// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_INTERPRETER_INTERPRETER_ASSEMBLER_H_ #define V8_INTERPRETER_INTERPRETER_ASSEMBLER_H_ #include "src/allocation.h" #include "src/builtins/builtins.h" #include "src/code-stub-assembler.h" #include "src/globals.h" #include "src/interpreter/bytecode-register.h" #include "src/interpreter/bytecodes.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { namespace interpreter { class V8_EXPORT_PRIVATE InterpreterAssembler : public CodeStubAssembler { public: InterpreterAssembler(compiler::CodeAssemblerState* state, Bytecode bytecode, OperandScale operand_scale); ~InterpreterAssembler(); // Returns the 32-bit unsigned count immediate for bytecode operand // |operand_index| in the current bytecode. compiler::Node* BytecodeOperandCount(int operand_index); // Returns the 32-bit unsigned flag for bytecode operand |operand_index| // in the current bytecode. compiler::Node* BytecodeOperandFlag(int operand_index); // Returns the 32-bit zero-extended index immediate for bytecode operand // |operand_index| in the current bytecode. compiler::Node* BytecodeOperandIdxInt32(int operand_index); // Returns the word zero-extended index immediate for bytecode operand // |operand_index| in the current bytecode. compiler::Node* BytecodeOperandIdx(int operand_index); // Returns the smi index immediate for bytecode operand |operand_index| // in the current bytecode. compiler::Node* BytecodeOperandIdxSmi(int operand_index); // Returns the 32-bit unsigned immediate for bytecode operand |operand_index| // in the current bytecode. compiler::Node* BytecodeOperandUImm(int operand_index); // Returns the word-size unsigned immediate for bytecode operand // |operand_index| in the current bytecode. compiler::Node* BytecodeOperandUImmWord(int operand_index); // Returns the unsigned smi immediate for bytecode operand |operand_index| in // the current bytecode. compiler::Node* BytecodeOperandUImmSmi(int operand_index); // Returns the 32-bit signed immediate for bytecode operand |operand_index| // in the current bytecode. compiler::Node* BytecodeOperandImm(int operand_index); // Returns the word-size signed immediate for bytecode operand |operand_index| // in the current bytecode. compiler::Node* BytecodeOperandImmIntPtr(int operand_index); // Returns the smi immediate for bytecode operand |operand_index| in the // current bytecode. compiler::Node* BytecodeOperandImmSmi(int operand_index); // Returns the 32-bit unsigned runtime id immediate for bytecode operand // |operand_index| in the current bytecode. compiler::Node* BytecodeOperandRuntimeId(int operand_index); // Returns the 32-bit unsigned native context index immediate for bytecode // operand |operand_index| in the current bytecode. compiler::Node* BytecodeOperandNativeContextIndex(int operand_index); // Returns the 32-bit unsigned intrinsic id immediate for bytecode operand // |operand_index| in the current bytecode. compiler::Node* BytecodeOperandIntrinsicId(int operand_index); // Accumulator. compiler::Node* GetAccumulator(); void SetAccumulator(compiler::Node* value); // Context. compiler::Node* GetContext(); void SetContext(compiler::Node* value); // Context at |depth| in the context chain starting at |context|. compiler::Node* GetContextAtDepth(compiler::Node* context, compiler::Node* depth); // Goto the given |target| if the context chain starting at |context| has any // extensions up to the given |depth|. void GotoIfHasContextExtensionUpToDepth(compiler::Node* context, compiler::Node* depth, Label* target); // A RegListNodePair provides an abstraction over lists of registers. class RegListNodePair { public: RegListNodePair(Node* base_reg_location, Node* reg_count) : base_reg_location_(base_reg_location), reg_count_(reg_count) {} compiler::Node* reg_count() const { return reg_count_; } compiler::Node* base_reg_location() const { return base_reg_location_; } private: compiler::Node* base_reg_location_; compiler::Node* reg_count_; }; // Backup/restore register file to/from a fixed array of the correct length. // There is an asymmetry between suspend/export and resume/import. // - Suspend copies arguments and registers to the generator. // - Resume copies only the registers from the generator, the arguments // are copied by the ResumeGenerator trampoline. compiler::Node* ExportParametersAndRegisterFile( TNode array, const RegListNodePair& registers, TNode