// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/libsampler/sampler.h" #if V8_OS_POSIX && !V8_OS_CYGWIN && !V8_OS_FUCHSIA #define USE_SIGNALS #include #include #include #include #if !V8_OS_QNX && !V8_OS_AIX #include // NOLINT #endif #if V8_OS_MACOSX #include // OpenBSD doesn't have . ucontext_t lives in // and is a typedef for struct sigcontext. There is no uc_mcontext. #elif !V8_OS_OPENBSD #include #endif #include #elif V8_OS_WIN || V8_OS_CYGWIN #include "src/base/win32-headers.h" #elif V8_OS_FUCHSIA #include #include #include #include // TODO(wez): Remove this once the Fuchsia SDK has rolled. #if defined(ZX_THREAD_STATE_REGSET0) #define ZX_THREAD_STATE_GENERAL_REGS ZX_THREAD_STATE_REGSET0 zx_status_t zx_thread_read_state(zx_handle_t h, uint32_t k, void* b, size_t l) { uint32_t dummy_out_len = 0; return zx_thread_read_state(h, k, b, static_cast(l), &dummy_out_len); } #if defined(__x86_64__) typedef zx_x86_64_general_regs_t zx_thread_state_general_regs_t; #else typedef zx_arm64_general_regs_t zx_thread_state_general_regs_t; #endif #endif // !defined(ZX_THREAD_STATE_GENERAL_REGS) #endif #include #include #include #include "src/base/atomic-utils.h" #include "src/base/hashmap.h" #include "src/base/platform/platform.h" #if V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T) // Not all versions of Android's C library provide ucontext_t. // Detect this and provide custom but compatible definitions. Note that these // follow the GLibc naming convention to access register values from // mcontext_t. // // See http://code.google.com/p/android/issues/detail?id=34784 #if defined(__arm__) typedef struct sigcontext mcontext_t; typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; // Other fields are not used by V8, don't define them here. } ucontext_t; #elif defined(__aarch64__) typedef struct sigcontext mcontext_t; typedef struct ucontext { uint64_t uc_flags; struct ucontext *uc_link; stack_t uc_stack; mcontext_t uc_mcontext; // Other fields are not used by V8, don't define them here. } ucontext_t; #elif defined(__mips__) // MIPS version of sigcontext, for Android bionic. typedef struct { uint32_t regmask; uint32_t status; uint64_t pc; uint64_t gregs[32]; uint64_t fpregs[32]; uint32_t acx; uint32_t fpc_csr; uint32_t fpc_eir; uint32_t used_math; uint32_t dsp; uint64_t mdhi; uint64_t mdlo; uint32_t hi1; uint32_t lo1; uint32_t hi2; uint32_t lo2; uint32_t hi3; uint32_t lo3; } mcontext_t; typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; // Other fields are not used by V8, don't define them here. } ucontext_t; #elif defined(__i386__) // x86 version for Android. typedef struct { uint32_t gregs[19]; void* fpregs; uint32_t oldmask; uint32_t cr2; } mcontext_t; typedef uint32_t kernel_sigset_t[2]; // x86 kernel uses 64-bit signal masks typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; // Other fields are not used by V8, don't define them here. } ucontext_t; enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 }; #elif defined(__x86_64__) // x64 version for Android. typedef struct { uint64_t gregs[23]; void* fpregs; uint64_t __reserved1[8]; } mcontext_t; typedef struct ucontext { uint64_t uc_flags; struct ucontext *uc_link; stack_t uc_stack; mcontext_t uc_mcontext; // Other fields are not used by V8, don't define them here. } ucontext_t; enum { REG_RBP = 10, REG_RSP = 15, REG_RIP = 16 }; #endif #endif // V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T) namespace v8 { namespace sampler { namespace { #if defined(USE_SIGNALS) typedef std::vector SamplerList; typedef SamplerList::iterator SamplerListIterator; typedef base::AtomicValue AtomicMutex; class AtomicGuard { public: explicit AtomicGuard(AtomicMutex* atomic, bool is_blocking = true) : atomic_(atomic), is_success_(false) { do { // Use Acquire_Load to gain mutual exclusion. USE(atomic_->Value()); is_success_ = atomic_->TrySetValue(false, true); } while (is_blocking && !is_success_); } bool is_success() const { return is_success_; } ~AtomicGuard() { if (!is_success_) return; atomic_->SetValue(false); } private: AtomicMutex* const atomic_; bool is_success_; }; // Returns key for hash map. void* ThreadKey(pthread_t thread_id) { return reinterpret_cast(thread_id); } // Returns hash value for hash map. uint32_t ThreadHash(pthread_t thread_id) { #if V8_OS_BSD return static_cast(reinterpret_cast(thread_id)); #else return static_cast(thread_id); #endif } #endif // USE_SIGNALS } // namespace #if defined(USE_SIGNALS) class Sampler::PlatformData { public: PlatformData() : vm_tid_(pthread_self()) {} pthread_t vm_tid() const { return vm_tid_; } private: pthread_t vm_tid_; }; class SamplerManager { public: SamplerManager() : sampler_map_() {} void AddSampler(Sampler* sampler) { AtomicGuard atomic_guard(&samplers_access_counter_); DCHECK(sampler->IsActive() || !sampler->IsRegistered()); // Add sampler into map if needed. pthread_t thread_id = sampler->platform_data()->vm_tid(); base::HashMap::Entry* entry = sampler_map_.LookupOrInsert(ThreadKey(thread_id), ThreadHash(thread_id)); DCHECK_NOT_NULL(entry); if (entry->value == nullptr) { SamplerList* samplers = new SamplerList(); samplers->push_back(sampler); entry->value = samplers; } else { SamplerList* samplers = reinterpret_cast(entry->value); bool exists = false; for (SamplerListIterator iter = samplers->begin(); iter != samplers->end(); ++iter) { if (*iter == sampler) { exists = true; break; } } if (!exists) { samplers->push_back(sampler); } } } void RemoveSampler(Sampler* sampler) { AtomicGuard atomic_guard(&samplers_access_counter_); DCHECK(sampler->IsActive() || sampler->IsRegistered()); // Remove sampler from map. pthread_t thread_id = sampler->platform_data()->vm_tid(); void* thread_key = ThreadKey(thread_id); uint32_t thread_hash = ThreadHash(thread_id); base::HashMap::Entry* entry = sampler_map_.Lookup(thread_key, thread_hash); DCHECK_NOT_NULL(entry); SamplerList* samplers = reinterpret_cast(entry->value); for (SamplerListIterator iter = samplers->begin(); iter != samplers->end(); ++iter) { if (*iter == sampler) { samplers->erase(iter); break; } } if (samplers->empty()) { sampler_map_.Remove(thread_key, thread_hash); delete samplers; } } #if defined(USE_SIGNALS) void DoSample(const v8::RegisterState& state) { AtomicGuard atomic_guard(&SamplerManager::samplers_access_counter_, false); if (!atomic_guard.is_success()) return; pthread_t thread_id = pthread_self(); base::HashMap::Entry* entry = sampler_map_.Lookup(ThreadKey(thread_id), ThreadHash(thread_id)); if (!entry) return; SamplerList& samplers = *static_cast(entry->value); for (size_t i = 0; i < samplers.size(); ++i) { Sampler* sampler = samplers[i]; Isolate* isolate = sampler->isolate(); // We require a fully initialized and entered