// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_IC_STUB_CACHE_H_ #define V8_IC_STUB_CACHE_H_ #include "src/objects/name.h" #include "src/objects/tagged-value.h" namespace v8 { namespace internal { // The stub cache is used for megamorphic property accesses. // It maps (map, name, type) to property access handlers. The cache does not // need explicit invalidation when a prototype chain is modified, since the // handlers verify the chain. class SCTableReference { public: Address address() const { return address_; } private: explicit SCTableReference(Address address) : address_(address) {} Address address_; friend class StubCache; }; class V8_EXPORT_PRIVATE StubCache { public: struct Entry { // {key} is a tagged Name pointer, may be cleared by setting to empty // string. StrongTaggedValue key; // {value} is a tagged heap object reference (weak or strong), equivalent // to a MaybeObject's payload. TaggedValue value; // {map} is a tagged Map pointer, may be cleared by setting to Smi::zero(). StrongTaggedValue map; }; void Initialize(); // Access cache for entry hash(name, map). void Set(Name name, Map map, MaybeObject handler); MaybeObject Get(Name name, Map map); // Clear the lookup table (@ mark compact collection). void Clear(); enum Table { kPrimary, kSecondary }; SCTableReference key_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->key)); } SCTableReference map_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->map)); } SCTableReference value_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->value)); } StubCache::Entry* first_entry(StubCache::Table table) { switch (table) { case StubCache::kPrimary: return StubCache::primary_; case StubCache::kSecondary: return StubCache::secondary_; } UNREACHABLE(); } Isolate* isolate() { return isolate_; } // Ideally we would set kCacheIndexShift to Name::kHashShift, such that // the bit field inside the hash field gets shifted out implicitly. However, // sizeof(Entry) needs to be a multiple of 1 << kCacheIndexShift, and it // isn't clear whether letting one bit of the bit field leak into the index // computation is bad enough to warrant an additional shift to get rid of it. static const int kCacheIndexShift = 2; // The purpose of the static assert is to make us reconsider this choice // if the bit field ever grows even more. STATIC_ASSERT(kCacheIndexShift == Name::kHashShift - 1); static const int kPrimaryTableBits = 11; static const int kPrimaryTableSize = (1 << kPrimaryTableBits); static const int kSecondaryTableBits = 9; static const int kSecondaryTableSize = (1 << kSecondaryTableBits); // We compute the hash code for a map as follows: // =
^ (
>> kMapKeyShift) static const int kMapKeyShift = kPrimaryTableBits + kCacheIndexShift; // Some magic number used in the secondary hash computation. static const int kSecondaryMagic = 0xb16ca6e5; static int PrimaryOffsetForTesting(Name name, Map map); static int SecondaryOffsetForTesting(Name name, int seed); // The constructor is made public only for the purposes of testing. explicit StubCache(Isolate* isolate); private: // The stub cache has a primary and secondary level. The two levels have // different hashing algorithms in order to avoid simultaneous collisions // in both caches. Unlike a probing strategy (quadratic or otherwise) the // update strategy on updates is fairly clear and simple: Any existing entry // in the primary cache is moved to the secondary cache, and secondary cache // entries are overwritten. // Hash algorithm for the primary table. This algorithm is replicated in // assembler for every architecture. Returns an index into the table that // is scaled by 1 << kCacheIndexShift. static int PrimaryOffset(Name name, Map map); // Hash algorithm for the secondary table. This algorithm is replicated in // assembler for every architecture. Returns an index into the table that // is scaled by 1 << kCacheIndexShift. static int SecondaryOffset(Name name, int seed); // Compute the entry for a given offset in exactly the same way as // we do in generated code. We generate an hash code that already // ends in Name::kHashShift 0s. Then we multiply it so it is a multiple // of sizeof(Entry). This makes it easier to avoid making mistakes // in the hashed offset computations. static Entry* entry(Entry* table, int offset) { // The size of {Entry} must be a multiple of 1 << kCacheIndexShift. STATIC_ASSERT((sizeof(*table) >> kCacheIndexShift) << kCacheIndexShift == sizeof(*table)); const int multiplier = sizeof(*table) >> kCacheIndexShift; return reinterpret_cast(reinterpret_cast
(table) + offset * multiplier); } private: Entry primary_[kPrimaryTableSize]; Entry secondary_[kSecondaryTableSize]; Isolate* isolate_; friend class Isolate; friend class SCTableReference; DISALLOW_COPY_AND_ASSIGN(StubCache); }; } // namespace internal } // namespace v8 #endif // V8_IC_STUB_CACHE_H_