// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/incremental-marking.h" #include "src/codegen/compilation-cache.h" #include "src/execution/vm-state-inl.h" #include "src/heap/concurrent-marking.h" #include "src/heap/embedder-tracing.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-inl.h" #include "src/heap/incremental-marking-inl.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/sweeper.h" #include "src/init/v8.h" #include "src/numbers/conversions.h" #include "src/objects/data-handler-inl.h" #include "src/objects/embedder-data-array-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/slots-inl.h" #include "src/objects/transitions-inl.h" #include "src/objects/visitors.h" #include "src/tracing/trace-event.h" namespace v8 { namespace internal { using IncrementalMarkingMarkingVisitor = MarkingVisitor; void IncrementalMarking::Observer::Step(int bytes_allocated, Address addr, size_t size) { Heap* heap = incremental_marking_->heap(); VMState state(heap->isolate()); RuntimeCallTimerScope runtime_timer( heap->isolate(), RuntimeCallCounterId::kGC_Custom_IncrementalMarkingObserver); incremental_marking_->AdvanceOnAllocation(); // AdvanceIncrementalMarkingOnAllocation can start incremental marking. incremental_marking_->EnsureBlackAllocated(addr, size); } IncrementalMarking::IncrementalMarking( Heap* heap, MarkCompactCollector::MarkingWorklist* marking_worklist, WeakObjects* weak_objects) : heap_(heap), marking_worklist_(marking_worklist), weak_objects_(weak_objects), initial_old_generation_size_(0), bytes_marked_(0), scheduled_bytes_to_mark_(0), schedule_update_time_ms_(0), bytes_marked_concurrently_(0), is_compacting_(false), should_hurry_(false), was_activated_(false), black_allocation_(false), finalize_marking_completed_(false), request_type_(NONE), new_generation_observer_(this, kYoungGenerationAllocatedThreshold), old_generation_observer_(this, kOldGenerationAllocatedThreshold) { DCHECK_NOT_NULL(marking_worklist_); SetState(STOPPED); } void IncrementalMarking::RecordWriteSlow(HeapObject obj, HeapObjectSlot slot, HeapObject value) { if (BaseRecordWrite(obj, value) && slot.address() != kNullAddress) { // Object is not going to be rescanned we need to record the slot. heap_->mark_compact_collector()->RecordSlot(obj, slot, value); } } int IncrementalMarking::RecordWriteFromCode(Address raw_obj, Address slot_address, Isolate* isolate) { HeapObject obj = HeapObject::cast(Object(raw_obj)); MaybeObjectSlot slot(slot_address); isolate->heap()->incremental_marking()->RecordWrite(obj, slot, *slot); // Called by RecordWriteCodeStubAssembler, which doesnt accept void type return 0; } void IncrementalMarking::RecordWriteIntoCode(Code host, RelocInfo* rinfo, HeapObject value) { DCHECK(IsMarking()); if (BaseRecordWrite(host, value)) { // Object is not going to be rescanned. We need to record the slot. heap_->mark_compact_collector()->RecordRelocSlot(host, rinfo, value); } } void IncrementalMarking::MarkBlackAndVisitObjectDueToLayoutChange( HeapObject obj) { TRACE_EVENT0("v8", "V8.GCIncrementalMarkingLayoutChange"); TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_LAYOUT_CHANGE); marking_state()->WhiteToGrey(obj); if (marking_state()->GreyToBlack(obj)) { RevisitObject(obj); } } void IncrementalMarking::NotifyLeftTrimming(HeapObject from, HeapObject to) { DCHECK(IsMarking()); DCHECK(MemoryChunk::FromHeapObject(from)->SweepingDone()); DCHECK_EQ(MemoryChunk::FromHeapObject(from), MemoryChunk::FromHeapObject(to)); DCHECK_NE(from, to); MarkBit new_mark_bit = marking_state()->MarkBitFrom(to); if (black_allocation() && Marking::IsBlack(new_mark_bit)) { // Nothing to do if the object is in black area. return; } MarkBlackAndVisitObjectDueToLayoutChange(from); DCHECK(marking_state()->IsBlack(from)); // Mark the new address as black. if (from.address() + kTaggedSize == to.address()) { // The old and the new markbits overlap. The |to| object has the // grey color. To make it black, we need to set the second bit. DCHECK(new_mark_bit.Get()); new_mark_bit.Next().Set(); } else { bool success = Marking::WhiteToBlack(new_mark_bit); DCHECK(success); USE(success); } DCHECK(marking_state()->IsBlack(to)); } class IncrementalMarkingRootMarkingVisitor : public RootVisitor { public: explicit IncrementalMarkingRootMarkingVisitor( IncrementalMarking* incremental_marking) : heap_(incremental_marking->heap()) {} void VisitRootPointer(Root root, const char* description, FullObjectSlot p) override { MarkObjectByPointer(p); } void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) MarkObjectByPointer(p); } private: void MarkObjectByPointer(FullObjectSlot p) { Object obj = *p; if (!obj.IsHeapObject()) return; heap_->incremental_marking()->WhiteToGreyAndPush(HeapObject::cast(obj)); } Heap* heap_; }; void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( PagedSpace* space) { for (Page* p : *space) { p->SetOldGenerationPageFlags(false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( NewSpace* space) { for (Page* p : *space) { p->SetYoungGenerationPageFlags(false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrier() { DeactivateIncrementalWriteBarrierForSpace(heap_->old_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->map_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->code_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->new_space()); for (LargePage* p : *heap_->new_lo_space()) { p->SetYoungGenerationPageFlags(false); DCHECK(p->IsLargePage()); } for (LargePage* p : *heap_->lo_space()) { p->SetOldGenerationPageFlags(false); } for (LargePage* p : *heap_->code_lo_space()) { p->SetOldGenerationPageFlags(false); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(PagedSpace* space) { for (Page* p : *space) { p->SetOldGenerationPageFlags(true); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(NewSpace* space) { for (Page* p : *space) { p->SetYoungGenerationPageFlags(true); } } void IncrementalMarking::ActivateIncrementalWriteBarrier() { ActivateIncrementalWriteBarrier(heap_->old_space()); ActivateIncrementalWriteBarrier(heap_->map_space()); ActivateIncrementalWriteBarrier(heap_->code_space()); ActivateIncrementalWriteBarrier(heap_->new_space()); for (LargePage* p : *heap_->new_lo_space()) { p->SetYoungGenerationPageFlags(true); DCHECK(p->IsLargePage()); } for (LargePage* p : *heap_->lo_space()) { p->SetOldGenerationPageFlags(true); } for (LargePage* p : *heap_->code_lo_space()) { p->SetOldGenerationPageFlags(true); } } bool IncrementalMarking::WasActivated() { return was_activated_; } bool IncrementalMarking::CanBeActivated() { // Only start incremental marking in a safe state: 1) when incremental // marking is turned on, 2) when we are currently not in a GC, and // 3) when we are currently not serializing or deserializing the heap. return FLAG_incremental_marking && heap_->gc_state() == Heap::NOT_IN_GC && heap_->deserialization_complete() && !heap_->isolate()->serializer_enabled(); } bool IncrementalMarking::IsBelowActivationThresholds() const { return heap_->OldGenerationSizeOfObjects() <= kV8ActivationThreshold && heap_->GlobalSizeOfObjects() <= kGlobalActivationThreshold; } void IncrementalMarking::Deactivate() { DeactivateIncrementalWriteBarrier(); } void IncrementalMarking::Start(GarbageCollectionReason gc_reason) { if (FLAG_trace_incremental_marking) { const size_t old_generation_size_mb = heap()->OldGenerationSizeOfObjects() / MB; const size_t old_generation_limit_mb = heap()->old_generation_allocation_limit() / MB; const size_t global_size_mb = heap()->GlobalSizeOfObjects() / MB; const size_t global_limit_mb = heap()->global_allocation_limit() / MB; heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start (%s): (size/limit/slack) v8: %zuMB / %zuMB " "/ %zuMB global: %zuMB / %zuMB / %zuMB\n", Heap::GarbageCollectionReasonToString(gc_reason), old_generation_size_mb, old_generation_limit_mb, old_generation_size_mb > old_generation_limit_mb ? 0 : old_generation_limit_mb - old_generation_size_mb, global_size_mb, global_limit_mb, global_size_mb > global_limit_mb ? 0 : global_limit_mb - global_size_mb); } DCHECK(FLAG_incremental_marking); DCHECK(state_ == STOPPED); DCHECK(heap_->gc_state() == Heap::NOT_IN_GC); DCHECK(!heap_->isolate()->serializer_enabled()); Counters* counters = heap_->isolate()->counters(); counters->incremental_marking_reason()->AddSample( static_cast(gc_reason)); HistogramTimerScope incremental_marking_scope( counters->gc_incremental_marking_start()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingStart"); TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_START); heap_->tracer()->NotifyIncrementalMarkingStart(); start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs(); initial_old_generation_size_ = heap_->OldGenerationSizeOfObjects(); old_generation_allocation_counter_ = heap_->OldGenerationAllocationCounter(); bytes_marked_ = 0; scheduled_bytes_to_mark_ = 0; schedule_update_time_ms_ = start_time_ms_; bytes_marked_concurrently_ = 0; should_hurry_ = false; was_activated_ = true; if (!heap_->mark_compact_collector()->sweeping_in_progress()) { StartMarking(); } else { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start sweeping.