm().code()) { break; // No code needs to be emitted. } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bltzc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; bgtzc(rs, offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bltc(scratch, rs, offset); } break; case greater_equal: // rs >= rt if (rt.is_reg() && rs.code() == rt.rm().code()) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; bc(offset); } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; blezc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; bgezc(rs, offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bgec(rs, scratch, offset); } break; case less: // rs < rt if (rt.is_reg() && rs.code() == rt.rm().code()) { break; // No code needs to be emitted. } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bgtzc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; bltzc(rs, offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bltc(rs, scratch, offset); } break; case less_equal: // rs <= rt if (rt.is_reg() && rs.code() == rt.rm().code()) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; bc(offset); } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bgezc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; blezc(rs, offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bgec(scratch, rs, offset); } break; // Unsigned comparison. case Ugreater: // rs > rt if (rt.is_reg() && rs.code() == rt.rm().code()) { break; // No code needs to be emitted. } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21, scratch, rt)) return false; bnezc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false; bnezc(rs, offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bltuc(scratch, rs, offset); } break; case Ugreater_equal: // rs >= rt if (rt.is_reg() && rs.code() == rt.rm().code()) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; bc(offset); } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21, scratch, rt)) return false; beqzc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; bc(offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bgeuc(rs, scratch, offset); } break; case Uless: // rs < rt if (rt.is_reg() && rs.code() == rt.rm().code()) { break; // No code needs to be emitted. } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21, scratch, rt)) return false; bnezc(scratch, offset); } else if (IsZero(rt)) { break; // No code needs to be emitted. } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bltuc(rs, scratch, offset); } break; case Uless_equal: // rs <= rt if (rt.is_reg() && rs.code() == rt.rm().code()) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; bc(offset); } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26, scratch, rt)) return false; bc(offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false; beqzc(rs, offset); } else { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; DCHECK(rs != scratch); bgeuc(scratch, rs, offset); } break; default: UNREACHABLE(); } } CheckTrampolinePoolQuick(1); return true; } bool TurboAssembler::BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { DCHECK(L == nullptr || offset == 0); if (!is_near(L, OffsetSize::kOffset16)) return false; UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; int32_t offset32; // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset32 = GetOffset(offset, L, OffsetSize::kOffset16); b(offset32); break; case eq: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(rs, zero_reg, offset32); } else { // We don't want any other register but scratch clobbered. scratch = GetRtAsRegisterHelper(rt, scratch); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(rs, scratch, offset32); } break; case ne: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(rs, zero_reg, offset32); } else { // We don't want any other register but scratch clobbered. scratch = GetRtAsRegisterHelper(rt, scratch); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(rs, scratch, offset32); } break; // Signed comparison. case greater: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bgtz(rs, offset32); } else { Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(scratch, zero_reg, offset32); } break; case greater_equal: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bgez(rs, offset32); } else { Slt(scratch, rs, rt); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(scratch, zero_reg, offset32); } break; case less: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bltz(rs, offset32); } else { Slt(scratch, rs, rt); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(scratch, zero_reg, offset32); } break; case less_equal: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); blez(rs, offset32); } else { Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(scratch, zero_reg, offset32); } break; // Unsigned comparison. case Ugreater: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(rs, zero_reg, offset32); } else { Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(scratch, zero_reg, offset32); } break; case Ugreater_equal: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); b(offset32); } else { Sltu(scratch, rs, rt); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(scratch, zero_reg, offset32); } break; case Uless: if (IsZero(rt)) { return true; // No code needs to be emitted. } else { Sltu(scratch, rs, rt); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); bne(scratch, zero_reg, offset32); } break; case Uless_equal: if (IsZero(rt)) { offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(rs, zero_reg, offset32); } else { Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset32 = GetOffset(offset, L, OffsetSize::kOffset16); beq(scratch, zero_reg, offset32); } break; default: UNREACHABLE(); } } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); return true; } bool TurboAssembler::BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); if (!L) { if (kArchVariant == kMips64r6 && bdslot == PROTECT) { DCHECK(is_int26(offset)); return BranchShortHelperR6(offset, nullptr, cond, rs, rt); } else { DCHECK(is_int16(offset)); return BranchShortHelper(offset, nullptr, cond, rs, rt, bdslot); } } else { DCHECK_EQ(offset, 0); if (kArchVariant == kMips64r6 && bdslot == PROTECT) { return BranchShortHelperR6(0, L, cond, rs, rt); } else { return BranchShortHelper(0, L, cond, rs, rt, bdslot); } } return false; } void TurboAssembler::BranchShort(int32_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot); } void TurboAssembler::BranchShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchShortCheck(0, L, cond, rs, rt, bdslot); } void TurboAssembler::BranchAndLink(int32_t offset, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, bdslot); } void TurboAssembler::BranchAndLink(int32_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { bool is_near = BranchAndLinkShortCheck(offset, nullptr, cond, rs, rt, bdslot); DCHECK(is_near); USE(is_near); } void TurboAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near_branch(L)) { BranchAndLinkShort(L, bdslot); } else { BranchAndLinkLong(L, bdslot); } } else { if (is_trampoline_emitted()) { BranchAndLinkLong(L, bdslot); } else { BranchAndLinkShort(L, bdslot); } } } void TurboAssembler::BranchAndLink(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (!BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot)) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); BranchAndLinkLong(L, bdslot); bind(&skip); } } else { if (is_trampoline_emitted()) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); BranchAndLinkLong(L, bdslot); bind(&skip); } else { BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot); } } } void TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot) { DCHECK(L == nullptr || offset == 0); offset = GetOffset(offset, L, OffsetSize::kOffset16); bal(offset); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } void TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L) { DCHECK(L == nullptr || offset == 0); offset = GetOffset(offset, L, OffsetSize::kOffset26); balc(offset); } void TurboAssembler::BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot) { if (kArchVariant == kMips64r6 && bdslot == PROTECT) { DCHECK(is_int26(offset)); BranchAndLinkShortHelperR6(offset, nullptr); } else { DCHECK(is_int16(offset)); BranchAndLinkShortHelper(offset, nullptr, bdslot); } } void TurboAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { if (kArchVariant == kMips64r6 && bdslot == PROTECT) { BranchAndLinkShortHelperR6(0, L); } else { BranchAndLinkShortHelper(0, L, bdslot); } } bool TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt) { DCHECK(L == nullptr || offset == 0); UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; OffsetSize bits = OffsetSize::kOffset16; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK((cond == cc_always && is_int26(offset)) || is_int16(offset)); switch (cond) { case cc_always: if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; balc(offset); break; case eq: if (!is_near(L, bits)) return false; Subu(scratch, rs, rt); offset = GetOffset(offset, L, bits); beqzalc(scratch, offset); break; case ne: if (!is_near(L, bits)) return false; Subu(scratch, rs, rt); offset = GetOffset(offset, L, bits); bnezalc(scratch, offset); break; // Signed comparison. case greater: // rs > rt if (rs.code() == rt.rm().code()) { break; // No code needs to be emitted. } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bltzalc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; bgtzalc(rs, offset); } else { if (!is_near(L, bits)) return false; Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset = GetOffset(offset, L, bits); bnezalc(scratch, offset); } break; case greater_equal: // rs >= rt if (rs.code() == rt.rm().code()) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; balc(offset); } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; blezalc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; bgezalc(rs, offset); } else { if (!is_near(L, bits)) return false; Slt(scratch, rs, rt); offset = GetOffset(offset, L, bits); beqzalc(scratch, offset); } break; case less: // rs < rt if (rs.code() == rt.rm().code()) { break; // No code needs to be emitted. } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bgtzalc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; bltzalc(rs, offset); } else { if (!is_near(L, bits)) return false; Slt(scratch, rs, rt); offset = GetOffset(offset, L, bits); bnezalc(scratch, offset); } break; case less_equal: // rs <= r2 if (rs.code() == rt.rm().code()) { if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false; balc(offset); } else if (rs == zero_reg) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt)) return false; bgezalc(scratch, offset); } else if (IsZero(rt)) { if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false; blezalc(rs, offset); } else { if (!is_near(L, bits)) return false; Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset = GetOffset(offset, L, bits); beqzalc(scratch, offset); } break; // Unsigned comparison. case Ugreater: // rs > r2 if (!is_near(L, bits)) return false; Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset = GetOffset(offset, L, bits); bnezalc(scratch, offset); break; case Ugreater_equal: // rs >= r2 if (!is_near(L, bits)) return false; Sltu(scratch, rs, rt); offset = GetOffset(offset, L, bits); beqzalc(scratch, offset); break; case Uless: // rs < r2 if (!is_near(L, bits)) return false; Sltu(scratch, rs, rt); offset = GetOffset(offset, L, bits); bnezalc(scratch, offset); break; case Uless_equal: // rs <= r2 if (!is_near(L, bits)) return false; Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs); offset = GetOffset(offset, L, bits); beqzalc(scratch, offset); break; default: UNREACHABLE(); } return true; } // Pre r6 we need to use a bgezal or bltzal, but they can't be used directly // with the slt instructions. We could use sub or add instead but we would miss // overflow cases, so we keep slt and add an intermediate third instruction. bool TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { DCHECK(L == nullptr || offset == 0); if (!is_near(L, OffsetSize::kOffset16)) return false; Register scratch = t8; BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset = GetOffset(offset, L, OffsetSize::kOffset16); bal(offset); break; case eq: bne(rs, GetRtAsRegisterHelper(rt, scratch), 2); nop(); offset = GetOffset(offset, L, OffsetSize::kOffset16); bal(offset); break; case