// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "src/ia32/assembler-ia32.h" #include #if V8_TARGET_ARCH_IA32 #if V8_LIBC_MSVCRT #include // _xgetbv() #endif #if V8_OS_MACOSX #include #endif #include "src/assembler-inl.h" #include "src/base/bits.h" #include "src/base/cpu.h" #include "src/code-stubs.h" #include "src/conversions-inl.h" #include "src/deoptimizer.h" #include "src/disassembler.h" #include "src/macro-assembler.h" #include "src/v8.h" namespace v8 { namespace internal { Immediate Immediate::EmbeddedNumber(double value) { int32_t smi; if (DoubleToSmiInteger(value, &smi)) return Immediate(Smi::FromInt(smi)); Immediate result(0, RelocInfo::EMBEDDED_OBJECT); result.is_heap_object_request_ = true; result.value_.heap_object_request = HeapObjectRequest(value); return result; } Immediate Immediate::EmbeddedCode(CodeStub* stub) { Immediate result(0, RelocInfo::CODE_TARGET); result.is_heap_object_request_ = true; result.value_.heap_object_request = HeapObjectRequest(stub); return result; } // ----------------------------------------------------------------------------- // Implementation of CpuFeatures namespace { #if !V8_LIBC_MSVCRT V8_INLINE uint64_t _xgetbv(unsigned int xcr) { unsigned eax, edx; // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler // used. __asm__ volatile(".byte 0x0F, 0x01, 0xD0" : "=a"(eax), "=d"(edx) : "c"(xcr)); return static_cast(eax) | (static_cast(edx) << 32); } #define _XCR_XFEATURE_ENABLED_MASK 0 #endif // !V8_LIBC_MSVCRT bool OSHasAVXSupport() { #if V8_OS_MACOSX // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being // caused by ISRs, so we detect that here and disable AVX in that case. char buffer[128]; size_t buffer_size = arraysize(buffer); int ctl_name[] = {CTL_KERN, KERN_OSRELEASE}; if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) { FATAL("V8 failed to get kernel version"); } // The buffer now contains a string of the form XX.YY.ZZ, where // XX is the major kernel version component. char* period_pos = strchr(buffer, '.'); DCHECK_NOT_NULL(period_pos); *period_pos = '\0'; long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT if (kernel_version_major <= 13) return false; #endif // V8_OS_MACOSX // Check whether OS claims to support AVX. uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); return (feature_mask & 0x6) == 0x6; } } // namespace void CpuFeatures::ProbeImpl(bool cross_compile) { base::CPU cpu; CHECK(cpu.has_sse2()); // SSE2 support is mandatory. CHECK(cpu.has_cmov()); // CMOV support is mandatory. // Only use statically determined features for cross compile (snapshot). if (cross_compile) return; if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1; if (cpu.has_ssse3() && FLAG_enable_ssse3) supported_ |= 1u << SSSE3; if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3; if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() && OSHasAVXSupport()) { supported_ |= 1u << AVX; } if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() && OSHasAVXSupport()) { supported_ |= 1u << FMA3; } if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1; if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2; if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT; if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT; if (strcmp(FLAG_mcpu, "auto") == 0) { if (cpu.is_atom()) supported_ |= 1u << ATOM; } else if (strcmp(FLAG_mcpu, "atom") == 0) { supported_ |= 1u << ATOM; } } void CpuFeatures::PrintTarget() { } void CpuFeatures::PrintFeatures() { printf( "SSE3=%d SSSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d " "POPCNT=%d ATOM=%d\n", CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSSE3), CpuFeatures::IsSupported(SSE4_1), CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3), CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2), CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT), CpuFeatures::IsSupported(ATOM)); } // ----------------------------------------------------------------------------- // Implementation of Displacement void Displacement::init(Label* L, Type type) { DCHECK(!L->is_bound()); int next = 0; if (L->is_linked()) { next = L->pos(); DCHECK_GT(next, 0); // Displacements must be at positions > 0 } // Ensure that we _never_ overflow the next field. DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize)); data_ = NextField::encode(next) | TypeField::encode(type); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo const int RelocInfo::kApplyMask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | RelocInfo::ModeMask(RelocInfo::JS_TO_WASM_CALL); bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on IA32 means that it is a relative address, as used by // branch instructions. These are also the ones that need changing when a // code object moves. return (1 << rmode_) & kApplyMask; } bool RelocInfo::IsInConstantPool() { return false; } int RelocInfo::GetDeoptimizationId(Isolate* isolate, DeoptimizeKind kind) { DCHECK(IsRuntimeEntry(rmode_)); return Deoptimizer::GetDeoptimizationId(isolate, target_address(), kind); } void RelocInfo::set_js_to_wasm_address(Address address, ICacheFlushMode icache_flush_mode) { DCHECK_EQ(rmode_, JS_TO_WASM_CALL); Assembler::set_target_address_at(pc_, constant_pool_, address, icache_flush_mode); } Address RelocInfo::js_to_wasm_address() const { DCHECK_EQ(rmode_, JS_TO_WASM_CALL); return Assembler::target_address_at(pc_, constant_pool_); } uint32_t RelocInfo::wasm_call_tag() const { DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); return Memory::uint32_at(pc_); } // ----------------------------------------------------------------------------- // Implementation of Operand Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) { // [base + disp/r] if (disp == 0 && RelocInfo::IsNone(rmode) && base != ebp) { // [base] set_modrm(0, base); if (base == esp) set_sib(times_1, esp, base); } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) { // [base + disp8] set_modrm(1, base); if (base == esp) set_sib(times_1, esp, base); set_disp8(disp); } else { // [base + disp/r] set_modrm(2, base); if (base == esp) set_sib(times_1, esp, base); set_dispr(disp, rmode); } } Operand::Operand(Register base, Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode) { DCHECK(index != esp); // illegal addressing mode // [base + index*scale + disp/r] if (disp == 0 && RelocInfo::IsNone(rmode) && base != ebp) { // [base + index*scale] set_modrm(0, esp); set_sib(scale, index, base); } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) { // [base + index*scale + disp8] set_modrm(1, esp); set_sib(scale, index, base); set_disp8(disp); } else { // [base + index*scale + disp/r] set_modrm(2, esp); set_sib(scale, index, base); set_dispr(disp, rmode); } } Operand::Operand(Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode) { DCHECK(index != esp); // illegal addressing mode // [index*scale + disp/r] set_modrm(0, esp); set_sib(scale, index, ebp); set_dispr(disp, rmode); } bool Operand::is_reg_only() const { return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only. } Register Operand::reg() const { DCHECK(is_reg_only()); return Register::from_code(buf_[0] & 0x07); } void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { for (auto& request : heap_object_requests_) { Handle object; switch (request.kind()) { case HeapObjectRequest::kHeapNumber: object = isolate->factory()->NewHeapNumber(request.heap_number(), TENURED); break; case HeapObjectRequest::kCodeStub: request.code_stub()->set_isolate(isolate); object = request.code_stub()->GetCode(); break; } Address pc = reinterpret_cast