isolate. if (isolate == nullptr || !isolate->IsInUse()) continue; if (v8::Locker::IsActive() && !Locker::IsLocked(isolate)) continue; sampler->SampleStack(state); } } #endif static SamplerManager* instance() { return instance_.Pointer(); } private: base::HashMap sampler_map_; static AtomicMutex samplers_access_counter_; static base::LazyInstance::type instance_; }; AtomicMutex SamplerManager::samplers_access_counter_; base::LazyInstance::type SamplerManager::instance_ = LAZY_INSTANCE_INITIALIZER; #elif V8_OS_WIN || V8_OS_CYGWIN // ---------------------------------------------------------------------------- // Win32 profiler support. On Cygwin we use the same sampler implementation as // on Win32. class Sampler::PlatformData { public: // Get a handle to the calling thread. This is the thread that we are // going to profile. We need to make a copy of the handle because we are // going to use it in the sampler thread. Using GetThreadHandle() will // not work in this case. We're using OpenThread because DuplicateHandle // for some reason doesn't work in Chrome's sandbox. PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_QUERY_INFORMATION, false, GetCurrentThreadId())) {} ~PlatformData() { if (profiled_thread_ != nullptr) { CloseHandle(profiled_thread_); profiled_thread_ = nullptr; } } HANDLE profiled_thread() { return profiled_thread_; } private: HANDLE profiled_thread_; }; #elif V8_OS_FUCHSIA class Sampler::PlatformData { public: PlatformData() { zx_handle_duplicate(zx_thread_self(), ZX_RIGHT_SAME_RIGHTS, &profiled_thread_); } ~PlatformData() { if (profiled_thread_ != ZX_HANDLE_INVALID) { zx_handle_close(profiled_thread_); profiled_thread_ = ZX_HANDLE_INVALID; } } zx_handle_t profiled_thread() { return profiled_thread_; } private: zx_handle_t profiled_thread_ = ZX_HANDLE_INVALID; }; #endif // USE_SIGNALS #if defined(USE_SIGNALS) class SignalHandler { public: static void SetUp() { if (!mutex_) mutex_ = new base::Mutex(); } static void TearDown() { delete mutex_; mutex_ = nullptr; } static void IncreaseSamplerCount() { base::LockGuard lock_guard(mutex_); if (++client_count_ == 1) Install(); } static void DecreaseSamplerCount() { base::LockGuard lock_guard(mutex_); if (--client_count_ == 0) Restore(); } static bool Installed() { base::LockGuard lock_guard(mutex_); return signal_handler_installed_; } private: static void Install() { struct sigaction sa; sa.sa_sigaction = &HandleProfilerSignal; sigemptyset(&sa.sa_mask); #if V8_OS_QNX sa.sa_flags = SA_SIGINFO; #else sa.sa_flags = SA_RESTART | SA_SIGINFO; #endif signal_handler_installed_ = (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0); } static void Restore() { if (signal_handler_installed_) { sigaction(SIGPROF, &old_signal_handler_, nullptr); signal_handler_installed_ = false; } } static void FillRegisterState(void* context, RegisterState* regs); static void HandleProfilerSignal(int signal, siginfo_t* info, void* context); // Protects the process wide state below. static base::Mutex* mutex_; static int client_count_; static bool signal_handler_installed_; static struct sigaction old_signal_handler_; }; base::Mutex* SignalHandler::mutex_ = nullptr; int SignalHandler::client_count_ = 0; struct sigaction SignalHandler::old_signal_handler_; bool SignalHandler::signal_handler_installed_ = false; void SignalHandler::HandleProfilerSignal(int signal, siginfo_t* info, void* context) { USE(info); if (signal != SIGPROF) return; v8::RegisterState state; FillRegisterState(context, &state); SamplerManager::instance()->DoSample(state); } void SignalHandler::FillRegisterState(void* context, RegisterState* state) { // Extracting the sample from the context is extremely machine dependent. ucontext_t* ucontext = reinterpret_cast(context); #if !