\n"); } SetState(SWEEPING); } heap_->AddAllocationObserversToAllSpaces(&old_generation_observer_, &new_generation_observer_); incremental_marking_job()->Start(heap_); } void IncrementalMarking::StartMarking() { if (heap_->isolate()->serializer_enabled()) { // Black allocation currently starts when we start incremental marking, // but we cannot enable black allocation while deserializing. Hence, we // have to delay the start of incremental marking in that case. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start delayed - serializer\n"); } return; } if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start marking\n"); } is_compacting_ = !FLAG_never_compact && heap_->mark_compact_collector()->StartCompaction(); SetState(MARKING); ActivateIncrementalWriteBarrier(); // Marking bits are cleared by the sweeper. #ifdef VERIFY_HEAP if (FLAG_verify_heap) { heap_->mark_compact_collector()->VerifyMarkbitsAreClean(); } #endif heap_->isolate()->compilation_cache()->MarkCompactPrologue(); StartBlackAllocation(); // Mark strong roots grey. IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); if (FLAG_concurrent_marking && !heap_->IsTearingDown()) { heap_->concurrent_marking()->ScheduleTasks(); } // Ready to start incremental marking. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Running\n"); } { // TracePrologue may call back into V8 in corner cases, requiring that // marking (including write barriers) is fully set up. TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_EMBEDDER_PROLOGUE); heap_->local_embedder_heap_tracer()->TracePrologue( heap_->flags_for_embedder_tracer()); } } void IncrementalMarking::StartBlackAllocation() { DCHECK(!black_allocation_); DCHECK(IsMarking()); black_allocation_ = true; heap()->old_space()->MarkLinearAllocationAreaBlack(); heap()->map_space()->MarkLinearAllocationAreaBlack(); heap()->code_space()->MarkLinearAllocationAreaBlack(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation started\n"); } } void IncrementalMarking::PauseBlackAllocation() { DCHECK(IsMarking()); heap()->old_space()->UnmarkLinearAllocationArea(); heap()->map_space()->UnmarkLinearAllocationArea(); heap()->code_space()->UnmarkLinearAllocationArea(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation paused\n"); } black_allocation_ = false; } void IncrementalMarking::FinishBlackAllocation() { if (black_allocation_) { black_allocation_ = false; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation finished\n"); } } } void IncrementalMarking::EnsureBlackAllocated(Address allocated, size_t size) { if (black_allocation() && allocated != kNullAddress) { HeapObject object = HeapObject::FromAddress(allocated); if (marking_state()->IsWhite(object) && !Heap::InYoungGeneration(object)) { if (heap_->IsLargeObject(object)) { marking_state()->WhiteToBlack(object); } else { Page::FromAddress(allocated)->CreateBlackArea(allocated, allocated + size); } } } } void IncrementalMarking::MarkRoots() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); } bool IncrementalMarking::ShouldRetainMap(Map map, int age) { if (age == 0) { // The map has aged. Do not retain this map. return false; } Object constructor = map.GetConstructor(); if (!constructor.IsHeapObject() || marking_state()->IsWhite(HeapObject::cast(constructor))) { // The constructor is dead, no new objects with this map can // be created. Do not retain this map. return false; } return true; } void IncrementalMarking::RetainMaps() { // Do not retain dead maps if flag disables it or there is // - memory pressure (reduce_memory_footprint_), // - GC is requested by tests or dev-tools (abort_incremental_marking_). bool map_retaining_is_disabled = heap()->ShouldReduceMemory() || FLAG_retain_maps_for_n_gc == 0; WeakArrayList retained_maps = heap()->retained_maps(); int length = retained_maps.length(); // The number_of_disposed_maps separates maps in the retained_maps // array that were created before and after context disposal. // We do not age and retain disposed maps to avoid memory leaks. int number_of_disposed_maps = heap()->number_of_disposed_maps_; for (int i = 0; i < length; i += 2) { MaybeObject value = retained_maps.Get(i); HeapObject map_heap_object; if (!value->GetHeapObjectIfWeak(&map_heap_object)) { continue; } int age = retained_maps.Get(i + 1).ToSmi().value(); int