(buffer_) + request.offset(); Memory::Object_Handle_at(pc) = object; } } // ----------------------------------------------------------------------------- // Implementation of Assembler. // Emit a single byte. Must always be inlined. #define EMIT(x) \ *pc_++ = (x) Assembler::Assembler(const AssemblerOptions& options, void* buffer, int buffer_size) : AssemblerBase(options, buffer, buffer_size) { // Clear the buffer in debug mode unless it was provided by the // caller in which case we can't be sure it's okay to overwrite // existing code in it. #ifdef DEBUG if (own_buffer_) { memset(buffer_, 0xCC, buffer_size_); // int3 } #endif reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); } void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) { // Finalize code (at this point overflow() may be true, but the gap ensures // that we are still not overlapping instructions and relocation info). DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. AllocateAndInstallRequestedHeapObjects(isolate); // Set up code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); desc->origin = this; desc->constant_pool_size = 0; desc->unwinding_info_size = 0; desc->unwinding_info = nullptr; // Collection stage auto jump_opt = jump_optimization_info(); if (jump_opt && jump_opt->is_collecting()) { auto& bitmap = jump_opt->farjmp_bitmap(); int num = static_cast(farjmp_positions_.size()); if (num && bitmap.empty()) { bool can_opt = false; bitmap.resize((num + 31) / 32, 0); for (int i = 0; i < num; i++) { int disp_pos = farjmp_positions_[i]; int disp = long_at(disp_pos); if (is_int8(disp)) { bitmap[i / 32] |= 1 << (i & 31); can_opt = true; } } if (can_opt) { jump_opt->set_optimizable(); } } } } void Assembler::Align(int m) { DCHECK(base::bits::IsPowerOfTwo(m)); int mask = m - 1; int addr = pc_offset(); Nop((m - (addr & mask)) & mask); } bool Assembler::IsNop(Address addr) { byte* a = reinterpret_cast(addr); while (*a == 0x66) a++; if (*a == 0x90) return true; if (a[0] == 0xF && a[1] == 0x1F) return true; return false; } void Assembler::Nop(int bytes) { EnsureSpace ensure_space(this); // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf while (bytes > 0) { switch (bytes) { case 2: EMIT(0x66); V8_FALLTHROUGH; case 1: EMIT(0x90); return; case 3: EMIT(0xF); EMIT(0x1F); EMIT(0); return; case 4: EMIT(0xF); EMIT(0x1F); EMIT(0x40); EMIT(0); return; case 6: EMIT(0x66); V8_FALLTHROUGH; case 5: EMIT(0xF); EMIT(0x1F); EMIT(0x44); EMIT(0); EMIT(0); return; case 7: EMIT(0xF); EMIT(0x1F); EMIT(0x80); EMIT(0); EMIT(0); EMIT(0); EMIT(0); return; default: case 11: EMIT(0x66); bytes--; V8_FALLTHROUGH; case 10: EMIT(0x66); bytes--; V8_FALLTHROUGH; case 9: EMIT(0x66); bytes--; V8_FALLTHROUGH; case 8: EMIT(0xF); EMIT(0x1F); EMIT(0x84); EMIT(0); EMIT(0); EMIT(0); EMIT(0); EMIT(0); bytes -= 8; } } } void Assembler::CodeTargetAlign() { Align(16); // Preferred alignment of jump targets on ia32. } void Assembler::cpuid() { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA2); } void Assembler::pushad() { EnsureSpace ensure_space(this); EMIT(0x60); } void Assembler::popad() { EnsureSpace ensure_space(this); EMIT(0x61); } void Assembler::pushfd() { EnsureSpace ensure_space(this); EMIT(0x9C); } void Assembler::popfd() { EnsureSpace ensure_space(this); EMIT(0x9D); } void Assembler::push(const Immediate& x) { EnsureSpace ensure_space(this); if (x.is_int8()) { EMIT(0x6A); EMIT(x.immediate()); } else { EMIT(0x68); emit(x); } } void Assembler::push_imm32(int32_t imm32) { EnsureSpace ensure_space(this); EMIT(0x68); emit(imm32); } void Assembler::push(Register src) { EnsureSpace ensure_space(this); EMIT(0x50 | src.code()); } void Assembler::push(Operand src) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(esi, src); } void Assembler::pop(Register dst) { DCHECK_NOT_NULL(reloc_info_writer.last_pc()); EnsureSpace ensure_space(this); EMIT(0x58 | dst.code()); } void Assembler::pop(Operand dst) { EnsureSpace ensure_space(this); EMIT(0x8F); emit_operand(eax, dst); } void Assembler::enter(const Immediate& size) { EnsureSpace ensure_space(this); EMIT(0xC8); emit_w(size); EMIT(0); } void Assembler::leave() { EnsureSpace ensure_space(this); EMIT(0xC9); } void Assembler::mov_b(Register dst, Operand src) { CHECK(dst.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x8A); emit_operand(dst, src); } void Assembler::mov_b(Operand dst, const Immediate& src) { EnsureSpace ensure_space(this); EMIT(0xC6); emit_operand(eax, dst); EMIT(static_cast(src.immediate())); } void Assembler::mov_b(Operand dst, Register src) { CHECK(src.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x88); emit_operand(src, dst); } void Assembler::mov_w(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x8B); emit_operand(dst, src); } void Assembler::mov_w(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x89); emit_operand(src, dst); } void Assembler::mov_w(Operand dst, const Immediate& src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0xC7); emit_operand(eax, dst); EMIT(static_cast(src.immediate() & 0xFF)); EMIT(static_cast(src.immediate() >> 8)); } void Assembler::mov(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); EMIT(0xB8 | dst.code()); emit(imm32); } void Assembler::mov(Register dst, const Immediate& x) { EnsureSpace ensure_space(this); EMIT(0xB8 | dst.code()); emit(x); } void Assembler::mov(Register dst, Handle handle) { EnsureSpace ensure_space(this); EMIT(0xB8 | dst.code()); emit(handle); } void Assembler::mov(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x8B); emit_operand(dst, src); } void Assembler::mov(Register dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x89); EMIT(0xC0 | src.code() << 3 | dst.code()); } void Assembler::mov(Operand dst, const Immediate& x) { EnsureSpace ensure_space(this); EMIT(0xC7); emit_operand(eax, dst); emit(x); } void Assembler::mov(Operand dst, Address src, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); EMIT(0xC7); emit_operand(eax, dst); emit(src, rmode); } void Assembler::mov(Operand dst, Handle handle) { EnsureSpace ensure_space(this); EMIT(0xC7); emit_operand(eax, dst); emit(handle); } void Assembler::mov(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x89); emit_operand(src, dst); } void Assembler::movsx_b(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xBE); emit_operand(dst, src); } void Assembler::movsx_w(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xBF); emit_operand(dst, src); } void Assembler::movzx_b(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xB6); emit_operand(dst, src); } void Assembler::movzx_w(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xB7); emit_operand(dst, src); } void Assembler::cmov(Condition cc, Register dst, Operand src) { EnsureSpace ensure_space(this); // Opcode: 0f 40 + cc /r. EMIT(0x0F); EMIT(0x40 + cc); emit_operand(dst, src); } void Assembler::cld() { EnsureSpace ensure_space(this); EMIT(0xFC); } void Assembler::rep_movs() { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0xA5); } void Assembler::rep_stos() { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0xAB); } void Assembler::stos() { EnsureSpace ensure_space(this); EMIT(0xAB); } void Assembler::xchg(Register dst, Register src) { EnsureSpace ensure_space(this); if (src == eax || dst == eax) { // Single-byte encoding. EMIT(0x90 | (src == eax ? dst.code() : src.code())); } else { EMIT(0x87); EMIT(0xC0 | src.code() << 3 | dst.code()); } } void Assembler::xchg(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x87); emit_operand(dst, src); } void Assembler::xchg_b(Register reg, Operand op) { DCHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x86); emit_operand(reg, op); } void Assembler::xchg_w(Register reg, Operand op) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x87); emit_operand(reg, op); } void Assembler::lock() { EnsureSpace ensure_space(this); EMIT(0xF0); } void Assembler::cmpxchg(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xB1); emit_operand(src, dst); } void Assembler::cmpxchg_b(Operand dst, Register src) { DCHECK(src.