formal_parameter_count); compiler::Node* ImportRegisterFile(TNode array, const RegListNodePair& registers, TNode formal_parameter_count); // Loads from and stores to the interpreter register file. compiler::Node* LoadRegister(Register reg); compiler::Node* LoadAndUntagRegister(Register reg); compiler::Node* LoadRegisterAtOperandIndex(int operand_index); std::pair LoadRegisterPairAtOperandIndex( int operand_index); void StoreRegister(compiler::Node* value, Register reg); void StoreAndTagRegister(compiler::Node* value, Register reg); void StoreRegisterAtOperandIndex(compiler::Node* value, int operand_index); void StoreRegisterPairAtOperandIndex(compiler::Node* value1, compiler::Node* value2, int operand_index); void StoreRegisterTripleAtOperandIndex(compiler::Node* value1, compiler::Node* value2, compiler::Node* value3, int operand_index); RegListNodePair GetRegisterListAtOperandIndex(int operand_index); Node* LoadRegisterFromRegisterList(const RegListNodePair& reg_list, int index); Node* RegisterLocationInRegisterList(const RegListNodePair& reg_list, int index); // Load constant at the index specified in operand |operand_index| from the // constant pool. compiler::Node* LoadConstantPoolEntryAtOperandIndex(int operand_index); // Load and untag constant at the index specified in operand |operand_index| // from the constant pool. compiler::Node* LoadAndUntagConstantPoolEntryAtOperandIndex( int operand_index); // Load constant at |index| in the constant pool. compiler::Node* LoadConstantPoolEntry(compiler::Node* index); // Load and untag constant at |index| in the constant pool. compiler::Node* LoadAndUntagConstantPoolEntry(compiler::Node* index); // Load the FeedbackVector for the current function. compiler::TNode LoadFeedbackVector(); // Increment the call count for a CALL_IC or construct call. // The call count is located at feedback_vector[slot_id + 1]. void IncrementCallCount(compiler::Node* feedback_vector, compiler::Node* slot_id); // Collect the callable |target| feedback for either a CALL_IC or // an INSTANCEOF_IC in the |feedback_vector| at |slot_id|. void CollectCallableFeedback(compiler::Node* target, compiler::Node* context, compiler::Node* feedback_vector, compiler::Node* slot_id); // Collect CALL_IC feedback for |target| function in the // |feedback_vector| at |slot_id|, and the call counts in // the |feedback_vector| at |slot_id+1|. void CollectCallFeedback(compiler::Node* target, compiler::Node* context, compiler::Node* feedback_vector, compiler::Node* slot_id); // Call JSFunction or Callable |function| with |args| arguments, possibly // including the receiver depending on |receiver_mode|. After the call returns // directly dispatches to the next bytecode. void CallJSAndDispatch(compiler::Node* function, compiler::Node* context, const RegListNodePair& args, ConvertReceiverMode receiver_mode); // Call JSFunction or Callable |function| with |arg_count| arguments (not // including receiver) passed as |args|, possibly including the receiver // depending on |receiver_mode|. After the call returns directly dispatches to // the next bytecode. template void CallJSAndDispatch(Node* function, Node* context, Node* arg_count, ConvertReceiverMode receiver_mode, TArgs... args); // Call JSFunction or Callable |function| with |args| // arguments (not including receiver), and the final argument being spread. // After the call returns directly dispatches to the next bytecode. void CallJSWithSpreadAndDispatch(compiler::Node* function, compiler::Node* context, const RegListNodePair& args, compiler::Node* slot_id, compiler::Node* feedback_vector); // Call constructor |target| with |args| arguments (not including receiver). // The |new_target| is the same as the |target| for the new keyword, but // differs for the super keyword. compiler::Node* Construct(compiler::Node* target, compiler::Node* context, compiler::Node* new_target, const RegListNodePair& args, compiler::Node* slot_id, compiler::Node* feedback_vector); // Call constructor |target| with |args| arguments (not including // receiver). The last argument is always a spread. The |new_target| is the // same as the |target| for the new keyword, but differs for the super // keyword. compiler::Node* ConstructWithSpread(compiler::Node* target, compiler::Node* context, compiler::Node* new_target, const RegListNodePair& args, compiler::Node* slot_id, compiler::Node* feedback_vector); // Call runtime function with |args| arguments