new_age; Map map = Map::cast(map_heap_object); if (i >= number_of_disposed_maps && !map_retaining_is_disabled && marking_state()->IsWhite(map)) { if (ShouldRetainMap(map, age)) { WhiteToGreyAndPush(map); } Object prototype = map.prototype(); if (age > 0 && prototype.IsHeapObject() && marking_state()->IsWhite(HeapObject::cast(prototype))) { // The prototype is not marked, age the map. new_age = age - 1; } else { // The prototype and the constructor are marked, this map keeps only // transition tree alive, not JSObjects. Do not age the map. new_age = age; } } else { new_age = FLAG_retain_maps_for_n_gc; } // Compact the array and update the age. if (new_age != age) { retained_maps.Set(i + 1, MaybeObject::FromSmi(Smi::FromInt(new_age))); } } } void IncrementalMarking::FinalizeIncrementally() { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE_BODY); DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); double start = heap_->MonotonicallyIncreasingTimeInMs(); // After finishing incremental marking, we try to discover all unmarked // objects to reduce the marking load in the final pause. // 1) We scan and mark the roots again to find all changes to the root set. // 2) Age and retain maps embedded in optimized code. MarkRoots(); // Map retaining is needed for perfromance, not correctness, // so we can do it only once at the beginning of the finalization. RetainMaps(); finalize_marking_completed_ = true; if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Finalize incrementally spent %.1f ms.\n", delta); } } void IncrementalMarking::UpdateMarkingWorklistAfterScavenge() { if (!IsMarking()) return; Map filler_map = ReadOnlyRoots(heap_).one_pointer_filler_map(); #ifdef ENABLE_MINOR_MC MinorMarkCompactCollector::MarkingState* minor_marking_state = heap()->minor_mark_compact_collector()->marking_state(); #else void* minor_marking_state = nullptr; #endif // ENABLE_MINOR_MC marking_worklist()->Update([ #ifdef DEBUG // this is referred inside DCHECK. this, #endif filler_map, minor_marking_state]( HeapObject obj, HeapObject* out) -> bool { DCHECK(obj.IsHeapObject()); // Only pointers to from space have to be updated. if (Heap::InFromPage(obj)) { MapWord map_word = obj.map_word(); if (!map_word.IsForwardingAddress()) { // There may be objects on the marking deque that do not exist anymore, // e.g. left trimmed objects or objects from the root set (frames). // If these object are dead at scavenging time, their marking deque // entries will not point to forwarding addresses. Hence, we can discard // them. return false; } HeapObject dest = map_word.ToForwardingAddress(); DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj.IsFiller()); *out = dest; return true; } else if (Heap::InToPage(obj)) { // The object may be on a large page or on a page that was moved in new // space. DCHECK(Heap::IsLargeObject(obj) || Page::FromHeapObject(obj)->IsFlagSet(Page::SWEEP_TO_ITERATE)); #ifdef ENABLE_MINOR_MC if (minor_marking_state->IsWhite(obj)) { return false; } #endif // ENABLE_MINOR_MC // Either a large object or an object marked by the minor mark-compactor. *out = obj; return true; } else { // The object may be on a page that was moved from new to old space. Only // applicable during minor MC garbage collections. if (Page::FromHeapObject(obj)->IsFlagSet(Page::SWEEP_TO_ITERATE)) { #ifdef ENABLE_MINOR_MC if (minor_marking_state->IsWhite(obj)) { return false; } #endif // ENABLE_MINOR_MC *out = obj; return true; } DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj.IsFiller()); // Skip one word filler objects that appear on the // stack when we perform in place array shift. if (obj.map() != filler_map) { *out = obj; return true; } return false; } }); UpdateWeakReferencesAfterScavenge(); } void IncrementalMarking::UpdateWeakReferencesAfterScavenge() { weak_objects_->weak_references.Update( [](std::pair slot_in, std::pair* slot_out) -> bool { HeapObject heap_obj = slot_in.first; HeapObject forwarded = ForwardingAddress(heap_obj); if (!forwarded.is_null()) { ptrdiff_t distance_to_slot = slot_in.second.address() - slot_in.first.ptr(); Address new_slot = forwarded.ptr() + distance_to_slot; slot_out->first = forwarded; slot_out->second = HeapObjectSlot(new_slot); return true; } return false; }); weak_objects_->weak_objects_in_code.Update( [](std::pair slot_in, std::pair* slot_out) -> bool { HeapObject heap_obj = slot_in.first; HeapObject forwarded = ForwardingAddress(heap_obj); if (!forwarded.is_null()) { slot_out->first = forwarded; slot_out->second = slot_in.second; return true; } return false; }); weak_objects_->ephemeron_hash_tables.Update( [](EphemeronHashTable slot_in, EphemeronHashTable* slot_out) -> bool { EphemeronHashTable forwarded = ForwardingAddress(slot_in); if (!forwarded.is_null()) { *slot_out = forwarded; return true; } return false; }); auto ephemeron_updater = [](Ephemeron slot_in, Ephemeron* slot_out) -> bool { HeapObject key = slot_in.key; HeapObject value = slot_in.value; HeapObject forwarded_key = ForwardingAddress(key); HeapObject forwarded_value = ForwardingAddress(value); if (!forwarded_key.is_null() && !forwarded_value.is_null()) { *slot_out = Ephemeron{forwarded_key, forwarded_value}; return true; } return false; }; weak_objects_->current_ephemerons.Update(ephemeron_updater); weak_objects_->next_ephemerons.Update(ephemeron_updater); weak_objects_->discovered_ephemerons.Update(ephemeron_updater); weak_objects_->flushed_js_functions.Update( [](JSFunction slot_in, JSFunction* slot_out) -> bool { JSFunction forwarded = ForwardingAddress(slot_in); if (!forwarded.is_null()) { *slot_out = forwarded; return true; } return false; }); #ifdef DEBUG weak_objects_->bytecode_flushing_candidates.Iterate( [](SharedFunctionInfo candidate) { DCHECK(!Heap::InYoungGeneration(candidate)); }); #endif } void IncrementalMarking::UpdateMarkedBytesAfterScavenge( size_t dead_bytes_in_new_space) { if (!IsMarking()) return; bytes_marked_ -= Min(bytes_marked_, dead_bytes_in_new_space); } int IncrementalMarking::VisitObject(Map map, HeapObject obj) { DCHECK(marking_state()->IsGrey(obj) || marking_state()->IsBlack(obj)); if (!marking_state()->GreyToBlack(obj)) { // The object can already be black in these cases: // 1. The object is a fixed array with the progress bar. // 2. The object is a JSObject that was colored black before // unsafe layout change. // 3. The object is a string that was colored black before // unsafe layout change. // 4. The object is materizalized by the deoptimizer. // 5. The object is a descriptor array marked black by // the descriptor array marking barrier. DCHECK(obj.IsHashTable() || obj.IsPropertyArray() || obj.IsFixedArray() || obj.IsContext() || obj.IsJSObject() || obj.IsString() || obj.IsDescriptorArray()); } DCHECK(marking_state()->IsBlack(obj)); WhiteToGreyAndPush(map); IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(), marking_state()); return visitor.Visit(map, obj); } void IncrementalMarking::ProcessBlackAllocatedObject(HeapObject obj) { if (IsMarking() && marking_state()->IsBlack(obj)) { RevisitObject(obj); } } void IncrementalMarking::RevisitObject(HeapObject obj) { DCHECK(IsMarking()); DCHECK(marking_state()->IsBlack(obj)); DCHECK_IMPLIES(MemoryChunk::FromHeapObject(obj)->IsFlagSet( MemoryChunk::HAS_PROGRESS_BAR), 0u == MemoryChunk::FromHeapObject(obj)->ProgressBar()); Map map = obj.map(); WhiteToGreyAndPush(map); IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(), marking_state()); visitor.Visit(map, obj); } void IncrementalMarking::VisitDescriptors(HeapObject host, DescriptorArray descriptors, int number_of_own_descriptors) { IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(), marking_state()); // This is necessary because the Scavenger records slots only for the // promoted black objects and the marking visitor of DescriptorArray skips // the descriptors marked by the visitor.VisitDescriptors() below. visitor.MarkDescriptorArrayBlack(host, descriptors); visitor.VisitDescriptors(descriptors, number_of_own_descriptors); } intptr_t IncrementalMarking::ProcessMarkingWorklist( intptr_t bytes_to_process, ForceCompletionAction completion) { intptr_t bytes_processed = 0; while (bytes_processed < bytes_to_process || completion == FORCE_COMPLETION) { HeapObject obj = marking_worklist()->Pop(); if (obj.is_null()) break; // Left trimming may result in grey or black filler objects on the marking // worklist. Ignore these objects. if (obj.IsFiller()) { // Due to copying mark bits and the fact that grey and black have their // first bit set, one word fillers are always black. DCHECK_IMPLIES( obj.map() == ReadOnlyRoots(heap()).one_pointer_filler_map(), marking_state()->IsBlack(obj)); // Other fillers may be black or grey depending on the color of the object // that was trimmed. DCHECK_IMPLIES( obj.map() != ReadOnlyRoots(heap()).one_pointer_filler_map(), marking_state()->IsBlackOrGrey(obj)); continue; } bytes_processed += VisitObject(obj.map(), obj); } return bytes_processed; } StepResult