// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/incremental-marking.h" #include "src/code-stubs.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/heap/concurrent-marking.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-inl.h" #include "src/heap/incremental-marking-inl.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/sweeper.h" #include "src/objects/hash-table-inl.h" #include "src/tracing/trace-event.h" #include "src/v8.h" #include "src/visitors.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { using IncrementalMarkingMarkingVisitor = MarkingVisitor; void IncrementalMarking::Observer::Step(int bytes_allocated, Address addr, size_t size) { Heap* heap = incremental_marking_.heap(); VMState state(heap->isolate()); RuntimeCallTimerScope runtime_timer( heap->isolate(), RuntimeCallCounterId::kGC_Custom_IncrementalMarkingObserver); incremental_marking_.AdvanceIncrementalMarkingOnAllocation(); if (incremental_marking_.black_allocation() && addr != kNullAddress) { // AdvanceIncrementalMarkingOnAllocation can start black allocation. // Ensure that the new object is marked black. HeapObject* object = HeapObject::FromAddress(addr); if (incremental_marking_.marking_state()->IsWhite(object) && !(Heap::InNewSpace(object) || heap->new_lo_space()->Contains(object))) { if (heap->lo_space()->Contains(object)) { incremental_marking_.marking_state()->WhiteToBlack(object); } else { Page::FromAddress(addr)->CreateBlackArea(addr, addr + size); } } } } IncrementalMarking::IncrementalMarking( Heap* heap, MarkCompactCollector::MarkingWorklist* marking_worklist, WeakObjects* weak_objects) : heap_(heap), marking_worklist_(marking_worklist), weak_objects_(weak_objects), initial_old_generation_size_(0), bytes_marked_ahead_of_schedule_(0), bytes_marked_concurrently_(0), unscanned_bytes_of_large_object_(0), is_compacting_(false), should_hurry_(false), was_activated_(false), black_allocation_(false), finalize_marking_completed_(false), trace_wrappers_toggle_(false), request_type_(NONE), new_generation_observer_(*this, kYoungGenerationAllocatedThreshold), old_generation_observer_(*this, kOldGenerationAllocatedThreshold) { DCHECK_NOT_NULL(marking_worklist_); SetState(STOPPED); } bool IncrementalMarking::BaseRecordWrite(HeapObject* obj, Object* value) { HeapObject* value_heap_obj = HeapObject::cast(value); DCHECK(!marking_state()->IsImpossible(value_heap_obj)); DCHECK(!marking_state()->IsImpossible(obj)); #ifdef V8_CONCURRENT_MARKING // The write barrier stub generated with V8_CONCURRENT_MARKING does not // check the color of the source object. const bool need_recording = true; #else const bool need_recording = marking_state()->IsBlack(obj); #endif if (need_recording && WhiteToGreyAndPush(value_heap_obj)) { RestartIfNotMarking(); } return is_compacting_ && need_recording; } void IncrementalMarking::RecordWriteSlow(HeapObject* obj, HeapObjectReference** slot, Object* value) { if (BaseRecordWrite(obj, value) && slot != nullptr) { // Object is not going to be rescanned we need to record the slot. heap_->mark_compact_collector()->RecordSlot(obj, slot, HeapObject::cast(value)); } } int IncrementalMarking::RecordWriteFromCode(HeapObject* obj, MaybeObject** slot, Isolate* isolate) { DCHECK(obj->IsHeapObject()); isolate->heap()->incremental_marking()->RecordMaybeWeakWrite(obj, slot, *slot); // Called by RecordWriteCodeStubAssembler, which doesnt accept void type return 0; } void IncrementalMarking::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, HeapObject* value) { DCHECK(IsMarking()); if (BaseRecordWrite(host, value)) { // Object is not going to be rescanned. We need to record the slot. heap_->mark_compact_collector()->RecordRelocSlot(host, rinfo, value); } } bool IncrementalMarking::WhiteToGreyAndPush(HeapObject* obj) { if (marking_state()->WhiteToGrey(obj)) { marking_worklist()->Push(obj); return true; } return