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xB0); emit_operand(src, dst); } void Assembler::cmpxchg_w(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xB1); emit_operand(src, dst); } void Assembler::lfence() { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAE); EMIT(0xE8); } void Assembler::pause() { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x90); } void Assembler::adc(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(2, Operand(dst), Immediate(imm32)); } void Assembler::adc(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x13); emit_operand(dst, src); } void Assembler::add(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x03); emit_operand(dst, src); } void Assembler::add(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x01); emit_operand(src, dst); } void Assembler::add(Operand dst, const Immediate& x) { DCHECK_NOT_NULL(reloc_info_writer.last_pc()); EnsureSpace ensure_space(this); emit_arith(0, dst, x); } void Assembler::and_(Register dst, int32_t imm32) { and_(dst, Immediate(imm32)); } void Assembler::and_(Register dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(4, Operand(dst), x); } void Assembler::and_(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x23); emit_operand(dst, src); } void Assembler::and_(Operand dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(4, dst, x); } void Assembler::and_(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x21); emit_operand(src, dst); } void Assembler::cmpb(Operand op, Immediate imm8) { DCHECK(imm8.is_int8() || imm8.is_uint8()); EnsureSpace ensure_space(this); if (op.is_reg(eax)) { EMIT(0x3C); } else { EMIT(0x80); emit_operand(edi, op); // edi == 7 } emit_b(imm8); } void Assembler::cmpb(Operand op, Register reg) { CHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x38); emit_operand(reg, op); } void Assembler::cmpb(Register reg, Operand op) { CHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x3A); emit_operand(reg, op); } void Assembler::cmpw(Operand op, Immediate imm16) { DCHECK(imm16.is_int16() || imm16.is_uint16()); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x81); emit_operand(edi, op); emit_w(imm16); } void Assembler::cmpw(Register reg, Operand op) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x3B); emit_operand(reg, op); } void Assembler::cmpw(Operand op, Register reg) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x39); emit_operand(reg, op); } void Assembler::cmp(Register reg, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(7, Operand(reg), Immediate(imm32)); } void Assembler::cmp(Register reg, Handle handle) { EnsureSpace ensure_space(this); emit_arith(7, Operand(reg), Immediate(handle)); } void Assembler::cmp(Register reg, Operand op) { EnsureSpace ensure_space(this); EMIT(0x3B); emit_operand(reg, op); } void Assembler::cmp(Operand op, Register reg) { EnsureSpace ensure_space(this); EMIT(0x39); emit_operand(reg, op); } void Assembler::cmp(Operand op, const Immediate& imm) { EnsureSpace ensure_space(this); emit_arith(7, op, imm); } void Assembler::cmp(Operand op, Handle handle) { EnsureSpace ensure_space(this); emit_arith(7, op, Immediate(handle)); } void Assembler::cmpb_al(Operand op) { EnsureSpace ensure_space(this); EMIT(0x38); // CMP r/m8, r8 emit_operand(eax, op); // eax has same code as register al. } void Assembler::cmpw_ax(Operand op) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x39); // CMP r/m16, r16 emit_operand(eax, op); // eax has same code as register ax. } void Assembler::dec_b(Register dst) { CHECK(dst.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0xFE); EMIT(0xC8 | dst.code()); } void Assembler::dec_b(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xFE); emit_operand(ecx, dst); } void Assembler::dec(Register dst) { EnsureSpace ensure_space(this); EMIT(0x48 | dst.code()); } void Assembler::dec(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(ecx, dst); } void Assembler::cdq() { EnsureSpace ensure_space(this); EMIT(0x99); } void Assembler::idiv(Operand src) { EnsureSpace ensure_space(this); EMIT(0xF7); emit_operand(edi, src); } void Assembler::div(Operand src) { EnsureSpace ensure_space(this); EMIT(0xF7); emit_operand(esi, src); } void Assembler::imul(Register reg) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xE8 | reg.code()); } void Assembler::imul(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAF); emit_operand(dst, src); } void Assembler::imul(Register dst, Register src, int32_t imm32) { imul(dst, Operand(src), imm32); } void Assembler::imul(Register dst, Operand src, int32_t imm32) { EnsureSpace ensure_space(this); if (is_int8(imm32)) { EMIT(0x6B); emit_operand(dst, src); EMIT(imm32); } else { EMIT(0x69); emit_operand(dst, src); emit(imm32); } } void Assembler::inc(Register dst) { EnsureSpace ensure_space(this); EMIT(0x40 | dst.code()); } void Assembler::inc(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(eax, dst); } void Assembler::lea(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x8D); emit_operand(dst, src); } void Assembler::mul(Register src) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xE0 | src.code()); } void Assembler::neg(Register dst) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xD8 | dst.code()); } void Assembler::neg(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xF7); emit_operand(ebx, dst); } void Assembler::not_(Register dst) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xD0 | dst.code()); } void Assembler::not_(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xF7); emit_operand(edx, dst); } void Assembler::or_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(1, Operand(dst), Immediate(imm32)); } void Assembler::or_(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0B); emit_operand(dst, src); } void Assembler::or_(Operand dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(1, dst, x); } void Assembler::or_(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x09); emit_operand(src, dst); } void Assembler::rcl(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); DCHECK(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xD0 | dst.code()); } else { EMIT(0xC1); EMIT(0xD0 | dst.code()); EMIT(imm8); } } void Assembler::rcr(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); DCHECK(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xD8 | dst.code()); } else { EMIT(0xC1); EMIT(0xD8 | dst.code()); EMIT(imm8); } } void Assembler::ror(Operand dst, uint8_t imm8) { EnsureSpace ensure_space(this); DCHECK(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); emit_operand(ecx, dst); } else { EMIT(0xC1); emit_operand(ecx, dst); EMIT(imm8); } } void Assembler::ror_cl(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xD3); emit_operand(ecx, dst); } void Assembler::sar(Operand dst, uint8_t imm8) { EnsureSpace ensure_space(this); DCHECK(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); emit_operand(edi, dst); } else { EMIT(0xC1); emit_operand(edi, dst); EMIT(imm8); } } void Assembler::sar_cl(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xD3); emit_operand(edi, dst); } void Assembler::sbb(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x1B); emit_operand(dst, src); } void Assembler::shld(Register dst, Register src, uint8_t shift) { DCHECK(is_uint5(shift)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA4); emit_operand(src, Operand(dst)); EMIT(shift); } void Assembler::shld_cl(Register dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA5); emit_operand(src, Operand(dst)); } void Assembler::shl(Operand dst, uint8_t imm8) { EnsureSpace ensure_space(this); DCHECK(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); emit_operand(esp, dst); } else { EMIT(0xC1); emit_operand(esp, dst); EMIT(imm8); } } void Assembler::shl_cl(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xD3); emit_operand(esp, dst); } void