IncrementalMarking::EmbedderStep(double duration_ms) { if (!ShouldDoEmbedderStep()) return StepResult::kNoImmediateWork; constexpr size_t kObjectsToProcessBeforeInterrupt = 500; TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_EMBEDDER_TRACING); double deadline = heap_->MonotonicallyIncreasingTimeInMs() + duration_ms; bool empty_worklist; do { { LocalEmbedderHeapTracer::ProcessingScope scope( heap_->local_embedder_heap_tracer()); HeapObject object; size_t cnt = 0; empty_worklist = true; while (marking_worklist()->embedder()->Pop(0, &object)) { scope.TracePossibleWrapper(JSObject::cast(object)); if (++cnt == kObjectsToProcessBeforeInterrupt) { cnt = 0; empty_worklist = false; break; } } } heap_->local_embedder_heap_tracer()->Trace(deadline); } while (!empty_worklist && (heap_->MonotonicallyIncreasingTimeInMs() < deadline)); heap_->local_embedder_heap_tracer()->SetEmbedderWorklistEmpty(empty_worklist); return empty_worklist ? StepResult::kNoImmediateWork : StepResult::kMoreWorkRemaining; } void IncrementalMarking::Hurry() { // A scavenge may have pushed new objects on the marking deque (due to black // allocation) even in COMPLETE state. This may happen if scavenges are // forced e.g. in tests. It should not happen when COMPLETE was set when // incremental marking finished and a regular GC was triggered after that // because should_hurry_ will force a full GC. if (!marking_worklist()->IsEmpty()) { double start = 0.0; if (FLAG_trace_incremental_marking) { start = heap_->MonotonicallyIncreasingTimeInMs(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Hurry\n"); } } // TODO(gc) hurry can mark objects it encounters black as mutator // was stopped. ProcessMarkingWorklist(0, FORCE_COMPLETION); SetState(COMPLETE); if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (hurry), spent %d ms.\n", static_cast(delta)); } } } } void IncrementalMarking::Stop() { if (IsStopped()) return; if (FLAG_trace_incremental_marking) { int old_generation_size_mb = static_cast(heap()->OldGenerationSizeOfObjects() / MB); int old_generation_limit_mb = static_cast(heap()->old_generation_allocation_limit() / MB); heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Stopping: old generation %dMB, limit %dMB, " "overshoot %dMB\n", old_generation_size_mb, old_generation_limit_mb, Max(0, old_generation_size_mb - old_generation_limit_mb)); } SpaceIterator it(heap_); while (it.HasNext()) { Space* space = it.Next(); if (space == heap_->new_space()) { space->RemoveAllocationObserver(&new_generation_observer_); } else { space->RemoveAllocationObserver(&old_generation_observer_); } } IncrementalMarking::set_should_hurry(false); heap_->isolate()->stack_guard()->ClearGC(); SetState(STOPPED); is_compacting_ = false; FinishBlackAllocation(); } void IncrementalMarking::Finalize() { Hurry(); Stop(); } void IncrementalMarking::FinalizeMarking(CompletionAction action) { DCHECK(!finalize_marking_completed_); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] requesting finalization of incremental " "marking.\n"); } request_type_ = FINALIZATION; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::MarkingComplete(CompletionAction action) { SetState(COMPLETE); // We will set the stack guard to request a GC now. This will mean the rest // of the GC gets performed as soon as possible (we can't do a GC here in a // record-write context). If a few things get allocated between now and then // that shouldn't make us do a scavenge and keep being incremental, so we set // the should-hurry flag to indicate that there can't be much work left to do. set_should_hurry(true); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (normal).\n"); } request_type_ = COMPLETE_MARKING; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::Epilogue() { was_activated_ = false; finalize_marking_completed_ = false; } bool IncrementalMarking::ShouldDoEmbedderStep() { return state_ == MARKING && FLAG_incremental_marking_wrappers && heap_->local_embedder_heap_tracer()->InUse(); } void IncrementalMarking::FastForwardSchedule() { if (scheduled_bytes_to_mark_ < bytes_marked_) { scheduled_bytes_to_mark_ = bytes_marked_; if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Fast-forwarded schedule\n"); } } } void IncrementalMarking::FastForwardScheduleIfCloseToFinalization() { // Consider marking close to finalization if 75% of the initial old // generation was marked. if (bytes_marked_ > 3 * (initial_old_generation_size_ / 4)) { FastForwardSchedule(); } } void