false; } void IncrementalMarking::MarkBlackAndPush(HeapObject* obj) { // Marking left-trimmable fixed array black is unsafe because left-trimming // re-pushes only grey arrays onto the marking worklist. DCHECK(!obj->IsFixedArrayBase()); // Color the object black and push it into the bailout deque. marking_state()->WhiteToGrey(obj); if (marking_state()->GreyToBlack(obj)) { if (FLAG_concurrent_marking) { marking_worklist()->PushBailout(obj); } else { marking_worklist()->Push(obj); } } } void IncrementalMarking::NotifyLeftTrimming(HeapObject* from, HeapObject* to) { DCHECK(IsMarking()); DCHECK(MemoryChunk::FromAddress(from->address())->SweepingDone()); DCHECK_EQ(MemoryChunk::FromAddress(from->address()), MemoryChunk::FromAddress(to->address())); DCHECK_NE(from, to); MarkBit old_mark_bit = marking_state()->MarkBitFrom(from); MarkBit new_mark_bit = marking_state()->MarkBitFrom(to); if (black_allocation() && Marking::IsBlack(new_mark_bit)) { // Nothing to do if the object is in black area. return; } bool marked_black_due_to_left_trimming = false; if (FLAG_concurrent_marking) { // We need to mark the array black before overwriting its map and length // so that the concurrent marker does not observe inconsistent state. Marking::WhiteToGrey(old_mark_bit); if (Marking::GreyToBlack(old_mark_bit)) { // The concurrent marker will not mark the array. We need to push the // new array start in marking deque to ensure that it will be marked. marked_black_due_to_left_trimming = true; } DCHECK(Marking::IsBlack(old_mark_bit)); } if (Marking::IsBlack(old_mark_bit) && !marked_black_due_to_left_trimming) { // The array was black before left trimming or was marked black by the // concurrent marker. Simply transfer the color. if (from->address() + kPointerSize == to->address()) { // The old and the new markbits overlap. The |to| object has the // grey color. To make it black, we need to set the second bit. DCHECK(new_mark_bit.Get()); new_mark_bit.Next().Set(); } else { bool success = Marking::WhiteToBlack(new_mark_bit); DCHECK(success); USE(success); } } else if (Marking::IsGrey(old_mark_bit) || marked_black_due_to_left_trimming) { // The array was already grey or was marked black by this function. // Mark the new array grey and push it to marking deque. if (from->address() + kPointerSize == to->address()) { // The old and the new markbits overlap. The |to| object is either white // or grey. Set the first bit to make sure that it is grey. new_mark_bit.Set(); DCHECK(!new_mark_bit.Next().Get()); } else { bool success = Marking::WhiteToGrey(new_mark_bit); DCHECK(success); USE(success); } // Subsequent left-trimming will re-push only grey arrays. // Ensure that this array is grey. DCHECK(Marking::IsGrey(new_mark_bit)); marking_worklist()->PushBailout(to); RestartIfNotMarking(); } } class IncrementalMarkingRootMarkingVisitor : public RootVisitor { public: explicit IncrementalMarkingRootMarkingVisitor( IncrementalMarking* incremental_marking) : heap_(incremental_marking->heap()) {} void VisitRootPointer(Root root, const char* description, Object** p) override { MarkObjectByPointer(p); } void VisitRootPointers(Root root, const char* description, Object** start, Object** end) override { for (Object** p = start; p < end; p++) MarkObjectByPointer(p); } private: void MarkObjectByPointer(Object** p) { Object* obj = *p; if (!obj->IsHeapObject()) return; heap_->incremental_marking()->WhiteToGreyAndPush(HeapObject::cast(obj)); } Heap* heap_; }; void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( PagedSpace* space) { for (Page* p : *space) { p->SetOldGenerationPageFlags(false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( NewSpace* space) { for (Page* p : *space) { p->SetYoungGenerationPageFlags(false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrier() { DeactivateIncrementalWriteBarrierForSpace(heap_->old_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->map_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->code_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->new_space()); for (LargePage* p : *heap_->lo_space()) { p->SetOldGenerationPageFlags(false); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(PagedSpace* space) { for (Page* p : *space) { p->SetOldGenerationPageFlags(true); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(NewSpace* space) { for (Page* p : *space) { p->SetYoungGenerationPageFlags(true); } } void IncrementalMarking::ActivateIncrementalWriteBarrier() { ActivateIncrementalWriteBarrier(heap_->old_space()); ActivateIncrementalWriteBarrier(heap_->map_space()); ActivateIncrementalWriteBarrier(heap_->code_space()); ActivateIncrementalWriteBarrier(heap_->new_space()); for (LargePage* p : *heap_->lo_space()) { p->SetOldGenerationPageFlags(true); } } bool IncrementalMarking::WasActivated() { return was_activated_; } bool IncrementalMarking::CanBeActivated() { // Only start incremental marking in a safe state: 1) when incremental // marking is turned on, 2) when we are currently not in a GC, and // 3) when we are currently not serializing or deserializing the heap. return FLAG_incremental_marking && heap_->gc_state() == Heap::NOT_IN_GC && heap_->deserialization_complete() && !heap_->isolate()->serializer_enabled(); } void IncrementalMarking::Deactivate() { DeactivateIncrementalWriteBarrier(); } void IncrementalMarking::Start(GarbageCollectionReason gc_reason) { if (FLAG_trace_incremental_marking) { int old_generation_size_mb = static_cast(heap()->OldGenerationSizeOfObjects() / MB); int old_generation_limit_mb = static_cast(heap()->old_generation_allocation_limit() / MB); heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start (%s): old generation %dMB, limit %dMB, " "slack %dMB\n", Heap::GarbageCollectionReasonToString(gc_reason), old_generation_size_mb, old_generation_limit_mb, Max(0, old_generation_limit_mb - old_generation_size_mb)); } DCHECK(FLAG_incremental_marking); DCHECK(state_ == STOPPED); DCHECK(heap_->gc_state() == Heap::NOT_IN_GC); DCHECK(!heap_->isolate()->serializer_enabled()); Counters* counters = heap_->isolate()->counters(); counters->incremental_marking_reason()->AddSample( static_cast(gc_reason)); HistogramTimerScope incremental_marking_scope( counters->gc_incremental_marking_start()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingStart"); TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_START); heap_->tracer()->NotifyIncrementalMarkingStart(); start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs(); initial_old_generation_size_ = heap_->OldGenerationSizeOfObjects(); old_generation_allocation_counter_ = heap_->OldGenerationAllocationCounter(); bytes_allocated_ = 0; bytes_marked_ahead_of_schedule_ = 0; bytes_marked_concurrently_ = 0; should_hurry_ = false; was_activated_ = true; if (!heap_->mark_compact_collector()->sweeping_in_progress()) { StartMarking(); } else { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start sweeping.\n"); } SetState(SWEEPING); } heap_->AddAllocationObserversToAllSpaces(&old_generation_observer_, &new_generation_observer_); incremental_marking_job()->Start(heap_); } void IncrementalMarking::StartMarking() { if (heap_->isolate()->serializer_enabled()) { // Black allocation currently starts when we start incremental marking, // but we cannot enable black allocation while deserializing. Hence, we // have to delay the start of incremental marking in that case. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start delayed - serializer\n"); } return; } if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start marking\n"); } is_compacting_ = !FLAG_never_compact && heap_->mark_compact_collector()->StartCompaction(); SetState(MARKING); { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_WRAPPER_PROLOGUE); heap_->local_embedder_heap_tracer()->TracePrologue(); } ActivateIncrementalWriteBarrier(); // Marking bits are cleared by the sweeper. #ifdef VERIFY_HEAP if (FLAG_verify_heap) { heap_->mark_compact_collector()->VerifyMarkbitsAreClean(); } #endif heap_->isolate()->compilation_cache()->MarkCompactPrologue(); #ifdef V8_CONCURRENT_MARKING // The write-barrier does not check the color of the source object. // Start black allocation earlier to ensure faster marking progress. if (!black_allocation_) { StartBlackAllocation(); } #endif // Mark strong roots grey. IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); if (FLAG_concurrent_marking && !heap_->IsTearingDown()) { heap_->concurrent_marking()->ScheduleTasks(); } // Ready to start incremental marking. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Running\n"); } } void IncrementalMarking::StartBlackAllocation() { DCHECK(FLAG_black_allocation); DCHECK(!black_allocation_); DCHECK(IsMarking()); black_allocation_ = true; heap()->old_space()->MarkLinearAllocationAreaBlack(); heap()->map_space()->MarkLinearAllocationAreaBlack(); heap()->code_space()->MarkLinearAllocationAreaBlack(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation started\n"); } } void IncrementalMarking::PauseBlackAllocation() { DCHECK(FLAG_black_allocation); DCHECK(IsMarking()); heap()->old_space()->UnmarkLinearAllocationArea(); heap()->map_space()->UnmarkLinearAllocationArea(); heap()->code_space()->UnmarkLinearAllocationArea(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation paused\n"); } black_allocation_ = false; } void IncrementalMarking::FinishBlackAllocation() { if (black_allocation_) { black_allocation_ = false; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation finished\n"); } } } void IncrementalMarking::MarkRoots() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); } bool IncrementalMarking::ShouldRetainMap(Map* map, int age) { if (age == 0) { // The map has aged. Do not retain this map. return false; } Object* constructor = map->GetConstructor(); if (!constructor->IsHeapObject() || marking_state()->IsWhite(HeapObject::cast(constructor))) { // The constructor is dead, no new objects with this map can // be created. Do not retain this map. return false; } return true; } void IncrementalMarking::RetainMaps() { // Do not retain dead maps if flag disables it or there is // - memory pressure (reduce_memory_footprint_), // - GC is requested by tests or dev-tools (abort_incremental_marking_). bool map_retaining_is_disabled = heap()->ShouldReduceMemory() || FLAG_retain_maps_for_n_gc == 0; WeakArrayList* retained_maps = heap()->retained_maps(); int length = retained_maps->length(); // The number_of_disposed_maps separates maps in the retained_maps // array that were created before and after context disposal. // We do not age and retain disposed maps to avoid memory leaks. int number_of_disposed_maps = heap()->number_of_disposed_maps_; for (int i = 0; i < length; i += 2) { MaybeObject* value = retained_maps->Get(i); HeapObject* map_heap_object; if (!value->GetHeapObjectIfWeak(&map_heap_object)) { continue; } int age = Smi::ToInt(retained_maps->Get(i + 1)->cast()); int new_age; Map* map = Map::cast(map_heap_object); if (i >= number_of_disposed_maps && !map_retaining_is_disabled && marking_state()->IsWhite(map)) { if (ShouldRetainMap(map, age)) { WhiteToGreyAndPush(map); } Object* prototype = map->prototype(); if (age > 0 && prototype->IsHeapObject() && marking_state()->IsWhite(HeapObject::cast(prototype))) { // The prototype is not marked, age the map. new_age = age - 1; } else { // The prototype and the constructor are marked, this map keeps only // transition tree alive, not JSObjects. Do not age the map. new_age = age; } } else { new_age = FLAG_retain_maps_for_n_gc; } // Compact the array and update the age. if (new_age != age) { retained_maps->Set(i + 