// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_REMEMBERED_SET_H_ #define V8_HEAP_REMEMBERED_SET_H_ #include "src/heap/heap.h" #include "src/heap/slot-set.h" #include "src/heap/spaces.h" #include "src/reloc-info.h" #include "src/v8memory.h" namespace v8 { namespace internal { enum RememberedSetIterationMode { SYNCHRONIZED, NON_SYNCHRONIZED }; // TODO(ulan): Investigate performance of de-templatizing this class. template class RememberedSet : public AllStatic { public: // Given a page and a slot in that page, this function adds the slot to the // remembered set. template static void Insert(MemoryChunk* chunk, Address slot_addr) { DCHECK(chunk->Contains(slot_addr)); SlotSet* slot_set = chunk->slot_set(); if (slot_set == nullptr) { slot_set = chunk->AllocateSlotSet(); } uintptr_t offset = slot_addr - chunk->address(); slot_set[offset / Page::kPageSize].Insert(offset % Page::kPageSize); } // Given a page and a slot in that page, this function returns true if // the remembered set contains the slot. static bool Contains(MemoryChunk* chunk, Address slot_addr) { DCHECK(chunk->Contains(slot_addr)); SlotSet* slot_set = chunk->slot_set(); if (slot_set == nullptr) { return false; } uintptr_t offset = slot_addr - chunk->address(); return slot_set[offset / Page::kPageSize].Contains(offset % Page::kPageSize); } // Given a page and a slot in that page, this function removes the slot from // the remembered set. // If the slot was never added, then the function does nothing. static void Remove(MemoryChunk* chunk, Address slot_addr) { DCHECK(chunk->Contains(slot_addr)); SlotSet* slot_set = chunk->slot_set(); if (slot_set != nullptr) { uintptr_t offset = slot_addr - chunk->address(); slot_set[offset / Page::kPageSize].Remove(offset % Page::kPageSize); } } // Given a page and a range of slots in that page, this function removes the // slots from the remembered set. static void RemoveRange(MemoryChunk* chunk, Address start, Address end, SlotSet::EmptyBucketMode mode) { SlotSet* slot_set = chunk->slot_set(); if (slot_set != nullptr) { uintptr_t start_offset = start - chunk->address(); uintptr_t end_offset = end - chunk->address(); DCHECK_LT(start_offset, end_offset); if (end_offset < static_cast(Page::kPageSize)) { slot_set->RemoveRange(static_cast(start_offset), static_cast(end_offset), mode); } else { // The large page has multiple slot sets. // Compute slot set indicies for the range [start_offset, end_offset). int start_chunk = static_cast(start_offset / Page::kPageSize); int end_chunk = static_cast((end_offset - 1) / Page::kPageSize); int offset_in_start_chunk = static_cast(start_offset % Page::kPageSize); // Note that using end_offset % Page::kPageSize would be incorrect // because end_offset is one beyond the last slot to clear. int offset_in_end_chunk = static_cast( end_offset - static_cast(end_chunk) * Page::kPageSize); if (start_chunk == end_chunk) { slot_set[start_chunk].RemoveRange(offset_in_start_chunk, offset_in_end_chunk, mode); } else { // Clear all slots from start_offset to the end of first chunk. slot_set[start_chunk].RemoveRange(offset_in_start_chunk, Page::kPageSize, mode); // Clear all slots in intermediate chunks. for (int i = start_chunk + 1; i < end_chunk; i++) { slot_set[i].RemoveRange(0, Page::kPageSize, mode); } // Clear slots from the beginning of the last page to end_offset. slot_set[end_chunk].RemoveRange(0, offset_in_end_chunk, mode); } } } } // Iterates and filters the remembered set with the given callback. // The callback should take (Address slot) and return SlotCallbackResult. template static void Iterate(Heap* heap, RememberedSetIterationMode mode, Callback callback) { IterateMemoryChunks(heap, [mode, callback](MemoryChunk* chunk) { if (mode == SYNCHRONIZED) chunk->mutex()->Lock(); Iterate(chunk, callback); if (mode == SYNCHRONIZED) chunk->mutex()->Unlock(); }); } // Iterates over all memory chunks that contains non-empty slot