Assembler::shr(Operand dst, uint8_t imm8) { EnsureSpace ensure_space(this); DCHECK(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); emit_operand(ebp, dst); } else { EMIT(0xC1); emit_operand(ebp, dst); EMIT(imm8); } } void Assembler::shr_cl(Operand dst) { EnsureSpace ensure_space(this); EMIT(0xD3); emit_operand(ebp, dst); } void Assembler::shrd(Register dst, Register src, uint8_t shift) { DCHECK(is_uint5(shift)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAC); emit_operand(dst, Operand(src)); EMIT(shift); } void Assembler::shrd_cl(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAD); emit_operand(src, dst); } void Assembler::sub(Operand dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(5, dst, x); } void Assembler::sub(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x2B); emit_operand(dst, src); } void Assembler::sub(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x29); emit_operand(src, dst); } void Assembler::sub_sp_32(uint32_t imm) { EnsureSpace ensure_space(this); EMIT(0x81); // using a literal 32-bit immediate. static constexpr Register ireg = Register::from_code<5>(); emit_operand(ireg, Operand(esp)); emit(imm); } void Assembler::test(Register reg, const Immediate& imm) { if (imm.is_uint8()) { test_b(reg, imm); return; } EnsureSpace ensure_space(this); // This is not using emit_arith because test doesn't support // sign-extension of 8-bit operands. if (reg == eax) { EMIT(0xA9); } else { EMIT(0xF7); EMIT(0xC0 | reg.code()); } emit(imm); } void Assembler::test(Register reg, Operand op) { EnsureSpace ensure_space(this); EMIT(0x85); emit_operand(reg, op); } void Assembler::test_b(Register reg, Operand op) { CHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x84); emit_operand(reg, op); } void Assembler::test(Operand op, const Immediate& imm) { if (op.is_reg_only()) { test(op.reg(), imm); return; } if (imm.is_uint8()) { return test_b(op, imm); } EnsureSpace ensure_space(this); EMIT(0xF7); emit_operand(eax, op); emit(imm); } void Assembler::test_b(Register reg, Immediate imm8) { DCHECK(imm8.is_uint8()); EnsureSpace ensure_space(this); // Only use test against byte for registers that have a byte // variant: eax, ebx, ecx, and edx. if (reg == eax) { EMIT(0xA8); emit_b(imm8); } else if (reg.is_byte_register()) { emit_arith_b(0xF6, 0xC0, reg, static_cast(imm8.immediate())); } else { EMIT(0x66); EMIT(0xF7); EMIT(0xC0 | reg.code()); emit_w(imm8); } } void Assembler::test_b(Operand op, Immediate imm8) { if (op.is_reg_only()) { test_b(op.reg(), imm8); return; } EnsureSpace ensure_space(this); EMIT(0xF6); emit_operand(eax, op); emit_b(imm8); } void Assembler::test_w(Register reg, Immediate imm16) { DCHECK(imm16.is_int16() || imm16.is_uint16()); EnsureSpace ensure_space(this); if (reg == eax) { EMIT(0xA9); emit_w(imm16); } else { EMIT(0x66); EMIT(0xF7); EMIT(0xC0 | reg.code()); emit_w(imm16); } } void Assembler::test_w(Register reg, Operand op) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x85); emit_operand(reg, op); } void Assembler::test_w(Operand op, Immediate imm16) { DCHECK(imm16.is_int16() || imm16.is_uint16()); if (op.is_reg_only()) { test_w(op.reg(), imm16); return; } EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0xF7); emit_operand(eax, op); emit_w(imm16); } void Assembler::xor_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(6, Operand(dst), Immediate(imm32)); } void Assembler::xor_(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x33); emit_operand(dst, src); } void Assembler::xor_(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x31); emit_operand(src, dst); } void Assembler::xor_(Operand dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(6, dst, x); } void Assembler::bt(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA3); emit_operand(src, dst); } void Assembler::bts(Operand dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAB); emit_operand(src, dst); } void Assembler::bsr(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xBD); emit_operand(dst, src); } void Assembler::bsf(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xBC); emit_operand(dst, src); } void Assembler::hlt() { EnsureSpace ensure_space(this); EMIT(0xF4); } void Assembler::int3() { EnsureSpace ensure_space(this); EMIT(0xCC); } void Assembler::nop() { EnsureSpace ensure_space(this); EMIT(0x90); } void Assembler::ret(int imm16) { EnsureSpace ensure_space(this); DCHECK(is_uint16(imm16)); if (imm16 == 0) { EMIT(0xC3); } else { EMIT(0xC2); EMIT(imm16 & 0xFF); EMIT((imm16 >> 8) & 0xFF); } } void Assembler::ud2() { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x0B); } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the 32bit // Displacement of the last instruction using the label. void Assembler::print(const Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l; l.link_to(L->pos()); PrintF("unbound label"); while (l.is_linked()) { Displacement disp = disp_at(&l); PrintF("@ %d ", l.pos()); disp.print(); PrintF("\n"); disp.next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { EnsureSpace ensure_space(this); DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position while (L->is_linked()) { Displacement disp = disp_at(L); int fixup_pos = L->pos(); if (disp.type() == Displacement::CODE_ABSOLUTE) { long_at_put(fixup_pos, reinterpret_cast(buffer_ + pos)); internal_reference_positions_.push_back(fixup_pos); } else if (disp.type() == Displacement::CODE_RELATIVE) { // Relative to Code* heap object pointer. long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag); } else { if (disp.type() == Displacement::UNCONDITIONAL_JUMP) { DCHECK_EQ(byte_at(fixup_pos - 1), 0xE9); // jmp expected } // Relative address, relative to point after address. int imm32 = pos - (fixup_pos + sizeof(int32_t)); long_at_put(fixup_pos, imm32); } disp.next(L); } while (L->is_near_linked()) { int fixup_pos = L->near_link_pos(); int offset_to_next = static_cast(*reinterpret_cast(addr_at(fixup_pos))); DCHECK_LE(offset_to_next, 0); // Relative address, relative to point after address. int disp = pos - fixup_pos - sizeof(int8_t); CHECK(0 <= disp && disp <= 127); set_byte_at(fixup_pos, disp); if (offset_to_next < 0) { L->link_to(fixup_pos + offset_to_next, Label::kNear); } else { L->UnuseNear(); } } // Optimization stage auto jump_opt = jump_optimization_info(); if (jump_opt && jump_opt->is_optimizing()) { auto it = label_farjmp_maps_.find(L); if (it != label_farjmp_maps_.end()) { auto& pos_vector = it->second; for (auto fixup_pos : pos_vector) { int disp = pos - (fixup_pos + sizeof(int8_t)); CHECK(is_int8(disp)); set_byte_at(fixup_pos, disp); } label_farjmp_maps_.erase(it); } } L->bind_to(pos); } void Assembler::bind(Label* L) { EnsureSpace ensure_space(this); DCHECK(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::record_farjmp_position(Label* L, int pos) { auto& pos_vector = label_farjmp_maps_[L]; pos_vector.push_back(pos); } bool Assembler::is_optimizable_farjmp(int idx) { if (predictable_code_size()) return false; auto jump_opt = jump_optimization_info(); CHECK(jump_opt->is_optimizing()); auto& bitmap = jump_opt->farjmp_bitmap(); CHECK(idx < static_cast(bitmap.size() * 32)); return !!(bitmap[idx / 32] & (1 << (idx & 31))); } void Assembler::call(Label* L) { EnsureSpace ensure_space(this); if (L->is_bound()) { const int long_size = 5; int offs = L->pos() - pc_offset(); DCHECK_LE(offs, 0); // 1110 1000 #32-bit disp. EMIT(0xE8); emit(offs - long_size); } else { // 1110 1000 #32-bit disp. EMIT(0xE8); emit_disp(L, Displacement::OTHER); } } void Assembler::call(Address entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); DCHECK(!RelocInfo::IsCodeTarget(rmode)); EMIT(0xE8); if (RelocInfo::IsRuntimeEntry(rmode)) { emit(entry, rmode); } else { emit(entry - (reinterpret_cast