1, MaybeObject::FromSmi(Smi::FromInt(new_age))); } } } void IncrementalMarking::FinalizeIncrementally() { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE_BODY); DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); double start = heap_->MonotonicallyIncreasingTimeInMs(); // After finishing incremental marking, we try to discover all unmarked // objects to reduce the marking load in the final pause. // 1) We scan and mark the roots again to find all changes to the root set. // 2) Age and retain maps embedded in optimized code. MarkRoots(); // Map retaining is needed for perfromance, not correctness, // so we can do it only once at the beginning of the finalization. RetainMaps(); finalize_marking_completed_ = true; if (FLAG_black_allocation && !heap()->ShouldReduceMemory() && !black_allocation_) { // TODO(hpayer): Move to an earlier point as soon as we make faster marking // progress. StartBlackAllocation(); } if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Finalize incrementally spent %.1f ms.\n", delta); } } void IncrementalMarking::UpdateMarkingWorklistAfterScavenge() { if (!IsMarking()) return; Map* filler_map = ReadOnlyRoots(heap_).one_pointer_filler_map(); #ifdef ENABLE_MINOR_MC MinorMarkCompactCollector::MarkingState* minor_marking_state = heap()->minor_mark_compact_collector()->marking_state(); #else void* minor_marking_state = nullptr; #endif // ENABLE_MINOR_MC marking_worklist()->Update([this, filler_map, minor_marking_state]( HeapObject* obj, HeapObject** out) -> bool { DCHECK(obj->IsHeapObject()); // Only pointers to from space have to be updated. if (Heap::InFromSpace(obj)) { MapWord map_word = obj->map_word(); if (!map_word.IsForwardingAddress()) { // There may be objects on the marking deque that do not exist anymore, // e.g. left trimmed objects or objects from the root set (frames). // If these object are dead at scavenging time, their marking deque // entries will not point to forwarding addresses. Hence, we can discard // them. return false; } HeapObject* dest = map_word.ToForwardingAddress(); DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj->IsFiller()); *out = dest; return true; } else if (Heap::InToSpace(obj)) { // The object may be on a page that was moved in new space. DCHECK( Page::FromAddress(obj->address())->IsFlagSet(Page::SWEEP_TO_ITERATE)); #ifdef ENABLE_MINOR_MC if (minor_marking_state->IsGrey(obj)) { *out = obj; return true; } #endif // ENABLE_MINOR_MC return false; } else { // The object may be on a page that was moved from new to old space. Only // applicable during minor MC garbage collections. if (Page::FromAddress(obj->address()) ->IsFlagSet(Page::SWEEP_TO_ITERATE)) { #ifdef ENABLE_MINOR_MC if (minor_marking_state->IsGrey(obj)) { *out = obj; return true; } #endif // ENABLE_MINOR_MC return false; } DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj->IsFiller()); // Skip one word filler objects that appear on the // stack when we perform in place array shift. if (obj->map() != filler_map) { *out = obj; return true; } return false; } }); UpdateWeakReferencesAfterScavenge(); } namespace { template T* ForwardingAddress(T* heap_obj) { MapWord map_word = heap_obj->map_word(); if (map_word.IsForwardingAddress()) { return T::cast(map_word.ToForwardingAddress()); } else if (Heap::InNewSpace(heap_obj)) { return nullptr; } else { return heap_obj; } } } // namespace void IncrementalMarking::UpdateWeakReferencesAfterScavenge() { weak_objects_->weak_references.Update( [](std::pair slot_in, std::pair* slot_out) -> bool { HeapObject* heap_obj = slot_in.first; HeapObject* forwarded = ForwardingAddress(heap_obj); if (forwarded) { ptrdiff_t distance_to_slot = reinterpret_cast
(slot_in.second) - reinterpret_cast
(slot_in.first); Address new_slot = reinterpret_cast