ne: beq(rs, GetRtAsRegisterHelper(rt, scratch), 2); nop(); offset = GetOffset(offset, L, OffsetSize::kOffset16); bal(offset); break; // Signed comparison. case greater: Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bgezal(scratch, offset); break; case greater_equal: Slt(scratch, rs, rt); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bltzal(scratch, offset); break; case less: Slt(scratch, rs, rt); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bgezal(scratch, offset); break; case less_equal: Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bltzal(scratch, offset); break; // Unsigned comparison. case Ugreater: Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bgezal(scratch, offset); break; case Ugreater_equal: Sltu(scratch, rs, rt); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bltzal(scratch, offset); break; case Uless: Sltu(scratch, rs, rt); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bgezal(scratch, offset); break; case Uless_equal: Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs); addiu(scratch, scratch, -1); offset = GetOffset(offset, L, OffsetSize::kOffset16); bltzal(scratch, offset); break; default: UNREACHABLE(); } // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); return true; } bool TurboAssembler::BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); if (!L) { if (kArchVariant == kMips64r6 && bdslot == PROTECT) { DCHECK(is_int26(offset)); return BranchAndLinkShortHelperR6(offset, nullptr, cond, rs, rt); } else { DCHECK(is_int16(offset)); return BranchAndLinkShortHelper(offset, nullptr, cond, rs, rt, bdslot); } } else { DCHECK_EQ(offset, 0); if (kArchVariant == kMips64r6 && bdslot == PROTECT) { return BranchAndLinkShortHelperR6(0, L, cond, rs, rt); } else { return BranchAndLinkShortHelper(0, L, cond, rs, rt, bdslot); } } return false; } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant( RootIndex::kBuiltinsConstantsTable)); LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); Ld(destination, FieldMemOperand(destination, FixedArray::kHeaderSize + constant_index * kPointerSize)); } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { Ld(destination, MemOperand(kRootRegister, offset)); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { if (offset == 0) { Move(destination, kRootRegister); } else { Daddu(destination, kRootRegister, Operand(offset)); } } void TurboAssembler::Jump(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (kArchVariant == kMips64r6 && bd == PROTECT) { if (cond == cc_always) { jic(target, 0); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jic(target, 0); } } else { if (cond == cc_always) { jr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jr(target); } // Emit a nop in the branch delay slot if required. if (bd == PROTECT) nop(); } } void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Label skip; if (cond != cc_always) { Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); } // The first instruction of 'li' may be placed in the delay slot. // This is not an issue, t9 is expected to be clobbered anyway. { BlockTrampolinePoolScope block_trampoline_pool(this); li(t9, Operand(target, rmode)); Jump(t9, al, zero_reg, Operand(zero_reg), bd); bind(&skip); } } void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(static_cast(target), rmode, cond, rs, rt, bd); } void TurboAssembler::Jump(Handle code, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { DCHECK(RelocInfo::IsCodeTarget(rmode)); if (FLAG_embedded_builtins) { BlockTrampolinePoolScope block_trampoline_pool(this); if (root_array_available_ && options().isolate_independent_code) { IndirectLoadConstant(t9, code); Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); Jump(t9, cond, rs, rt, bd); return; } else if (options().inline_offheap_trampolines) { int builtin_index = Builtins::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index)) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); CHECK_NE(builtin_index, Builtins::kNoBuiltinId); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); li(t9, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Jump(t9, cond, rs, rt, bd); return; } } } Jump(static_cast(code.address()), rmode, cond, rs, rt, bd); } // Note: To call gcc-compiled C code on mips, you must call through t9. void TurboAssembler::Call(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (kArchVariant == kMips64r6 && bd == PROTECT) { if (cond == cc_always) { jialc(target, 0); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jialc(target, 0); } } else { if (cond == cc_always) { jalr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jalr(target); } // Emit a nop in the branch delay slot if required. if (bd == PROTECT) nop(); } } void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); li(t9, Operand(static_cast(target), rmode), ADDRESS_LOAD); Call(t9, cond, rs, rt, bd); } void TurboAssembler::Call(Handle code, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code) { IndirectLoadConstant(t9, code); Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); Call(t9, cond, rs, rt, bd); return; } else if (options().inline_offheap_trampolines) { int builtin_index = Builtins::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index)) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); CHECK_NE(builtin_index, Builtins::kNoBuiltinId); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); li(t9, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Call(t9, cond, rs, rt, bd); return; } } } DCHECK(RelocInfo::IsCodeTarget(rmode)); Call(code.address(), rmode, cond, rs, rt, bd); } void TurboAssembler::Ret(Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Jump(ra, cond, rs, rt, bd); } void TurboAssembler::BranchLong(Label* L, BranchDelaySlot bdslot) { if (kArchVariant == kMips64r6 && bdslot == PROTECT && (!L->is_bound() || is_near_r6(L))) { BranchShortHelperR6(0, L); } else { // Generate position independent long branch. BlockTrampolinePoolScope block_trampoline_pool(this); int64_t imm64; imm64 = branch_long_offset(L); DCHECK(is_int32(imm64)); or_(t8, ra, zero_reg); nal(); // Read PC into ra register. lui(t9, (imm64 & kHiMaskOf32) >> kLuiShift); // Branch