(pc_) + sizeof(int32_t)), rmode); } } void Assembler::wasm_call(Address entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); EMIT(0xE8); emit(entry, rmode); } int Assembler::CallSize(Operand adr) { // Call size is 1 (opcode) + adr.len_ (operand). return 1 + adr.len_; } void Assembler::call(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(edx, adr); } int Assembler::CallSize(Handle code, RelocInfo::Mode rmode) { return 1 /* EMIT */ + sizeof(uint32_t) /* emit */; } void Assembler::call(Handle code, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); DCHECK(RelocInfo::IsCodeTarget(rmode)); EMIT(0xE8); emit(code, rmode); } void Assembler::call(CodeStub* stub) { EnsureSpace ensure_space(this); EMIT(0xE8); emit(Immediate::EmbeddedCode(stub)); } void Assembler::jmp_rel(int offset) { EnsureSpace ensure_space(this); const int short_size = 2; const int long_size = 5; if (is_int8(offset - short_size)) { // 1110 1011 #8-bit disp. EMIT(0xEB); EMIT((offset - short_size) & 0xFF); } else { // 1110 1001 #32-bit disp. EMIT(0xE9); emit(offset - long_size); } } void Assembler::jmp(Label* L, Label::Distance distance) { if (L->is_bound()) { int offset = L->pos() - pc_offset(); DCHECK_LE(offset, 0); // backward jump. jmp_rel(offset); return; } EnsureSpace ensure_space(this); if (distance == Label::kNear) { EMIT(0xEB); emit_near_disp(L); } else { auto jump_opt = jump_optimization_info(); if (V8_UNLIKELY(jump_opt)) { if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) { EMIT(0xEB); record_farjmp_position(L, pc_offset()); EMIT(0); return; } if (jump_opt->is_collecting()) { farjmp_positions_.push_back(pc_offset() + 1); } } // 1110 1001 #32-bit disp. EMIT(0xE9); emit_disp(L, Displacement::UNCONDITIONAL_JUMP); } } void Assembler::jmp(Address entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); DCHECK(!RelocInfo::IsCodeTarget(rmode)); EMIT(0xE9); if (RelocInfo::IsRuntimeEntry(rmode)) { emit(entry, rmode); } else { emit(entry - (reinterpret_cast
(pc_) + sizeof(int32_t)), rmode); } } void Assembler::jmp(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(esp, adr); } void Assembler::jmp(Handle code, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); DCHECK(RelocInfo::IsCodeTarget(rmode)); EMIT(0xE9); emit(code, rmode); } void Assembler::j(Condition cc, Label* L, Label::Distance distance) { EnsureSpace ensure_space(this); DCHECK(0 <= cc && static_cast(cc) < 16); if (L->is_bound()) { const int short_size = 2; const int long_size = 6; int offs = L->pos() - pc_offset(); DCHECK_LE(offs, 0); if (is_int8(offs - short_size)) { // 0111 tttn #8-bit disp EMIT(0x70 | cc); EMIT((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(offs - long_size); } } else if (distance == Label::kNear) { EMIT(0x70 | cc); emit_near_disp(L); } else { auto jump_opt = jump_optimization_info(); if (V8_UNLIKELY(jump_opt)) { if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) { // 0111 tttn #8-bit disp EMIT(0x70 | cc); record_farjmp_position(L, pc_offset()); EMIT(0); return; } if (jump_opt->is_collecting()) { farjmp_positions_.push_back(pc_offset() + 2); } } // 0000 1111 1000 tttn #32-bit disp // Note: could eliminate cond. jumps to this jump if condition // is the same however, seems to be rather unlikely case. EMIT(0x0F); EMIT(0x80 | cc); emit_disp(L, Displacement::OTHER); } } void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); DCHECK((0 <= cc) && (static_cast(cc) < 16)); // 0000 1111 1000 tttn #32-bit disp. EMIT(0x0F); EMIT(0x80 | cc); if (RelocInfo::IsRuntimeEntry(rmode)) { emit(reinterpret_cast(entry), rmode); } else { emit(entry - (pc_ + sizeof(int32_t)), rmode); } } void Assembler::j(Condition cc, Handle code, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(code, rmode); } // FPU instructions. void Assembler::fld(int i) { EnsureSpace ensure_space(this); emit_farith(0xD9, 0xC0, i); } void Assembler::fstp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDD, 0xD8, i); } void Assembler::fld1() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE8); } void Assembler::fldpi() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xEB); } void Assembler::fldz() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xEE); } void Assembler::fldln2() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xED); } void Assembler::fld_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xD9); emit_operand(eax, adr); } void Assembler::fld_d(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(eax, adr); } void Assembler::fstp_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xD9); emit_operand(ebx, adr); } void Assembler::fst_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xD9); emit_operand(edx, adr); } void Assembler::fstp_d(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(ebx, adr); } void Assembler::fst_d(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(edx, adr); } void Assembler::fild_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(eax, adr); } void Assembler::fild_d(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDF); emit_operand(ebp, adr); } void Assembler::fistp_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(ebx, adr); } void Assembler::fisttp_s(Operand adr) { DCHECK(IsEnabled(SSE3)); EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(ecx, adr); } void Assembler::fisttp_d(Operand adr) { DCHECK(IsEnabled(SSE3)); EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(ecx, adr); } void Assembler::fist_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(edx, adr); } void Assembler::fistp_d(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDF); emit_operand(edi, adr); } void Assembler::fabs() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE1); } void Assembler::fchs() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE0); } void Assembler::fcos() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFF); } void Assembler::fsin() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFE); } void Assembler::fptan() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF2); } void Assembler::fyl2x() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF1); } void Assembler::f2xm1() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF0); } void Assembler::fscale() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFD); } void Assembler::fninit() { EnsureSpace ensure_space(this); EMIT(0xDB); EMIT(0xE3); } void Assembler::fadd(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xC0, i); } void Assembler::fadd_i(int i) { EnsureSpace ensure_space(this); emit_farith(0xD8, 0xC0, i); } void Assembler::fsub(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xE8, i); } void Assembler::fsub_i(int i) { EnsureSpace ensure_space(this); emit_farith(0xD8, 0xE0, i); } void Assembler::fisub_s(Operand adr) { EnsureSpace ensure_space(this); EMIT(0xDA); emit_operand(esp, adr); } void Assembler::fmul_i(int i) { EnsureSpace ensure_space(this); emit_farith(0xD8, 0xC8, i); } void Assembler::fmul(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xC8, i); } void Assembler::fdiv(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xF8, i); } void Assembler::fdiv_i(int i) { EnsureSpace ensure_space(this); emit_farith(0xD8, 0xF0, i); } void Assembler::faddp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xC0, i); } void Assembler::fsubp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xE8, i); } void Assembler::fsubrp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xE0, i); } void Assembler::fmulp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xC8, i); } void Assembler::fdivp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xF8, i); } void Assembler::fprem() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF8); } void Assembler::fprem1() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF5); } void Assembler::fxch(int