(V8_OS_OPENBSD || (V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_S390))) mcontext_t& mcontext = ucontext->uc_mcontext; #endif #if V8_OS_LINUX #if V8_HOST_ARCH_IA32 state->pc = reinterpret_cast(mcontext.gregs[REG_EIP]); state->sp = reinterpret_cast(mcontext.gregs[REG_ESP]); state->fp = reinterpret_cast(mcontext.gregs[REG_EBP]); #elif V8_HOST_ARCH_X64 state->pc = reinterpret_cast(mcontext.gregs[REG_RIP]); state->sp = reinterpret_cast(mcontext.gregs[REG_RSP]); state->fp = reinterpret_cast(mcontext.gregs[REG_RBP]); #elif V8_HOST_ARCH_ARM #if V8_LIBC_GLIBC && !V8_GLIBC_PREREQ(2, 4) // Old GLibc ARM versions used a gregs[] array to access the register // values from mcontext_t. state->pc = reinterpret_cast(mcontext.gregs[R15]); state->sp = reinterpret_cast(mcontext.gregs[R13]); state->fp = reinterpret_cast(mcontext.gregs[R11]); #else state->pc = reinterpret_cast(mcontext.arm_pc); state->sp = reinterpret_cast(mcontext.arm_sp); state->fp = reinterpret_cast(mcontext.arm_fp); #endif // V8_LIBC_GLIBC && !V8_GLIBC_PREREQ(2, 4) #elif V8_HOST_ARCH_ARM64 state->pc = reinterpret_cast(mcontext.pc); state->sp = reinterpret_cast(mcontext.sp); // FP is an alias for x29. state->fp = reinterpret_cast(mcontext.regs[29]); #elif V8_HOST_ARCH_MIPS state->pc = reinterpret_cast(mcontext.pc); state->sp = reinterpret_cast(mcontext.gregs[29]); state->fp = reinterpret_cast(mcontext.gregs[30]); #elif V8_HOST_ARCH_MIPS64 state->pc = reinterpret_cast(mcontext.pc); state->sp = reinterpret_cast(mcontext.gregs[29]); state->fp = reinterpret_cast(mcontext.gregs[30]); #elif V8_HOST_ARCH_PPC #if V8_LIBC_GLIBC state->pc = reinterpret_cast(ucontext->uc_mcontext.regs->nip); state->sp = reinterpret_cast(ucontext->uc_mcontext.regs->gpr[PT_R1]); state->fp = reinterpret_cast(ucontext->uc_mcontext.regs->gpr[PT_R31]); #else // Some C libraries, notably Musl, define the regs member as a void pointer state->pc = reinterpret_cast(ucontext->uc_mcontext.gp_regs[32]); state->sp = reinterpret_cast(ucontext->uc_mcontext.gp_regs[1]); state->fp = reinterpret_cast(ucontext->uc_mcontext.gp_regs[31]); #endif #elif V8_HOST_ARCH_S390 #if V8_TARGET_ARCH_32_BIT // 31-bit target will have bit 0 (MSB) of the PSW set to denote addressing // mode. This bit needs to be masked out to resolve actual address. state->pc = reinterpret_cast(ucontext->uc_mcontext.psw.addr & 0x7FFFFFFF); #else state->pc = reinterpret_cast(ucontext->uc_mcontext.psw.addr); #endif // V8_TARGET_ARCH_32_BIT state->sp = reinterpret_cast(ucontext->uc_mcontext.gregs[15]); state->fp = reinterpret_cast(ucontext->uc_mcontext.gregs[11]); #endif // V8_HOST_ARCH_* #elif V8_OS_MACOSX #if V8_HOST_ARCH_X64 #if __DARWIN_UNIX03 state->pc = reinterpret_cast(mcontext->__ss.__rip); state->sp = reinterpret_cast(mcontext->__ss.__rsp); state->fp = reinterpret_cast(mcontext->__ss.__rbp); #else // !__DARWIN_UNIX03 state->pc = reinterpret_cast(mcontext->ss.rip); state->sp = reinterpret_cast(mcontext->ss.rsp); state->fp = reinterpret_cast(mcontext->ss.rbp); #endif // __DARWIN_UNIX03 #elif V8_HOST_ARCH_IA32 #if __DARWIN_UNIX03 state->pc = reinterpret_cast(mcontext->__ss.