(forwarded) + distance_to_slot; slot_out->first = forwarded; slot_out->second = reinterpret_cast(new_slot); return true; } return false; }); weak_objects_->weak_objects_in_code.Update( [](std::pair slot_in, std::pair* slot_out) -> bool { HeapObject* heap_obj = slot_in.first; HeapObject* forwarded = ForwardingAddress(heap_obj); if (forwarded) { slot_out->first = forwarded; slot_out->second = slot_in.second; return true; } return false; }); weak_objects_->ephemeron_hash_tables.Update( [](EphemeronHashTable* slot_in, EphemeronHashTable** slot_out) -> bool { EphemeronHashTable* forwarded = ForwardingAddress(slot_in); if (forwarded) { *slot_out = forwarded; return true; } return false; }); auto ephemeron_updater = [](Ephemeron slot_in, Ephemeron* slot_out) -> bool { HeapObject* key = slot_in.key; HeapObject* value = slot_in.value; HeapObject* forwarded_key = ForwardingAddress(key); HeapObject* forwarded_value = ForwardingAddress(value); if (forwarded_key && forwarded_value) { *slot_out = Ephemeron{forwarded_key, forwarded_value}; return true; } return false; }; weak_objects_->current_ephemerons.Update(ephemeron_updater); weak_objects_->next_ephemerons.Update(ephemeron_updater); weak_objects_->discovered_ephemerons.Update(ephemeron_updater); } void IncrementalMarking::UpdateMarkedBytesAfterScavenge( size_t dead_bytes_in_new_space) { if (!IsMarking()) return; bytes_marked_ahead_of_schedule_ -= Min(bytes_marked_ahead_of_schedule_, dead_bytes_in_new_space); } bool IncrementalMarking::IsFixedArrayWithProgressBar(HeapObject* obj) { if (!obj->IsFixedArray()) return false; MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); return chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR); } int IncrementalMarking::VisitObject(Map* map, HeapObject* obj) { DCHECK(marking_state()->IsGrey(obj) || marking_state()->IsBlack(obj)); if (!marking_state()->GreyToBlack(obj)) { // The object can already be black in these cases: // 1. The object is a fixed array with the progress bar. // 2. The object is a JSObject that was colored black before // unsafe layout change. // 3. The object is a string that was colored black before // unsafe layout change. // 4. The object is materizalized by the deoptimizer. DCHECK(obj->IsHashTable() || obj->IsPropertyArray() || obj->IsFixedArray() || obj->IsJSObject() || obj->IsString()); } DCHECK(marking_state()->IsBlack(obj)); WhiteToGreyAndPush(map); IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(), marking_state()); return visitor.Visit(map, obj); } void IncrementalMarking::ProcessBlackAllocatedObject(HeapObject* obj) { if (IsMarking() && marking_state()->IsBlack(obj)) { RevisitObject(obj); } } void IncrementalMarking::RevisitObject(HeapObject* obj) { DCHECK(IsMarking()); DCHECK(FLAG_concurrent_marking || marking_state()->IsBlack(obj)); Page* page = Page::FromAddress(obj->address()); if (page->owner()->identity() == LO_SPACE) { page->ResetProgressBar(); } Map* map = obj->map(); WhiteToGreyAndPush(map); IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(), marking_state()); visitor.Visit(map, obj); } template intptr_t IncrementalMarking::ProcessMarkingWorklist( intptr_t bytes_to_process, ForceCompletionAction completion) { intptr_t bytes_processed = 0; while (bytes_processed < bytes_to_process || completion == FORCE_COMPLETION) { HeapObject* obj; if (worklist_to_process == WorklistToProcess::kBailout) { obj = marking_worklist()->PopBailout(); } else { obj = marking_worklist()->Pop(); } if (obj == nullptr) break; // Left trimming may result in white, grey, or black filler objects on the // marking deque. Ignore these objects. if (obj->IsFiller()) { DCHECK(!marking_state()->IsImpossible(obj)); continue; } unscanned_bytes_of_large_object_ = 0; int size = VisitObject(obj->map(), obj); bytes_processed += size - unscanned_bytes_of_large_object_; } // Report all found wrappers to the embedder. This is necessary as the // embedder could potentially invalidate wrappers as soon as V8 is done // with its incremental