i) { EnsureSpace ensure_space(this); emit_farith(0xD9, 0xC8, i); } void Assembler::fincstp() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF7); } void Assembler::ffree(int i) { EnsureSpace ensure_space(this); emit_farith(0xDD, 0xC0, i); } void Assembler::ftst() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE4); } void Assembler::fucomp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDD, 0xE8, i); } void Assembler::fucompp() { EnsureSpace ensure_space(this); EMIT(0xDA); EMIT(0xE9); } void Assembler::fucomi(int i) { EnsureSpace ensure_space(this); EMIT(0xDB); EMIT(0xE8 + i); } void Assembler::fucomip() { EnsureSpace ensure_space(this); EMIT(0xDF); EMIT(0xE9); } void Assembler::fcompp() { EnsureSpace ensure_space(this); EMIT(0xDE); EMIT(0xD9); } void Assembler::fnstsw_ax() { EnsureSpace ensure_space(this); EMIT(0xDF); EMIT(0xE0); } void Assembler::fwait() { EnsureSpace ensure_space(this); EMIT(0x9B); } void Assembler::frndint() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFC); } void Assembler::fnclex() { EnsureSpace ensure_space(this); EMIT(0xDB); EMIT(0xE2); } void Assembler::sahf() { EnsureSpace ensure_space(this); EMIT(0x9E); } void Assembler::setcc(Condition cc, Register reg) { DCHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x90 | cc); EMIT(0xC0 | reg.code()); } void Assembler::cvttss2si(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x2C); emit_operand(dst, src); } void Assembler::cvttsd2si(Register dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x2C); emit_operand(dst, src); } void Assembler::cvtsd2si(Register dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x2D); emit_sse_operand(dst, src); } void Assembler::cvtsi2ss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x2A); emit_sse_operand(dst, src); } void Assembler::cvtsi2sd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x2A); emit_sse_operand(dst, src); } void Assembler::cvtss2sd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5A); emit_sse_operand(dst, src); } void Assembler::cvtsd2ss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5A); emit_sse_operand(dst, src); } void Assembler::cvtdq2ps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x5B); emit_sse_operand(dst, src); } void Assembler::cvttps2dq(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5B); emit_sse_operand(dst, src); } void Assembler::addsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x58); emit_sse_operand(dst, src); } void Assembler::mulsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x59); emit_sse_operand(dst, src); } void Assembler::subsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5C); emit_sse_operand(dst, src); } void Assembler::divsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5E); emit_sse_operand(dst, src); } void Assembler::xorpd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x57); emit_sse_operand(dst, src); } void Assembler::andps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x54); emit_sse_operand(dst, src); } void Assembler::orps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x56); emit_sse_operand(dst, src); } void Assembler::xorps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x57); emit_sse_operand(dst, src); } void Assembler::addps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x58); emit_sse_operand(dst, src); } void Assembler::subps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x5C); emit_sse_operand(dst, src); } void Assembler::mulps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x59); emit_sse_operand(dst, src); } void Assembler::divps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x5E); emit_sse_operand(dst, src); } void Assembler::rcpps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x53); emit_sse_operand(dst, src); } void Assembler::rsqrtps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x52); emit_sse_operand(dst, src); } void Assembler::minps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x5D); emit_sse_operand(dst, src); } void Assembler::maxps(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x5F); emit_sse_operand(dst, src); } void Assembler::cmpps(XMMRegister dst, Operand src, int8_t cmp) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xC2); emit_sse_operand(dst, src); EMIT(cmp); } void Assembler::sqrtsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x51); emit_sse_operand(dst, src); } void Assembler::haddps(XMMRegister dst, Operand src) { DCHECK(IsEnabled(SSE3)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x7C); emit_sse_operand(dst, src); } void Assembler::andpd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x54); emit_sse_operand(dst, src); } void Assembler::orpd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x56); emit_sse_operand(dst, src); } void Assembler::ucomisd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x2E); emit_sse_operand(dst, src); } void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x0A); emit_sse_operand(dst, src); // Mask precision exeption. EMIT(static_cast(mode) | 0x8); } void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x0B); emit_sse_operand(dst, src); // Mask precision exeption. EMIT(static_cast(mode) | 0x8); } void Assembler::movmskpd(Register dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x50); emit_sse_operand(dst, src); } void Assembler::movmskps(Register dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x50); emit_sse_operand(dst, src); } void Assembler::maxsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5F); emit_sse_operand(dst, src); } void Assembler::minsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5D); emit_sse_operand(dst, src); } void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0xC2); emit_sse_operand(dst, src); EMIT(1); // LT == 1 } void Assembler::movaps(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x28); emit_sse_operand(dst, src); } void Assembler::movups(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x10); emit_sse_operand(dst, src); } void Assembler::movups(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x10); emit_sse_operand(dst, src); } void Assembler::movups(Operand dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x11); emit_sse_operand(src, dst); } void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) { DCHECK(is_uint8(imm8)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xC6); emit_sse_operand(dst, src); EMIT(imm8); } void Assembler::movdqa(Operand dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x7F); emit_sse_operand(src, dst); } void Assembler::movdqa(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x6F); emit_sse_operand(dst, src); } void Assembler::movdqu(Operand dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x7F); emit_sse_operand(src, dst); } void Assembler::movdqu(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x6F); emit_sse_operand(dst, src); } void Assembler::prefetch(Operand src, int level) { DCHECK(is_uint2(level)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x18); // Emit hint number in Reg position of RegR/M. XMMRegister code = XMMRegister::from_code(level); emit_sse_operand(code, src); } void Assembler::movsd(Operand dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0xF2); // double EMIT(0x0F); EMIT(0x11); // store emit_sse_operand(src, dst); } void Assembler::movsd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF2); // double EMIT(0x0F); EMIT(0x10); // load emit_sse_operand(dst, src); } void Assembler::movss(Operand dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0xF3); // float EMIT(0x0F); EMIT(0x11); // store emit_sse_operand(src, dst); } void Assembler::movss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); // float EMIT(0x0F); EMIT(0x10); // load emit_sse_operand(dst, src); } void