__eip); state->sp = reinterpret_cast(mcontext->__ss.__esp); state->fp = reinterpret_cast(mcontext->__ss.__ebp); #else // !__DARWIN_UNIX03 state->pc = reinterpret_cast(mcontext->ss.eip); state->sp = reinterpret_cast(mcontext->ss.esp); state->fp = reinterpret_cast(mcontext->ss.ebp); #endif // __DARWIN_UNIX03 #endif // V8_HOST_ARCH_IA32 #elif V8_OS_FREEBSD #if V8_HOST_ARCH_IA32 state->pc = reinterpret_cast(mcontext.mc_eip); state->sp = reinterpret_cast(mcontext.mc_esp); state->fp = reinterpret_cast(mcontext.mc_ebp); #elif V8_HOST_ARCH_X64 state->pc = reinterpret_cast(mcontext.mc_rip); state->sp = reinterpret_cast(mcontext.mc_rsp); state->fp = reinterpret_cast(mcontext.mc_rbp); #elif V8_HOST_ARCH_ARM state->pc = reinterpret_cast(mcontext.mc_r15); state->sp = reinterpret_cast(mcontext.mc_r13); state->fp = reinterpret_cast(mcontext.mc_r11); #endif // V8_HOST_ARCH_* #elif V8_OS_NETBSD #if V8_HOST_ARCH_IA32 state->pc = reinterpret_cast(mcontext.__gregs[_REG_EIP]); state->sp = reinterpret_cast(mcontext.__gregs[_REG_ESP]); state->fp = reinterpret_cast(mcontext.__gregs[_REG_EBP]); #elif V8_HOST_ARCH_X64 state->pc = reinterpret_cast(mcontext.__gregs[_REG_RIP]); state->sp = reinterpret_cast(mcontext.__gregs[_REG_RSP]); state->fp = reinterpret_cast(mcontext.__gregs[_REG_RBP]); #endif // V8_HOST_ARCH_* #elif V8_OS_OPENBSD #if V8_HOST_ARCH_IA32 state->pc = reinterpret_cast(ucontext->sc_eip); state->sp = reinterpret_cast(ucontext->sc_esp); state->fp = reinterpret_cast(ucontext->sc_ebp); #elif V8_HOST_ARCH_X64 state->pc = reinterpret_cast(ucontext->sc_rip); state->sp = reinterpret_cast(ucontext->sc_rsp); state->fp = reinterpret_cast(ucontext->sc_rbp); #endif // V8_HOST_ARCH_* #elif V8_OS_SOLARIS state->pc = reinterpret_cast(mcontext.gregs[REG_PC]); state->sp = reinterpret_cast(mcontext.gregs[REG_SP]); state->fp = reinterpret_cast(mcontext.gregs[REG_FP]); #elif V8_OS_QNX #if V8_HOST_ARCH_IA32 state->pc = reinterpret_cast(mcontext.cpu.eip); state->sp = reinterpret_cast(mcontext.cpu.esp); state->fp = reinterpret_cast(mcontext.cpu.ebp); #elif V8_HOST_ARCH_ARM state->pc = reinterpret_cast(mcontext.cpu.gpr[ARM_REG_PC]); state->sp = reinterpret_cast(mcontext.cpu.gpr[ARM_REG_SP]); state->fp = reinterpret_cast(mcontext.cpu.gpr[ARM_REG_FP]); #endif // V8_HOST_ARCH_* #elif V8_OS_AIX state->pc = reinterpret_cast(mcontext.jmp_context.iar); state->sp = reinterpret_cast(mcontext.jmp_context.gpr[1]); state->fp = reinterpret_cast(mcontext.jmp_context.gpr[31]); #endif // V8_OS_AIX } #endif // USE_SIGNALS void Sampler::SetUp() { #if defined(USE_SIGNALS) SignalHandler::SetUp(); #endif } void Sampler::TearDown() { #if defined(USE_SIGNALS) SignalHandler::TearDown(); #endif } Sampler::Sampler(Isolate* isolate) : is_counting_samples_(false), js_sample_count_(0), external_sample_count_(0), isolate_(isolate), profiling_(false), has_processing_thread_(false), active_(false), registered_(false) { data_ = new PlatformData; } Sampler::~Sampler() { DCHECK(!IsActive()); #if defined(USE_SIGNALS) if (IsRegistered()) { SamplerManager::instance()->RemoveSampler(this); } #endif delete data_; } void Sampler::Start() { DCHECK(!IsActive()); SetActive(true); #if defined(USE_SIGNALS) SamplerManager::instance()->AddSampler(this); #endif } void