delay slot. ori(t9, t9, (imm64 & kImm16Mask)); daddu(t9, ra, t9); if (bdslot == USE_DELAY_SLOT) { or_(ra, t8, zero_reg); } jr(t9); // Emit a or_ in the branch delay slot if it's protected. if (bdslot == PROTECT) or_(ra, t8, zero_reg); } } void TurboAssembler::BranchAndLinkLong(Label* L, BranchDelaySlot bdslot) { if (kArchVariant == kMips64r6 && bdslot == PROTECT && (!L->is_bound() || is_near_r6(L))) { BranchAndLinkShortHelperR6(0, L); } else { // Generate position independent long branch and link. BlockTrampolinePoolScope block_trampoline_pool(this); int64_t imm64; imm64 = branch_long_offset(L); DCHECK(is_int32(imm64)); lui(t8, (imm64 & kHiMaskOf32) >> kLuiShift); nal(); // Read PC into ra register. ori(t8, t8, (imm64 & kImm16Mask)); // Branch delay slot. daddu(t8, ra, t8); jalr(t8); // Emit a nop in the branch delay slot if required. if (bdslot == PROTECT) nop(); } } void TurboAssembler::DropAndRet(int drop) { DCHECK(is_int16(drop * kPointerSize)); Ret(USE_DELAY_SLOT); daddiu(sp, sp, drop * kPointerSize); } void TurboAssembler::DropAndRet(int drop, Condition cond, Register r1, const Operand& r2) { // Both Drop and Ret need to be conditional. Label skip; if (cond != cc_always) { Branch(&skip, NegateCondition(cond), r1, r2); } Drop(drop); Ret(); if (cond != cc_always) { bind(&skip); } } void TurboAssembler::Drop(int count, Condition cond, Register reg, const Operand& op) { if (count <= 0) { return; } Label skip; if (cond != al) { Branch(&skip, NegateCondition(cond), reg, op); } Daddu(sp, sp, Operand(count * kPointerSize)); if (cond != al) { bind(&skip); } } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { if (scratch == no_reg) { Xor(reg1, reg1, Operand(reg2)); Xor(reg2, reg2, Operand(reg1)); Xor(reg1, reg1, Operand(reg2)); } else { mov(scratch, reg1); mov(reg1, reg2); mov(reg2, scratch); } } void TurboAssembler::Call(Label* target) { BranchAndLink(target); } void TurboAssembler::Push(Smi* smi) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(smi)); push(scratch); } void TurboAssembler::Push(Handle handle) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(handle)); push(scratch); } void MacroAssembler::MaybeDropFrames() { // Check whether we need to drop frames to restart a function on the stack. li(a1, ExternalReference::debug_restart_fp_address(isolate())); Ld(a1, MemOperand(a1)); Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, ne, a1, Operand(zero_reg)); } // --------------------------------------------------------------------------- // Exception handling. void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); Push(Smi::kZero); // Padding. // Link the current handler as the next handler. li(a6, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); Ld(a5, MemOperand(a6)); push(a5); // Set this new handler as the current one. Sd(sp, MemOperand(a6)); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(a1); Daddu(sp, sp, Operand(static_cast(StackHandlerConstants::kSize - kPointerSize))); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); Sd(a1, MemOperand(scratch)); } void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src) { sub_d(dst, src, kDoubleRegZero); } void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) { if (IsMipsSoftFloatABI) { if (kArchEndian == kLittle) { Move(dst, v0, v1); } else { Move(dst, v1, v0); } } else { Move(dst, f0); // Reg f0 is o32 ABI FP return value. } } void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) { if (IsMipsSoftFloatABI) { if (kArchEndian == kLittle) { Move(dst, a0, a1); } else { Move(dst, a1, a0); } } else { Move(dst, f12); // Reg f12 is n64 ABI FP first argument value. } } void TurboAssembler::MovToFloatParameter(DoubleRegister src) { if (!IsMipsSoftFloatABI) { Move(f12, src); } else { if (kArchEndian == kLittle) { Move(a0, a1, src); } else { Move(a1, a0, src); } } } void TurboAssembler::MovToFloatResult(DoubleRegister src) { if (!IsMipsSoftFloatABI) { Move(f0, src); } else { if (kArchEndian == kLittle) { Move(v0, v1, src); } else { Move(v1, v0, src); } } } void TurboAssembler::MovToFloatParameters(DoubleRegister src1, DoubleRegister src2) { if (!IsMipsSoftFloatABI) { const DoubleRegister fparg2 = f13; if (src2 == f12) { DCHECK(src1 != fparg2); Move(fparg2, src2); Move(f12, src1); } else { Move(f12, src1); Move(fparg2, src2); } } else { if (kArchEndian == kLittle) { Move(a0, a1, src1); Move(a2, a3, src2); } else { Move(a1, a0, src1); Move(a3, a2, src2); } } } // ----------------------------------------------------------------------------- // JavaScript invokes. void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } #endif // Calculate the end of destination area where we will put the arguments // after we drop current frame. We add kPointerSize to count the receiver // argument which is not included into formal parameters count. Register dst_reg = scratch0; Dlsa(dst_reg, fp, caller_args_count_reg, kPointerSizeLog2); Daddu(dst_reg, dst_reg, Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); Register src_reg = caller_args_count_reg; // Calculate the end of source area. +kPointerSize is for the receiver. if (callee_args_count.is_reg()) { Dlsa(src_reg, sp, callee_args_count.reg(), kPointerSizeLog2); Daddu(src_reg, src_reg, Operand(kPointerSize)); } else { Daddu(src_reg, sp, Operand((callee_args_count.immediate() + 1) * kPointerSize)); } if (FLAG_debug_code) { Check(lo, AbortReason::kStackAccessBelowStackPointer, src_reg, Operand(dst_reg)); } // Restore caller's frame pointer and return address now as they will be // overwritten by the copying loop. Ld(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); Ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). // Both src_reg and dst_reg are pointing to the word after the one to copy, // so they must be pre-decremented in the loop. Register tmp_reg = scratch1; Label loop, entry; Branch(&entry); bind(&loop); Dsubu(src_reg, src_reg, Operand(kPointerSize)); Dsubu(dst_reg, dst_reg, Operand(kPointerSize)); Ld(tmp_reg, MemOperand(src_reg)); Sd(tmp_reg, MemOperand(dst_reg)); bind(&entry); Branch(&loop, ne, sp, Operand(src_reg)); // Leave current frame. mov(sp, dst_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // a0: actual arguments count // a1: function (passed through to callee) // a2: expected arguments count // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. DCHECK(actual.is_immediate() || actual.reg() == a0); DCHECK(expected.is_immediate() || expected.reg() == a2); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); li(a0, Operand(actual.immediate())); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; li(a2, Operand(expected.immediate())); } } } else if (actual.is_immediate()) { li(a0, Operand(actual.immediate())); Branch(®ular_invoke, eq, expected.reg(), Operand(a0)); } else { Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); } if (!definitely_matches) { Handle adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); if (flag == CALL_FUNCTION) { Call(adaptor); if (!