sets. // The callback should take (MemoryChunk* chunk) and return void. template static void IterateMemoryChunks(Heap* heap, Callback callback) { MemoryChunkIterator it(heap); MemoryChunk* chunk; while ((chunk = it.next()) != nullptr) { SlotSet* slots = chunk->slot_set(); TypedSlotSet* typed_slots = chunk->typed_slot_set(); if (slots != nullptr || typed_slots != nullptr || chunk->invalidated_slots() != nullptr) { callback(chunk); } } } // Iterates and filters the remembered set in the given memory chunk with // the given callback. The callback should take (Address slot) and return // SlotCallbackResult. // // Notice that |mode| can only be of FREE* or PREFREE* if there are no other // threads concurrently inserting slots. template static void Iterate(MemoryChunk* chunk, Callback callback, SlotSet::EmptyBucketMode mode) { SlotSet* slots = chunk->slot_set(); if (slots != nullptr) { size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize; int new_count = 0; for (size_t page = 0; page < pages; page++) { new_count += slots[page].Iterate(callback, mode); } // Only old-to-old slot sets are released eagerly. Old-new-slot sets are // released by the sweeper threads. if (type == OLD_TO_OLD && new_count == 0) { chunk->ReleaseSlotSet(); } } } static int NumberOfPreFreedEmptyBuckets(MemoryChunk* chunk) { DCHECK(type == OLD_TO_NEW); int result = 0; SlotSet* slots = chunk->slot_set(); if (slots != nullptr) { size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize; for (size_t page = 0; page < pages; page++) { result += slots[page].NumberOfPreFreedEmptyBuckets(); } } return result; } static void PreFreeEmptyBuckets(MemoryChunk* chunk) { DCHECK(type == OLD_TO_NEW); SlotSet* slots = chunk->slot_set(); if (slots != nullptr) { size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize; for (size_t page = 0; page < pages; page++) { slots[page].PreFreeEmptyBuckets(); } } } static void FreeEmptyBuckets(MemoryChunk* chunk) { DCHECK(type == OLD_TO_NEW); SlotSet* slots = chunk->slot_set(); if (slots != nullptr) { size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize; for (size_t page = 0; page < pages; page++) { slots[page].FreeEmptyBuckets(); slots[page].FreeToBeFreedBuckets(); } } } // Given a page and a typed slot in that page, this function adds the slot // to the remembered set. static void InsertTyped(Page* page, Address host_addr, SlotType slot_type, Address slot_addr) { TypedSlotSet* slot_set = page->typed_slot_set(); if (slot_set == nullptr) { slot_set = page->AllocateTypedSlotSet(); } if (host_addr == kNullAddress) { host_addr = page->address(); } uintptr_t offset = slot_addr - page->address(); uintptr_t host_offset = host_addr - page->address(); DCHECK_LT(offset, static_cast(TypedSlotSet::kMaxOffset)); DCHECK_LT(host_offset, static_cast(TypedSlotSet::kMaxOffset)); slot_set->Insert(slot_type, static_cast(host_offset), static_cast(offset)); } // Given a page and a range of typed slots in that page, this function removes // the slots from the remembered set. static void RemoveRangeTyped(MemoryChunk* page, Address start, Address end) { TypedSlotSet* slots = page->typed_slot_set(); if (slots != nullptr) { slots->Iterate( [start, end](SlotType slot_type, Address host_addr, Address slot_addr) { return start <= slot_addr && slot_addr < end ? REMOVE_SLOT : KEEP_SLOT; }, TypedSlotSet::PREFREE_EMPTY_CHUNKS); } } // Iterates and filters the remembered set with the given callback. // The callback should take (SlotType slot_type, SlotAddress slot) and return // SlotCallbackResult. template static void IterateTyped(Heap* heap, RememberedSetIterationMode mode, Callback callback) { IterateMemoryChunks(heap, [mode, callback](MemoryChunk* chunk) { if (mode == SYNCHRONIZED) chunk->mutex()->Lock(); IterateTyped(chunk, callback); if (mode == SYNCHRONIZED) chunk->mutex()->Unlock(); }); } // Iterates and filters typed old to old pointers in the given memory chunk // with the given