which will return |return_size| // number of values. compiler::Node* CallRuntimeN(compiler::Node* function_id, compiler::Node* context, const RegListNodePair& args, int return_size = 1); // Jump forward relative to the current bytecode by the |jump_offset|. compiler::Node* Jump(compiler::Node* jump_offset); // Jump backward relative to the current bytecode by the |jump_offset|. compiler::Node* JumpBackward(compiler::Node* jump_offset); // Jump forward relative to the current bytecode by |jump_offset| if the // word values |lhs| and |rhs| are equal. void JumpIfWordEqual(compiler::Node* lhs, compiler::Node* rhs, compiler::Node* jump_offset); // Jump forward relative to the current bytecode by |jump_offset| if the // word values |lhs| and |rhs| are not equal. void JumpIfWordNotEqual(compiler::Node* lhs, compiler::Node* rhs, compiler::Node* jump_offset); // Updates the profiler interrupt budget for a return. void UpdateInterruptBudgetOnReturn(); // Returns the OSR nesting level from the bytecode header. compiler::Node* LoadOSRNestingLevel(); // Dispatch to the bytecode. compiler::Node* Dispatch(); // Dispatch bytecode as wide operand variant. void DispatchWide(OperandScale operand_scale); // Dispatch to |target_bytecode| at |new_bytecode_offset|. // |target_bytecode| should be equivalent to loading from the offset. compiler::Node* DispatchToBytecode(compiler::Node* target_bytecode, compiler::Node* new_bytecode_offset); // Abort with the given abort reason. void Abort(AbortReason abort_reason); void AbortIfWordNotEqual(compiler::Node* lhs, compiler::Node* rhs, AbortReason abort_reason); // Abort if |register_count| is invalid for given register file array. void AbortIfRegisterCountInvalid(compiler::Node* parameters_and_registers, compiler::Node* formal_parameter_count, compiler::Node* register_count); // Dispatch to frame dropper trampoline if necessary. void MaybeDropFrames(compiler::Node* context); // Returns the offset from the BytecodeArrayPointer of the current bytecode. compiler::Node* BytecodeOffset(); protected: Bytecode bytecode() const { return bytecode_; } static bool TargetSupportsUnalignedAccess(); void ToNumberOrNumeric(Object::Conversion mode); // Lazily deserializes the current bytecode's handler and tail-calls into it. void DeserializeLazyAndDispatch(); private: // Returns a tagged pointer to the current function's BytecodeArray object. compiler::Node* BytecodeArrayTaggedPointer(); // Returns a raw pointer to first entry in the interpreter dispatch table. compiler::Node* DispatchTableRawPointer(); // Returns the accumulator value without checking whether bytecode // uses it. This is intended to be used only in dispatch and in // tracing as these need to bypass accumulator use validity checks. compiler::Node* GetAccumulatorUnchecked(); // Returns the frame pointer for the interpreted frame of the function being // interpreted. compiler::Node* GetInterpretedFramePointer(); // Operations on registers. compiler::Node* RegisterLocation(Register reg); compiler::Node* RegisterLocation(compiler::Node* reg_index); compiler::Node* NextRegister(compiler::Node* reg_index); compiler::Node* LoadRegister(Node* reg_index); void StoreRegister(compiler::Node* value, compiler::Node* reg_index); // Saves and restores interpreter bytecode offset to the interpreter stack // frame when performing a call. void CallPrologue(); void CallEpilogue(); // Increment the dispatch counter for the (current, next) bytecode pair. void TraceBytecodeDispatch(compiler::Node* target_index); // Traces the current bytecode by calling |function_id|. void TraceBytecode(Runtime::FunctionId function_id); // Updates the bytecode array's interrupt budget by a 32-bit unsigned |weight| // and calls Runtime::kInterrupt if counter reaches zero. If |backward|, then // the interrupt budget is decremented, otherwise it is incremented. void UpdateInterruptBudget(compiler::Node* weight, bool backward); // Returns the offset of register |index| relative to RegisterFilePointer(). compiler::Node* RegisterFrameOffset(compiler::Node* index); // Returns the offset of an operand relative to the current bytecode offset. compiler::Node* OperandOffset(int operand_index); // Returns a value built from an sequence of bytes in the bytecode // array starting at |relative_offset| from the current bytecode. // The |result_type| determines the size and signedness. of the // value read. This method should only be