IncrementalMarking::ScheduleBytesToMarkBasedOnTime(double time_ms) { // Time interval that should be sufficient to complete incremental marking. constexpr double kTargetMarkingWallTimeInMs = 500; constexpr double kMinTimeBetweenScheduleInMs = 10; if (schedule_update_time_ms_ + kMinTimeBetweenScheduleInMs > time_ms) return; double delta_ms = Min(time_ms - schedule_update_time_ms_, kTargetMarkingWallTimeInMs); schedule_update_time_ms_ = time_ms; size_t bytes_to_mark = (delta_ms / kTargetMarkingWallTimeInMs) * initial_old_generation_size_; AddScheduledBytesToMark(bytes_to_mark); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Scheduled %zuKB to mark based on time delta " "%.1fms\n", bytes_to_mark / KB, delta_ms); } } namespace { StepResult CombineStepResults(StepResult a, StepResult b) { if (a == StepResult::kMoreWorkRemaining || b == StepResult::kMoreWorkRemaining) return StepResult::kMoreWorkRemaining; if (a == StepResult::kWaitingForFinalization || b == StepResult::kWaitingForFinalization) return StepResult::kWaitingForFinalization; return StepResult::kNoImmediateWork; } } // anonymous namespace StepResult IncrementalMarking::AdvanceWithDeadline( double deadline_in_ms, CompletionAction completion_action, StepOrigin step_origin) { HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); DCHECK(!IsStopped()); ScheduleBytesToMarkBasedOnTime(heap()->MonotonicallyIncreasingTimeInMs()); FastForwardScheduleIfCloseToFinalization(); double remaining_time_in_ms = 0.0; StepResult result; do { StepResult v8_result = V8Step(kStepSizeInMs / 2, completion_action, step_origin); remaining_time_in_ms = deadline_in_ms - heap()->MonotonicallyIncreasingTimeInMs(); StepResult embedder_result = EmbedderStep(Min(kStepSizeInMs, remaining_time_in_ms)); result = CombineStepResults(v8_result, embedder_result); remaining_time_in_ms = deadline_in_ms - heap()->MonotonicallyIncreasingTimeInMs(); } while (remaining_time_in_ms >= kStepSizeInMs && result == StepResult::kMoreWorkRemaining); return result; } void IncrementalMarking::FinalizeSweeping() { DCHECK(state_ == SWEEPING); if (heap_->mark_compact_collector()->sweeping_in_progress() && (!FLAG_concurrent_sweeping || !heap_->mark_compact_collector()->sweeper()->AreSweeperTasksRunning())) { heap_->mark_compact_collector()->EnsureSweepingCompleted(); } if (!heap_->mark_compact_collector()->sweeping_in_progress()) { #ifdef DEBUG heap_->VerifyCountersAfterSweeping(); #endif StartMarking(); } } size_t IncrementalMarking::StepSizeToKeepUpWithAllocations() { // Update bytes_allocated_ based on the allocation counter. size_t current_counter = heap_->OldGenerationAllocationCounter(); size_t result = current_counter - old_generation_allocation_counter_; old_generation_allocation_counter_ = current_counter; return result; } size_t IncrementalMarking::StepSizeToMakeProgress() { const size_t kTargetStepCount = 256; const size_t kTargetStepCountAtOOM = 32; const size_t kMaxStepSizeInByte = 256 * KB; size_t oom_slack = heap()->new_space()->Capacity() + 64 * MB; if (!heap()->CanExpandOldGeneration(oom_slack)) { return heap()->OldGenerationSizeOfObjects() / kTargetStepCountAtOOM; } return Min(Max(initial_old_generation_size_ / kTargetStepCount, IncrementalMarking::kMinStepSizeInBytes), kMaxStepSizeInByte); } void IncrementalMarking::AddScheduledBytesToMark(size_t bytes_to_mark) { if (scheduled_bytes_to_mark_ + bytes_to_mark < scheduled_bytes_to_mark_) { // The overflow case. scheduled_bytes_to_mark_ = std::numeric_limits::max(); } else { scheduled_bytes_to_mark_ += bytes_to_mark; } } void IncrementalMarking::ScheduleBytesToMarkBasedOnAllocation() { size_t progress_bytes = StepSizeToMakeProgress(); size_t allocation_bytes = StepSizeToKeepUpWithAllocations(); size_t bytes_to_mark = progress_bytes + allocation_bytes; AddScheduledBytesToMark(bytes_to_mark); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Scheduled %zuKB to mark based on allocation " "(progress=%zuKB, allocation=%zuKB)\n", bytes_to_mark / KB, progress_bytes / KB, allocation_bytes / KB); } } void IncrementalMarking::FetchBytesMarkedConcurrently() { if (FLAG_concurrent_marking) { size_t current_bytes_marked_concurrently = heap()->concurrent_marking()->TotalMarkedBytes(); // The concurrent_marking()->TotalMarkedBytes() is not monothonic for a // short period of time when a concurrent marking task is finishing. if (current_bytes_marked_concurrently > bytes_marked_concurrently_) { bytes_marked_ += current_bytes_marked_concurrently - bytes_marked_concurrently_; bytes_marked_concurrently_ = current_bytes_marked_concurrently; } if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marked %zuKB on background threads\n", heap_->concurrent_marking()->TotalMarkedBytes() / KB); } } } size_t IncrementalMarking::ComputeStepSizeInBytes(StepOrigin step_origin) { FetchBytesMarkedConcurrently(); if (FLAG_trace_incremental_marking) { if (scheduled_bytes_to_mark_ > bytes_marked_) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marker is %zuKB behind schedule\n", (scheduled_bytes_to_mark_ - bytes_marked_) / KB); } else { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marker is %zuKB ahead of schedule\n", (bytes_marked_ - scheduled_bytes_to_mark_) / KB); } } // Allow steps on allocation to get behind the schedule by small ammount. // This gives higher priority to steps in tasks. size_t kScheduleMarginInBytes = step_origin == StepOrigin::kV8 ? 1 * MB : 0; if (bytes_marked_ + kScheduleMarginInBytes > scheduled_bytes_to_mark_) return 0; return scheduled_bytes_to_mark_ - bytes_marked_ - kScheduleMarginInBytes; } void IncrementalMarking::AdvanceOnAllocation() { // Code using an AlwaysAllocateScope assumes that the GC state does not // change; that implies that no marking steps must be performed. if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking || (state_ != SWEEPING && state_ != MARKING) || heap_->always_allocate()) { return; } HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); ScheduleBytesToMarkBasedOnAllocation(); V8Step(kMaxStepSizeInMs, GC_VIA_STACK_GUARD, StepOrigin::kV8); } StepResult IncrementalMarking::V8Step(double max_step_size_in_ms, CompletionAction action, StepOrigin step_origin) { StepResult result = StepResult::kMoreWorkRemaining; double start = heap_->MonotonicallyIncreasingTimeInMs(); if (state_ == SWEEPING) { TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL_SWEEPING); FinalizeSweeping(); } size_t bytes_processed = 0, bytes_to_process = 0; if (state_ == MARKING) { if (FLAG_concurrent_marking) { heap_->new_space()->ResetOriginalTop(); heap_->new_lo_space()->ResetPendingObject(); // It is safe to merge back all objects that were on hold to the shared // work list at Step because we are at a safepoint where all objects // are properly initialized. marking_worklist()->shared()->MergeGlobalPool( marking_worklist()->on_hold()); } // Only print marking worklist in debug mode to save ~40KB of code size. #ifdef DEBUG if (FLAG_trace_incremental_marking && FLAG_trace_concurrent_marking && FLAG_trace_gc_verbose) { marking_worklist()->Print(); } #endif if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marking speed %.fKB/ms\n", heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); } // The first step after Scavenge will see many allocated bytes. // Cap the step size to distribute the marking work more uniformly. size_t max_step_size = GCIdleTimeHandler::EstimateMarkingStepSize( max_step_size_in_ms, heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); bytes_to_process = Min(ComputeStepSizeInBytes(step_origin), max_step_size); if (bytes_to_process == 0) { result = StepResult::kNoImmediateWork; } bytes_processed = ProcessMarkingWorklist(Max(bytes_to_process, kMinStepSizeInBytes)); bytes_marked_ += bytes_processed; if (marking_worklist()->IsEmpty()) { result = StepResult::kNoImmediateWork; if (heap_->local_embedder_heap_tracer() ->ShouldFinalizeIncrementalMarking()) { if (!finalize_marking_completed_) { FinalizeMarking(action); FastForwardSchedule(); result = StepResult::kWaitingForFinalization; incremental_marking_job()->Start(heap_); } else { MarkingComplete(action); result = StepResult::kWaitingForFinalization; } } else { heap_->local_embedder_heap_tracer()->NotifyV8MarkingWorklistWasEmpty(); } } } if (FLAG_concurrent_marking) { marking_worklist()->ShareWorkIfGlobalPoolIsEmpty(); heap_->concurrent_marking()->RescheduleTasksIfNeeded(); } double end = heap_->MonotonicallyIncreasingTimeInMs(); double duration = (end - start); // Note that we report zero bytes here when sweeping was in progress or // when we just started incremental marking. In these cases we did not // process the marking deque. heap_->tracer()->AddIncrementalMarkingStep(duration, bytes_processed); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Step %s %zuKB (%zuKB) in %.1f\n", step_origin == StepOrigin::kV8 ? "in v8" : "in task", bytes_processed / KB, bytes_to_process / KB, duration); } return result; } } // namespace internal } // namespace v8