callback. The callback should take (SlotType slot_type, // Address slot_addr) and return SlotCallbackResult. template static void IterateTyped(MemoryChunk* chunk, Callback callback) { TypedSlotSet* slots = chunk->typed_slot_set(); if (slots != nullptr) { int new_count = slots->Iterate(callback, TypedSlotSet::KEEP_EMPTY_CHUNKS); if (new_count == 0) { chunk->ReleaseTypedSlotSet(); } } } // Clear all old to old slots from the remembered set. static void ClearAll(Heap* heap) { STATIC_ASSERT(type == OLD_TO_OLD); MemoryChunkIterator it(heap); MemoryChunk* chunk; while ((chunk = it.next()) != nullptr) { chunk->ReleaseSlotSet(); chunk->ReleaseTypedSlotSet(); chunk->ReleaseInvalidatedSlots(); } } // Eliminates all stale slots from the remembered set, i.e. // slots that are not part of live objects anymore. This method must be // called after marking, when the whole transitive closure is known and // must be called before sweeping when mark bits are still intact. static void ClearInvalidTypedSlots(Heap* heap, MemoryChunk* chunk); private: static bool IsValidSlot(Heap* heap, MemoryChunk* chunk, Object** slot); }; class UpdateTypedSlotHelper { public: // Updates a code entry slot using an untyped slot callback. // The callback accepts Object** and returns SlotCallbackResult. template static SlotCallbackResult UpdateCodeEntry(Address entry_address, Callback callback) { Object* code = Code::GetObjectFromEntryAddress(entry_address); Object* old_code = code; SlotCallbackResult result = callback(reinterpret_cast(&code)); DCHECK(!HasWeakHeapObjectTag(code)); if (code != old_code) { Memory
(entry_address) = reinterpret_cast(code)->entry(); } return result; } // Updates a code target slot using an untyped slot callback. // The callback accepts Object** and returns SlotCallbackResult. template static SlotCallbackResult UpdateCodeTarget(RelocInfo* rinfo, Callback callback) { DCHECK(RelocInfo::IsCodeTargetMode(rinfo->rmode())); Code* old_target = Code::GetCodeFromTargetAddress(rinfo->target_address()); Object* new_target = old_target; SlotCallbackResult result = callback(reinterpret_cast(&new_target)); DCHECK(!HasWeakHeapObjectTag(new_target)); if (new_target != old_target) { rinfo->set_target_address( Code::cast(new_target)->raw_instruction_start()); } return result; } // Updates an embedded pointer slot using an untyped slot callback. // The callback accepts Object** and returns SlotCallbackResult. template static SlotCallbackResult UpdateEmbeddedPointer(Heap* heap, RelocInfo* rinfo, Callback callback) { DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); HeapObject* old_target = rinfo->target_object(); Object* new_target = old_target; SlotCallbackResult result = callback(reinterpret_cast(&new_target)); DCHECK(!HasWeakHeapObjectTag(new_target)); if (new_target != old_target) { rinfo->set_target_object(heap, HeapObject::cast(new_target)); } return result; } // Updates a typed slot using an untyped slot callback. // The callback accepts MaybeObject** and returns SlotCallbackResult. template static SlotCallbackResult UpdateTypedSlot(Heap* heap, SlotType slot_type, Address addr, Callback callback) { switch (slot_type) { case CODE_TARGET_SLOT: { RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, nullptr); return UpdateCodeTarget(&rinfo, callback); } case CODE_ENTRY_SLOT: { return UpdateCodeEntry(addr, callback); } case EMBEDDED_OBJECT_SLOT: { RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, nullptr); return UpdateEmbeddedPointer(heap, &rinfo, callback); } case OBJECT_SLOT: { return callback(reinterpret_cast(addr)); } case CLEARED_SLOT: break; } UNREACHABLE(); } }; inline SlotType SlotTypeForRelocInfoMode(RelocInfo::Mode rmode) { if (RelocInfo::IsCodeTargetMode(rmode)) { return CODE_TARGET_SLOT; } else if (RelocInfo::IsEmbeddedObject(rmode)) { return EMBEDDED_OBJECT_SLOT; } UNREACHABLE(); } } // namespace internal } // namespace v8 #endif // V8_HEAP_REMEMBERED_SET_H_