Assembler::movd(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x6E); emit_sse_operand(dst, src); } void Assembler::movd(Operand dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x7E); emit_sse_operand(src, dst); } void Assembler::extractps(Register dst, XMMRegister src, byte imm8) { DCHECK(IsEnabled(SSE4_1)); DCHECK(is_uint8(imm8)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x17); emit_sse_operand(src, dst); EMIT(imm8); } void Assembler::psllw(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x71); emit_sse_operand(esi, reg); // esi == 6 EMIT(shift); } void Assembler::pslld(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x72); emit_sse_operand(esi, reg); // esi == 6 EMIT(shift); } void Assembler::psrlw(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x71); emit_sse_operand(edx, reg); // edx == 2 EMIT(shift); } void Assembler::psrld(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x72); emit_sse_operand(edx, reg); // edx == 2 EMIT(shift); } void Assembler::psraw(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x71); emit_sse_operand(esp, reg); // esp == 4 EMIT(shift); } void Assembler::psrad(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x72); emit_sse_operand(esp, reg); // esp == 4 EMIT(shift); } void Assembler::psllq(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x73); emit_sse_operand(esi, reg); // esi == 6 EMIT(shift); } void Assembler::psllq(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xF3); emit_sse_operand(dst, src); } void Assembler::psrlq(XMMRegister reg, int8_t shift) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x73); emit_sse_operand(edx, reg); // edx == 2 EMIT(shift); } void Assembler::psrlq(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xD3); emit_sse_operand(dst, src); } void Assembler::pshufhw(XMMRegister dst, Operand src, uint8_t shuffle) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x70); emit_sse_operand(dst, src); EMIT(shuffle); } void Assembler::pshuflw(XMMRegister dst, Operand src, uint8_t shuffle) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x70); emit_sse_operand(dst, src); EMIT(shuffle); } void Assembler::pshufd(XMMRegister dst, Operand src, uint8_t shuffle) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x70); emit_sse_operand(dst, src); EMIT(shuffle); } void Assembler::pblendw(XMMRegister dst, Operand src, uint8_t mask) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x0E); emit_sse_operand(dst, src); EMIT(mask); } void Assembler::palignr(XMMRegister dst, Operand src, uint8_t mask) { DCHECK(IsEnabled(SSSE3)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x0F); emit_sse_operand(dst, src); EMIT(mask); } void Assembler::pextrb(Operand dst, XMMRegister src, int8_t offset) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x14); emit_sse_operand(src, dst); EMIT(offset); } void Assembler::pextrw(Operand dst, XMMRegister src, int8_t offset) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x15); emit_sse_operand(src, dst); EMIT(offset); } void Assembler::pextrd(Operand dst, XMMRegister src, int8_t offset) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x16); emit_sse_operand(src, dst); EMIT(offset); } void Assembler::insertps(XMMRegister dst, Operand src, int8_t offset) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x21); emit_sse_operand(dst, src); EMIT(offset); } void Assembler::pinsrb(XMMRegister dst, Operand src, int8_t offset) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x20); emit_sse_operand(dst, src); EMIT(offset); } void Assembler::pinsrw(XMMRegister dst, Operand src, int8_t offset) { DCHECK(is_uint8(offset)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xC4); emit_sse_operand(dst, src); EMIT(offset); } void Assembler::pinsrd(XMMRegister dst, Operand src, int8_t offset) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x22); emit_sse_operand(dst, src); EMIT(offset); } void Assembler::addss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x58); emit_sse_operand(dst, src); } void Assembler::subss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5C); emit_sse_operand(dst, src); } void Assembler::mulss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x59); emit_sse_operand(dst, src); } void Assembler::divss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5E); emit_sse_operand(dst, src); } void Assembler::sqrtss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x51); emit_sse_operand(dst, src); } void Assembler::ucomiss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x2E); emit_sse_operand(dst, src); } void Assembler::maxss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5F); emit_sse_operand(dst, src); } void Assembler::minss(XMMRegister dst, Operand src) { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5D); emit_sse_operand(dst, src); } // AVX instructions void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) { DCHECK(IsEnabled(FMA3)); EnsureSpace ensure_space(this); emit_vex_prefix(src1, kLIG, k66, k0F38, kW1); EMIT(op); emit_sse_operand(dst, src2); } void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1, Operand src2) { DCHECK(IsEnabled(FMA3)); EnsureSpace ensure_space(this); emit_vex_prefix(src1, kLIG, k66, k0F38, kW0); EMIT(op); emit_sse_operand(dst, src2); } void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) { vinstr(op, dst, src1, src2, kF2, k0F, kWIG); } void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2) { vinstr(op, dst, src1, src2, kF3, k0F, kWIG); } void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2) { vinstr(op, dst, src1, src2, kNone, k0F, kWIG); } void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) { vinstr(op, dst, src1, src2, k66, k0F, kWIG); } void Assembler::vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) { vps(0xC2, dst, src1, src2); EMIT(cmp); } void Assembler::vshufps(XMMRegister dst, XMMRegister src1, Operand src2, byte imm8) { DCHECK(is_uint8(imm8)); vps(0xC6, dst, src1, src2); EMIT(imm8); } void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int8_t imm8) { XMMRegister iop = XMMRegister::from_code(6); vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG); EMIT(imm8); } void Assembler::vpslld(XMMRegister dst, XMMRegister src, int8_t imm8) { XMMRegister iop = XMMRegister::from_code(6); vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG); EMIT(imm8); } void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int8_t imm8) { XMMRegister iop = XMMRegister::from_code(2); vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG); EMIT(imm8); } void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int8_t imm8) { XMMRegister iop = XMMRegister::from_code(2); vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG); EMIT(imm8); } void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int8_t imm8) { XMMRegister iop = XMMRegister::from_code(4); vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG); EMIT(imm8); } void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int8_t imm8) { XMMRegister iop = XMMRegister::from_code(4); vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG); EMIT(imm8); } void Assembler::vpshufhw(XMMRegister dst, Operand src, uint8_t shuffle) { vinstr(0x70, dst, xmm0, src, kF3, k0F, kWIG); EMIT(shuffle); } void Assembler::vpshuflw(XMMRegister dst, Operand src, uint8_t shuffle) { vinstr(0x70, dst, xmm0, src, kF2, k0F, kWIG); EMIT(shuffle); } void Assembler::vpshufd(XMMRegister dst, Operand src, uint8_t shuffle) { vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG); EMIT(shuffle); } void Assembler::vpblendw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask) { vinstr(0x0E, dst, src1, src2, k66, k0F3A, kWIG); EMIT(mask); } void Assembler::vpalignr(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask) { vinstr(0x0F, dst, src1, src2, k66, k0F3A, kWIG); EMIT(mask); } void Assembler::vpextrb(Operand