Sampler::Stop() { #if defined(USE_SIGNALS) SamplerManager::instance()->RemoveSampler(this); #endif DCHECK(IsActive()); SetActive(false); SetRegistered(false); } void Sampler::IncreaseProfilingDepth() { base::Relaxed_AtomicIncrement(&profiling_, 1); #if defined(USE_SIGNALS) SignalHandler::IncreaseSamplerCount(); #endif } void Sampler::DecreaseProfilingDepth() { #if defined(USE_SIGNALS) SignalHandler::DecreaseSamplerCount(); #endif base::Relaxed_AtomicIncrement(&profiling_, -1); } #if defined(USE_SIGNALS) void Sampler::DoSample() { if (!SignalHandler::Installed()) return; if (!IsActive() && !IsRegistered()) { SamplerManager::instance()->AddSampler(this); SetRegistered(true); } pthread_kill(platform_data()->vm_tid(), SIGPROF); } #elif V8_OS_WIN || V8_OS_CYGWIN void Sampler::DoSample() { HANDLE profiled_thread = platform_data()->profiled_thread(); if (profiled_thread == nullptr) return; const DWORD kSuspendFailed = static_cast(-1); if (SuspendThread(profiled_thread) == kSuspendFailed) return; // Context used for sampling the register state of the profiled thread. CONTEXT context; memset(&context, 0, sizeof(context)); context.ContextFlags = CONTEXT_FULL; if (GetThreadContext(profiled_thread, &context) != 0) { v8::RegisterState state; #if V8_HOST_ARCH_X64 state.pc = reinterpret_cast(context.Rip); state.sp = reinterpret_cast(context.Rsp); state.fp = reinterpret_cast(context.Rbp); #else state.pc = reinterpret_cast(context.Eip); state.sp = reinterpret_cast(context.Esp); state.fp = reinterpret_cast(context.Ebp); #endif SampleStack(state); } ResumeThread(profiled_thread); } #elif V8_OS_FUCHSIA void Sampler::DoSample() { zx_handle_t profiled_thread = platform_data()->profiled_thread(); if (profiled_thread == ZX_HANDLE_INVALID) return; zx_handle_t suspend_token = ZX_HANDLE_INVALID; if (zx_task_suspend_token(profiled_thread, &suspend_token) != ZX_OK) return; // Wait for the target thread to become suspended, or to exit. // TODO(wez): There is currently no suspension count for threads, so there // is a risk that some other caller resumes the thread in-between our suspend // and wait calls, causing us to miss the SUSPENDED signal. We apply a 100ms // deadline to protect against hanging the sampler thread in this case. zx_signals_t signals = 0; zx_status_t suspended = zx_object_wait_one( profiled_thread, ZX_THREAD_SUSPENDED | ZX_THREAD_TERMINATED, zx_deadline_after(ZX_MSEC(100)), &signals); if (suspended != ZX_OK || (signals & ZX_THREAD_SUSPENDED) == 0) { zx_handle_close(suspend_token); return; } // Fetch a copy of its "general register" states. zx_thread_state_general_regs_t thread_state = {}; if (zx_thread_read_state(profiled_thread, ZX_THREAD_STATE_GENERAL_REGS, &thread_state, sizeof(thread_state)) == ZX_OK) { v8::RegisterState state; #if V8_HOST_ARCH_X64 state.pc = reinterpret_cast(thread_state.rip); state.sp = reinterpret_cast(thread_state.rsp); state.fp = reinterpret_cast(thread_state.rbp); #elif V8_HOST_ARCH_ARM64 state.pc = reinterpret_cast(thread_state.pc); state.sp = reinterpret_cast(thread_state.sp); state.fp = reinterpret_cast(thread_state.r[29]); #endif SampleStack(state); } zx_handle_close(suspend_token); } // TODO(wez): Remove this once the Fuchsia SDK has rolled. #if defined(ZX_THREAD_STATE_REGSET0) #undef ZX_THREAD_STATE_GENERAL_REGS #endif #endif // USE_SIGNALS } // namespace sampler } // namespace v8