*definitely_mismatches) { Branch(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_hook; li(t0, ExternalReference::debug_hook_on_function_call_address(isolate())); Lb(t0, MemOperand(t0)); Branch(&skip_hook, eq, t0, Operand(zero_reg)); { // Load receiver to pass it later to DebugOnFunctionCall hook. if (actual.is_reg()) { mov(t0, actual.reg()); } else { li(t0, actual.immediate()); } Dlsa(t0, sp, t0, kPointerSizeLog2); Ld(t0, MemOperand(t0)); FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); Push(t0); CallRuntime(Runtime::kDebugOnFunctionCall); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_hook); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function == a1); DCHECK_IMPLIES(new_target.is_valid(), new_target == a3); // On function call, call into the debugger if necessary. CheckDebugHook(function, new_target, expected, actual); // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(a3, RootIndex::kUndefinedValue); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = kJavaScriptCallCodeStartRegister; Ld(code, FieldMemOperand(function, JSFunction::kCodeOffset)); if (flag == CALL_FUNCTION) { Daddu(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); Call(code); } else { DCHECK(flag == JUMP_FUNCTION); Daddu(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in a1. DCHECK(function == a1); Register expected_reg = a2; Register temp_reg = t0; Ld(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // The argument count is stored as uint16_t Lhu(expected_reg, FieldMemOperand(temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount expected(expected_reg); InvokeFunctionCode(a1, new_target, expected, actual, flag); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in a1. DCHECK(function == a1); // Get the function and setup the context. Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); InvokeFunctionCode(a1, no_reg, expected, actual, flag); } // --------------------------------------------------------------------------- // Support functions. void MacroAssembler::GetObjectType(Register object, Register map, Register type_reg) { Ld(map, FieldMemOperand(object, HeapObject::kMapOffset)); Lhu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); } // ----------------------------------------------------------------------------- // Runtime calls. void MacroAssembler::CallStub(CodeStub* stub, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd); } void TurboAssembler::CallStubDelayed(CodeStub* stub, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. BlockTrampolinePoolScope block_trampoline_pool(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand::EmbeddedCode(stub)); Call(scratch); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd); } bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame() || !stub->SometimesSetsUpAFrame(); } void TurboAssembler::DaddOverflow(Register dst, Register left, const Operand& right, Register overflow) { BlockTrampolinePoolScope block_trampoline_pool(this); Register right_reg = no_reg; Register scratch = t8; if (!right.is_reg()) { li(at, Operand(right)); right_reg = at; } else { right_reg = right.rm(); } DCHECK(left != scratch && right_reg != scratch && dst != scratch && overflow != scratch); DCHECK(overflow != left && overflow != right_reg); if (dst == left || dst == right_reg) { daddu(scratch, left, right_reg); xor_(overflow, scratch, left); xor_(at, scratch, right_reg); and_(overflow, overflow, at); mov(dst, scratch); } else { daddu(dst, left, right_reg); xor_(overflow, dst, left); xor_(at, dst, right_reg); and_(overflow, overflow, at); } } void TurboAssembler::DsubOverflow(Register dst, Register left, const Operand& right, Register overflow) { BlockTrampolinePoolScope block_trampoline_pool(this); Register right_reg = no_reg; Register scratch = t8; if (!right.is_reg()) { li(at, Operand(right)); right_reg = at; } else { right_reg = right.rm(); } DCHECK(left != scratch && right_reg != scratch && dst != scratch && overflow != scratch); DCHECK(overflow != left && overflow != right_reg); if (dst == left || dst == right_reg) { dsubu(scratch, left, right_reg); xor_(overflow, left, scratch); xor_(at, left, right_reg); and_(overflow, overflow, at); mov(dst, scratch); } else { dsubu(dst, left, right_reg); xor_(overflow, left, dst); xor_(at, left, right_reg); and_(overflow, overflow, at); } } void TurboAssembler::MulOverflow(Register dst, Register left, const Operand& right, Register overflow) { BlockTrampolinePoolScope block_trampoline_pool(this); Register right_reg = no_reg; Register scratch = t8; if (!right.is_reg()) { li(at, Operand(right)); right_reg = at; } else { right_reg = right.rm(); } DCHECK(left != scratch && right_reg != scratch && dst != scratch && overflow != scratch); DCHECK(overflow != left && overflow != right_reg); if (dst == left || dst == right_reg) { Mul(scratch, left, right_reg); Mulh(overflow, left, right_reg); mov(dst, scratch); } else { Mul(dst, left, right_reg); Mulh(overflow, left, right_reg); } dsra32(scratch, dst, 0); xor_(overflow, overflow, scratch); } void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry) { const Runtime::Function* f = Runtime::FunctionForId(fid); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(f->nargs); PrepareCEntryFunction(ExternalReference::Create(f)); DCHECK(!AreAliased(centry, a0, a1)); Daddu(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag)); Call(centry); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All