used on architectures that // do not support unaligned memory accesses. compiler::Node* BytecodeOperandReadUnaligned( int relative_offset, MachineType result_type, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); // Returns zero- or sign-extended to word32 value of the operand. compiler::Node* BytecodeOperandUnsignedByte( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); compiler::Node* BytecodeOperandSignedByte( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); compiler::Node* BytecodeOperandUnsignedShort( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); compiler::Node* BytecodeOperandSignedShort( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); compiler::Node* BytecodeOperandUnsignedQuad( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); compiler::Node* BytecodeOperandSignedQuad( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); // Returns zero- or sign-extended to word32 value of the operand of // given size. compiler::Node* BytecodeSignedOperand( int operand_index, OperandSize operand_size, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); compiler::Node* BytecodeUnsignedOperand( int operand_index, OperandSize operand_size, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); // Returns the word-size sign-extended register index for bytecode operand // |operand_index| in the current bytecode. Value is not poisoned on // speculation since the value loaded from the register is poisoned instead. compiler::Node* BytecodeOperandReg( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); // Returns the word zero-extended index immediate for bytecode operand // |operand_index| in the current bytecode for use when loading a . compiler::Node* BytecodeOperandConstantPoolIdx( int operand_index, LoadSensitivity needs_poisoning = LoadSensitivity::kCritical); // Jump relative to the current bytecode by the |jump_offset|. If |backward|, // then jump backward (subtract the offset), otherwise jump forward (add the // offset). Helper function for Jump and JumpBackward. compiler::Node* Jump(compiler::Node* jump_offset, bool backward); // Jump forward relative to the current bytecode by |jump_offset| if the // |condition| is true. Helper function for JumpIfWordEqual and // JumpIfWordNotEqual. void JumpConditional(compiler::Node* condition, compiler::Node* jump_offset); // Save the bytecode offset to the interpreter frame. void SaveBytecodeOffset(); // Reload the bytecode offset from the interpreter frame. Node* ReloadBytecodeOffset(); // Updates and returns BytecodeOffset() advanced by the current bytecode's // size. Traces the exit of the current bytecode. compiler::Node* Advance(); // Updates and returns BytecodeOffset() advanced by delta bytecodes. // Traces the exit of the current bytecode. compiler::Node* Advance(int delta); compiler::Node* Advance(compiler::Node* delta, bool backward = false); // Load the bytecode at |bytecode_offset|. compiler::Node* LoadBytecode(compiler::Node* bytecode_offset); // Look ahead for Star and inline it in a branch. Returns a new target // bytecode node for dispatch. compiler::Node* StarDispatchLookahead(compiler::Node* target_bytecode); // Build code for Star at the current BytecodeOffset() and Advance() to the // next dispatch offset. void InlineStar(); // Dispatch to the bytecode handler with code offset |handler|. compiler::Node* DispatchToBytecodeHandler(compiler::Node* handler, compiler::Node* bytecode_offset, compiler::Node* target_bytecode); // Dispatch to the bytecode handler with code entry point |handler_entry|. compiler::Node* DispatchToBytecodeHandlerEntry( compiler::Node* handler_entry, compiler::Node* bytecode_offset, compiler::Node* target_bytecode); int CurrentBytecodeSize() const; OperandScale operand_scale() const { return operand_scale_; } Bytecode bytecode_; OperandScale operand_scale_; CodeStubAssembler::Variable interpreted_frame_pointer_; CodeStubAssembler::Variable bytecode_array_; CodeStubAssembler::Variable bytecode_offset_; CodeStubAssembler::Variable dispatch_table_; CodeStubAssembler::Variable accumulator_; AccumulatorUse accumulator_use_; bool made_call_; bool reloaded_frame_ptr_; bool bytecode_array_valid_; bool disable_stack_check_across_call_; compiler::Node* stack_pointer_before_call_; DISALLOW_COPY_AND_ASSIGN(InterpreterAssembler); }; } // namespace interpreter } // namespace internal } // namespace v8 #endif // V8_INTERPRETER_INTERPRETER_ASSEMBLER_H_