dst, XMMRegister src, int8_t offset) { vinstr(0x14, src, xmm0, dst, k66, k0F3A, kWIG); EMIT(offset); } void Assembler::vpextrw(Operand dst, XMMRegister src, int8_t offset) { vinstr(0x15, src, xmm0, dst, k66, k0F3A, kWIG); EMIT(offset); } void Assembler::vpextrd(Operand dst, XMMRegister src, int8_t offset) { vinstr(0x16, src, xmm0, dst, k66, k0F3A, kWIG); EMIT(offset); } void Assembler::vinsertps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset) { vinstr(0x21, dst, src1, src2, k66, k0F3A, kWIG); EMIT(offset); } void Assembler::vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset) { vinstr(0x20, dst, src1, src2, k66, k0F3A, kWIG); EMIT(offset); } void Assembler::vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset) { vinstr(0xC4, dst, src1, src2, k66, k0F, kWIG); EMIT(offset); } void Assembler::vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset) { vinstr(0x22, dst, src1, src2, k66, k0F3A, kWIG); EMIT(offset); } void Assembler::bmi1(byte op, Register reg, Register vreg, Operand rm) { DCHECK(IsEnabled(BMI1)); EnsureSpace ensure_space(this); emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0); EMIT(op); emit_operand(reg, rm); } void Assembler::tzcnt(Register dst, Operand src) { DCHECK(IsEnabled(BMI1)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0xBC); emit_operand(dst, src); } void Assembler::lzcnt(Register dst, Operand src) { DCHECK(IsEnabled(LZCNT)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0xBD); emit_operand(dst, src); } void Assembler::popcnt(Register dst, Operand src) { DCHECK(IsEnabled(POPCNT)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0xB8); emit_operand(dst, src); } void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm) { DCHECK(IsEnabled(BMI2)); EnsureSpace ensure_space(this); emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0); EMIT(op); emit_operand(reg, rm); } void Assembler::rorx(Register dst, Operand src, byte imm8) { DCHECK(IsEnabled(BMI2)); DCHECK(is_uint8(imm8)); Register vreg = Register::from_code<0>(); // VEX.vvvv unused EnsureSpace ensure_space(this); emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0); EMIT(0xF0); emit_operand(dst, src); EMIT(imm8); } void Assembler::sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape, byte opcode) { EnsureSpace ensure_space(this); EMIT(prefix); EMIT(escape); EMIT(opcode); emit_sse_operand(dst, src); } void Assembler::ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1, byte escape2, byte opcode) { DCHECK(IsEnabled(SSSE3)); EnsureSpace ensure_space(this); EMIT(prefix); EMIT(escape1); EMIT(escape2); EMIT(opcode); emit_sse_operand(dst, src); } void Assembler::sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1, byte escape2, byte opcode) { DCHECK(IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(prefix); EMIT(escape1); EMIT(escape2); EMIT(opcode); emit_sse_operand(dst, src); } void Assembler::vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2, SIMDPrefix pp, LeadingOpcode m, VexW w) { DCHECK(IsEnabled(AVX)); EnsureSpace ensure_space(this); emit_vex_prefix(src1, kL128, pp, m, w); EMIT(op); emit_sse_operand(dst, src2); } void Assembler::emit_sse_operand(XMMRegister reg, Operand adr) { Register ireg = Register::from_code(reg.code()); emit_operand(ireg, adr); } void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { EMIT(0xC0 | dst.code() << 3 | src.code()); } void Assembler::emit_sse_operand(Register dst, XMMRegister src) { EMIT(0xC0 | dst.code() << 3 | src.code()); } void Assembler::emit_sse_operand(XMMRegister dst, Register src) { EMIT(0xC0 | (dst.code() << 3) | src.code()); } void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { if (mm != k0F || w != kW0) { EMIT(0xC4); // Change RXB from "110" to "111" to align with gdb disassembler. EMIT(0xE0 | mm); EMIT(w | ((~vreg.code() & 0xF) << 3) | l | pp); } else { EMIT(0xC5); EMIT(((~vreg.code()) << 3) | l | pp); } } void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { XMMRegister ivreg = XMMRegister::from_code(vreg.code()); emit_vex_prefix(ivreg, l, pp, mm, w); } void Assembler::GrowBuffer() { DCHECK(buffer_overflow()); if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer desc.buffer_size = 2 * buffer_size_; // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if (desc.buffer_size > kMaximalBufferSize) { V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); } // Set up new buffer. desc.buffer = NewArray(desc.buffer_size); desc.origin = this; desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos()); // Clear the buffer in debug mode. Use 'int3' instructions to make // sure to get into problems if we ever run uninitialized code. #ifdef DEBUG memset(desc.buffer, 0xCC, desc.buffer_size); #endif // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); MemMove(desc.buffer, buffer_, desc.instr_size); MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // Relocate internal references. for (auto pos : internal_reference_positions_) { int32_t* p = reinterpret_cast(buffer_ + pos); *p += pc_delta; } // Relocate js-to-wasm calls (which are encoded pc-relative). for (RelocIterator it(desc, RelocInfo::ModeMask(RelocInfo::JS_TO_WASM_CALL)); !it.done(); it.next()) { it.rinfo()->apply(pc_delta); } DCHECK(!buffer_overflow()); } void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode DCHECK(is_uint8(imm8)); DCHECK_EQ(op1 & 0x01, 0); // should be 8bit operation EMIT(op1); EMIT(op2 | dst.code()); EMIT(imm8); } void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) { DCHECK((0 <= sel) && (sel <= 7)); Register ireg = Register::from_code(sel); if (x.is_int8()) { EMIT(0x83); // using a sign-extended 8-bit immediate. emit_operand(ireg, dst); EMIT(x.immediate() & 0xFF); } else if (dst.is_reg(eax)) { EMIT((sel << 3) | 0x05); // short form if the destination is eax. emit(x); } else { EMIT(0x81); // using a literal 32-bit immediate. emit_operand(ireg, dst); emit(x); } } void Assembler::emit_operand(Register reg, Operand adr) { const unsigned length = adr.len_; DCHECK_GT(length, 0); // Emit updated ModRM byte containing the given register. pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3); // Emit the rest of the encoded operand. for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; pc_ += length; // Emit relocation information if necessary. if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) { pc_ -= sizeof(int32_t); // pc_ must be *at* disp32 RecordRelocInfo(adr.rmode_); if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels emit_label(*reinterpret_cast(pc_)); } else { pc_ += sizeof(int32_t); } } } void Assembler::emit_label(Label* label) { if (label->is_bound()) { internal_reference_positions_.push_back(pc_offset()); emit(reinterpret_cast(buffer_ + label->pos())); } else { emit_disp(label, Displacement::CODE_ABSOLUTE); } } void Assembler::emit_farith(int b1, int b2, int i) { DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode DCHECK(0 <= i && i < 8); // illegal stack offset EMIT(b1); EMIT(b2 + i); } void Assembler::db(uint8_t data) { EnsureSpace ensure_space(this); EMIT(data); } void Assembler::dd(uint32_t data) { EnsureSpace ensure_space(this); emit(data); } void Assembler::dq(uint64_t data) { EnsureSpace ensure_space(this); emit_q(data); } void Assembler::dd(Label* label) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); emit_label(label); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { DCHECK(!RelocInfo::IsNone(rmode)); if (options().disable_reloc_info_for_patching) return; // Don't record external references unless the heap will be serialized. if (RelocInfo::IsOnlyForSerializer(rmode) && !options().record_reloc_info_for_serialization && !emit_debug_code()) { return; } RelocInfo rinfo(reinterpret_cast
(pc_), rmode, data, nullptr); reloc_info_writer.Write(&rinfo); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32