parameters are on the stack. v0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ExternalReference::Create(f)); Handle code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { PrepareCEntryArgs(function->nargs); } JumpToExternalReference(ExternalReference::Create(fid)); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd, bool builtin_exit_frame) { PrepareCEntryFunction(builtin); Handle code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::JumpToInstructionStream(Address entry) { li(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Jump(kOffHeapTrampolineRegister); } void MacroAssembler::LoadWeakValue(Register out, Register in, Label* target_if_cleared) { Branch(target_if_cleared, eq, in, Operand(kClearedWeakHeapObject)); And(out, in, Operand(~kWeakHeapObjectMask)); } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, ExternalReference::Create(counter)); Lw(scratch1, MemOperand(scratch2)); Addu(scratch1, scratch1, Operand(value)); Sw(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, ExternalReference::Create(counter)); Lw(scratch1, MemOperand(scratch2)); Subu(scratch1, scratch1, Operand(value)); Sw(scratch1, MemOperand(scratch2)); } } // ----------------------------------------------------------------------------- // Debugging. void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs, Operand rt) { if (emit_debug_code()) Check(cc, reason, rs, rt); } void TurboAssembler::Check(Condition cc, AbortReason reason, Register rs, Operand rt) { Label L; Branch(&L, cc, rs, rt); Abort(reason); // Will not return here. bind(&L); } void TurboAssembler::Abort(AbortReason reason) { Label abort_start; bind(&abort_start); const char* msg = GetAbortReason(reason); #ifdef DEBUG RecordComment("Abort message: "); RecordComment(msg); #endif // Avoid emitting call to builtin if requested. if (trap_on_abort()) { stop(msg); return; } if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NONE); PrepareCallCFunction(0, a0); li(a0, Operand(static_cast(reason))); CallCFunction(ExternalReference::abort_with_reason(), 1); return; } Move(a0, Smi::FromInt(static_cast(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame()) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } // Will not return here. if (is_trampoline_pool_blocked()) { // If the calling code cares about the exact number of // instructions generated, we insert padding here to keep the size // of the Abort macro constant. // Currently in debug mode with debug_code enabled the number of // generated instructions is 10, so we use this as a maximum value. static const int kExpectedAbortInstructions = 10; int abort_instructions = InstructionsGeneratedSince(&abort_start); DCHECK_LE(abort_instructions, kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { Ld(dst, NativeContextMemOperand()); Ld(dst, ContextMemOperand(dst, index)); } void TurboAssembler::StubPrologue(StackFrame::Type type) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(StackFrame::TypeToMarker(type))); PushCommonFrame(scratch); } void TurboAssembler::Prologue() { PushStandardFrame(a1); } void TurboAssembler::EnterFrame(StackFrame::Type type) { BlockTrampolinePoolScope block_trampoline_pool(this); int stack_offset = -3 * kPointerSize; const int fp_offset = 1 * kPointerSize; daddiu(sp, sp, stack_offset); stack_offset = -stack_offset - kPointerSize; Sd(ra, MemOperand(sp, stack_offset)); stack_offset -= kPointerSize; Sd(fp, MemOperand(sp, stack_offset)); stack_offset -= kPointerSize; li(t9, Operand(StackFrame::TypeToMarker(type))); Sd(t9, MemOperand(sp, stack_offset)); // Adjust FP to point to saved FP. DCHECK_EQ(stack_offset, 0); Daddu(fp, sp, Operand(fp_offset)); } void TurboAssembler::LeaveFrame(StackFrame::Type type) { daddiu(sp, fp, 2 * kPointerSize); Ld(ra, MemOperand(fp, 1 * kPointerSize)); Ld(fp, MemOperand(fp, 0 * kPointerSize)); } void MacroAssembler::EnterBuiltinFrame(Register context, Register target, Register argc) { Push(ra, fp); Move(fp, sp); Push(context, target, argc); } void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, Register argc) { Pop(context, target, argc); Pop(ra, fp); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); // This is how the stack will look: // fp + 2 (==kCallerSPDisplacement) - old stack's end // [fp + 1 (==kCallerPCOffset)] - saved old ra // [fp + 0 (==kCallerFPOffset)] - saved old fp // [fp - 1 StackFrame::EXIT Smi // [fp - 2 (==kSPOffset)] - sp of the called function // [fp - 3 (==kCodeOffset)] - CodeObject // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the // new stack (will contain saved ra) // Save registers and reserve room for saved entry sp and code object. daddiu(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp); Sd(ra, MemOperand(sp, 4 * kPointerSize)); Sd(fp, MemOperand(sp, 3 * kPointerSize)); { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(StackFrame::TypeToMarker(frame_type))); Sd(scratch, MemOperand(sp, 2 * kPointerSize)); } // Set up new frame pointer. daddiu(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp); if (emit_debug_code()) { Sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); } { BlockTrampolinePoolScope block_trampoline_pool(this); // Accessed from ExitFrame::code_slot. li(t8, CodeObject(), CONSTANT_SIZE); Sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); Sd(fp, MemOperand(t8)); li(t8, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Sd(cp, MemOperand(t8)); } const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); if (save_doubles) { // The stack is already aligned to 0 modulo 8 for stores with sdc1. int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2; int space = kNumOfSavedRegisters * kDoubleSize; Dsubu(sp, sp, Operand(space)); // Remember: we only need to save every 2nd double FPU value. for (int i = 0; i < kNumOfSavedRegisters; i++) { FPURegister reg = FPURegister::from_code(2 * i); Sdc1(reg, MemOperand(sp, i * kDoubleSize)); } } // Reserve place for the return address, stack space and an optional slot // (used by the DirectCEntryStub to hold the return value if a struct is // returned) and align the frame preparing for calling the runtime function. DCHECK_GE(stack_space, 0); Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize)); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); // Align stack. } // Set the exit frame sp value to point just before the return address // location. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); daddiu(scratch, sp, kPointerSize); Sd(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool do_return, bool argument_count_is_length) { BlockTrampolinePoolScope block_trampoline_pool(this); // Optionally restore all double registers. if (save_doubles) { // Remember: we only need to restore every 2nd double FPU value. int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2; Dsubu(t8, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp + kNumOfSavedRegisters * kDoubleSize)); for (int i = 0; i < kNumOfSavedRegisters; i++) { FPURegister reg = FPURegister::from_code(2 * i); Ldc1(reg, MemOperand(t8, i * kDoubleSize)); } } // Clear top frame. li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); Sd(zero_reg, MemOperand(t8)); // Restore current context from top and clear it in debug mode. li(t8, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Ld(cp, MemOperand(t8)); #ifdef DEBUG li(t8, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Sd(a3, MemOperand(t8)); #endif // Pop the arguments, restore registers, and return. mov(sp, fp); // Respect ABI stack constraint. Ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); Ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); if (argument_count.is_valid()) { if (argument_count_is_length) { daddu(sp, sp, argument_count); } else { Dlsa(sp, sp, argument_count, kPointerSizeLog2, t8); } } if (do_return) { Ret(USE_DELAY_SLOT); // If returning, the instruction in the delay slot will be the addiu below. } daddiu(sp, sp, 2 * kPointerSize); } int TurboAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64 // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one Mips // platform for another Mips platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_MIPS // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_MIPS } void MacroAssembler::AssertStackIsAligned() { if (emit_debug_code()) { const int frame_alignment = ActivationFrameAlignment(); const int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { Label alignment_as_expected; DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, sp, frame_alignment_mask); Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg)); } // Don't use Check here, as it will call Runtime_Abort re-entering here. stop("Unexpected stack alignment"); bind(&alignment_as_expected); } } } void TurboAssembler::SmiUntag(Register dst, const MemOperand& src) { if (SmiValuesAre32Bits()) { Lw(dst, MemOperand(src.rm(), SmiWordOffset(src.offset()))); } else { DCHECK(SmiValuesAre31Bits()); Lw(dst, src); SmiUntag(dst); } } void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case) { // DCHECK(dst!=src); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); JumpIfSmi(src, smi_case, scratch, USE_DELAY_SLOT); SmiUntag(dst, src); } void TurboAssembler::JumpIfSmi(Register value, Label* smi_label, Register scratch, BranchDelaySlot bd) { DCHECK_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch, BranchDelaySlot bd) { DCHECK_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); // TODO(plind): Find some better to fix this assert issue. #if defined(__APPLE__) DCHECK_EQ(1, kSmiTagMask); #else DCHECK_EQ((int64_t)1, kSmiTagMask); #endif // Both Smi tags must be 1 (not Smi). UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); and_(scratch, reg1, reg2); JumpIfSmi(scratch, on_either_smi); } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, object, kSmiTagMask); Check(ne, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg)); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, object, kSmiTagMask); Check(eq, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg)); } } void MacroAssembler::AssertConstructor(Register object) { if (emit_debug_code()) { BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor, t8, Operand(zero_reg)); ld(t8, FieldMemOperand(object, HeapObject::kMapOffset)); Lbu(t8, FieldMemOperand(t8, Map::kBitFieldOffset)); And(t8, t8, Operand(Map::IsConstructorBit::kMask)); Check(ne, AbortReason::kOperandIsNotAConstructor, t8, Operand(zero_reg)); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, t8, Operand(zero_reg)); GetObjectType(object, t8, t8); Check(eq, AbortReason::kOperandIsNotAFunction, t8, Operand(JS_FUNCTION_TYPE)); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, t8, Operand(zero_reg)); GetObjectType(object, t8, t8); Check(eq, AbortReason::kOperandIsNotABoundFunction, t8, Operand(JS_BOUND_FUNCTION_TYPE)); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!emit_debug_code()) return; BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, t8, Operand(zero_reg)); GetObjectType(object, t8, t8); Label done; // Check if JSGeneratorObject Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE)); // Check if JSAsyncGeneratorObject Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); Abort(AbortReason::kOperandIsNotAGeneratorObject); bind(&done); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); LoadRoot(scratch, RootIndex::kUndefinedValue); Branch(&done_checking, eq, object, Operand(scratch)); GetObjectType(object, scratch, scratch); Assert(eq, AbortReason::kExpectedUndefinedOrCell, scratch, Operand(ALLOCATION_SITE_TYPE)); bind(&done_checking); } } void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_s(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF32(src1, src2); BranchTrueF(out_of_line); if (kArchVariant >= kMips64r6) { max_s(dst, src1, src2); } else { Label return_left, return_right, done; CompareF32(OLT, src1, src2); BranchTrueShortF(&return_right); CompareF32(OLT, src2, src1); BranchTrueShortF(&return_left); // Operands are equal, but check for +/-0. { BlockTrampolinePoolScope block_trampoline_pool(this); mfc1(t8, src1); dsll32(t8, t8, 0); Branch(&return_left, eq, t8, Operand(zero_reg)); Branch(&return_right); } bind(&return_right); if (src2 != dst) { Move_s(dst, src2); } Branch(&done); bind(&return_left); if (src1 != dst) { Move_s(dst, src1); } bind(&done); } } void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { add_s(dst, src1, src2); } void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_s(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF32(src1, src2); BranchTrueF(out_of_line); if (kArchVariant >= kMips64r6) { min_s(dst, src1, src2); } else { Label return_left, return_right, done; CompareF32(OLT, src1, src2); BranchTrueShortF(&return_left); CompareF32(OLT, src2, src1); BranchTrueShortF(&return_right); // Left equals right => check for -0. { BlockTrampolinePoolScope block_trampoline_pool(this); mfc1(t8, src1); dsll32(t8, t8, 0); Branch(&return_right, eq, t8, Operand(zero_reg)); Branch(&return_left); } bind(&return_right); if (src2 != dst) { Move_s(dst, src2); } Branch(&done); bind(&return_left); if (src1 != dst) { Move_s(dst, src1); } bind(&done); } } void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { add_s(dst, src1, src2); } void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_d(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF64(src1, src2); BranchTrueF(out_of_line); if (kArchVariant >= kMips64r6) { max_d(dst, src1, src2); } else { Label return_left, return_right, done; CompareF64(OLT, src1, src2); BranchTrueShortF(&return_right); CompareF64(OLT, src2, src1); BranchTrueShortF(&return_left); // Left equals right => check for -0. { BlockTrampolinePoolScope block_trampoline_pool(this); dmfc1(t8, src1); Branch(&return_left, eq, t8, Operand(zero_reg)); Branch(&return_right); } bind(&return_right); if (src2 != dst) { Move_d(dst, src2); } Branch(&done); bind(&return_left); if (src1 != dst) { Move_d(dst, src1); } bind(&done); } } void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { add_d(dst, src1, src2); } void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_d(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF64(src1, src2); BranchTrueF(out_of_line); if (kArchVariant >= kMips64r6) { min_d(dst, src1, src2); } else { Label return_left, return_right, done; CompareF64(OLT, src1, src2); BranchTrueShortF(&return_left); CompareF64(OLT, src2, src1); BranchTrueShortF(&return_right); // Left equals right => check for -0. { BlockTrampolinePoolScope block_trampoline_pool(this); dmfc1(t8, src1); Branch(&return_right, eq, t8, Operand(zero_reg)); Branch(&return_left); } bind(&return_right); if (src2 != dst) { Move_d(dst, src2); } Branch(&done); bind(&return_left); if (src1 != dst) { Move_d(dst, src1); } bind(&done); } } void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { add_d(dst, src1, src2); } static const int kRegisterPassedArguments = 8; int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; num_reg_arguments += 2 * num_double_arguments; // O32: Up to four simple arguments are passed in registers a0..a3. // N64: Up to eight simple arguments are passed in registers a0..a7. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } stack_passed_words += kCArgSlotCount; return stack_passed_words; } void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots. // O32: Up to four simple arguments are passed in registers a0..a3. // Those four arguments must have reserved argument slots on the stack for // mips, even though those argument slots are not normally used. // Both ABIs: Remaining arguments are pushed on the stack, above (higher // address than) the (O32) argument slots. (arg slot calculation handled by // CalculateStackPassedWords()). int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); Sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void TurboAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { BlockTrampolinePoolScope block_trampoline_pool(this); li(t9, function); CallCFunctionHelper(t9, num_reg_arguments, num_double_arguments); } void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void TurboAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void TurboAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void TurboAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); DCHECK(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. // The argument stots are presumed to have been set up by // PrepareCallCFunction. The C function must be called via t9, for mips ABI. #if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64 if (emit_debug_code()) { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); Label alignment_as_expected; { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); And(scratch, sp, Operand(frame_alignment_mask)); Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg)); } // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment in CallCFunction"); bind(&alignment_as_expected); } } #endif // V8_HOST_ARCH_MIPS // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. { BlockTrampolinePoolScope block_trampoline_pool(this); if (function != t9) { mov(t9, function); function = t9; } Call(function); } int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (base::OS::ActivationFrameAlignment() > kPointerSize) { Ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } #undef BRANCH_ARGS_CHECK void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met) { And(scratch, object, Operand(~kPageAlignmentMask)); Ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); And(scratch, scratch, Operand(mask)); Branch(condition_met, cc, scratch, Operand(zero_reg)); } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); Register candidate = Register::from_code(code); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); } void TurboAssembler::ComputeCodeStartAddress(Register dst) { // This push on ra and the pop below together ensure that we restore the // register ra, which is needed while computing the code start address. push(ra); // The nal instruction puts the address of the current instruction into // the return address (ra) register, which we can use later on. if (kArchVariant == kMips64r6) { addiupc(ra, 1); } else { nal(); nop(); } int pc = pc_offset(); li(dst, Operand(pc)); Dsubu(dst, ra, dst); pop(ra); // Restore ra } void TurboAssembler::ResetSpeculationPoisonRegister() { li(kSpeculationPoisonRegister, -1); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64