marking processing. Any cached wrappers could // result in broken pointers at this point. heap_->local_embedder_heap_tracer()->RegisterWrappersWithRemoteTracer(); return bytes_processed; } void IncrementalMarking::EmbedderStep(double duration_ms) { constexpr int kObjectsToProcessBeforeInterrupt = 100; TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_WRAPPER_TRACING); const double deadline = heap_->MonotonicallyIncreasingTimeInMs() + duration_ms; HeapObject* object; int cnt = 0; while (marking_worklist()->embedder()->Pop(0, &object)) { heap_->TracePossibleWrapper(JSObject::cast(object)); if (++cnt == kObjectsToProcessBeforeInterrupt) { cnt = 0; if (heap_->MonotonicallyIncreasingTimeInMs() > deadline) { break; } } } heap_->local_embedder_heap_tracer()->RegisterWrappersWithRemoteTracer(); if (!heap_->local_embedder_heap_tracer() ->ShouldFinalizeIncrementalMarking()) { heap_->local_embedder_heap_tracer()->Trace(deadline); } } void IncrementalMarking::Hurry() { // A scavenge may have pushed new objects on the marking deque (due to black // allocation) even in COMPLETE state. This may happen if scavenges are // forced e.g. in tests. It should not happen when COMPLETE was set when // incremental marking finished and a regular GC was triggered after that // because should_hurry_ will force a full GC. if (!marking_worklist()->IsEmpty()) { double start = 0.0; if (FLAG_trace_incremental_marking) { start = heap_->MonotonicallyIncreasingTimeInMs(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Hurry\n"); } } // TODO(gc) hurry can mark objects it encounters black as mutator // was stopped. ProcessMarkingWorklist(0, FORCE_COMPLETION); SetState(COMPLETE); if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (hurry), spent %d ms.\n", static_cast(delta)); } } } } void IncrementalMarking::Stop() { if (IsStopped()) return; if (FLAG_trace_incremental_marking) { int old_generation_size_mb = static_cast(heap()->OldGenerationSizeOfObjects() / MB); int old_generation_limit_mb = static_cast(heap()->old_generation_allocation_limit() / MB); heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Stopping: old generation %dMB, limit %dMB, " "overshoot %dMB\n", old_generation_size_mb, old_generation_limit_mb, Max(0, old_generation_size_mb - old_generation_limit_mb)); } SpaceIterator it(heap_); while (it.has_next()) { Space* space = it.next(); if (space == heap_->new_space()) { space->RemoveAllocationObserver(&new_generation_observer_); } else { space->RemoveAllocationObserver(&old_generation_observer_); } } IncrementalMarking::set_should_hurry(false); heap_->isolate()->stack_guard()->ClearGC(); SetState(STOPPED); is_compacting_ = false; FinishBlackAllocation(); } void IncrementalMarking::Finalize() { Hurry(); Stop(); } void IncrementalMarking::FinalizeMarking(CompletionAction action) { DCHECK(!finalize_marking_completed_); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] requesting finalization of incremental " "marking.\n"); } request_type_ = FINALIZATION; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::MarkingComplete(CompletionAction action) { SetState(COMPLETE); // We will set the stack guard to request a GC now. This will mean the rest // of the GC gets performed as soon as possible (we can't do a GC here in a // record-write context). If a few things get allocated between now and then // that shouldn't make us do a scavenge and keep being incremental, so we set // the should-hurry flag to indicate that there can't be much work left to do. set_should_hurry(true); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (normal).\n"); } request_type_ = COMPLETE_MARKING; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::Epilogue() { was_activated_ = false; finalize_marking_completed_ = false; } double IncrementalMarking::AdvanceIncrementalMarking( double deadline_in_ms, CompletionAction completion_action, StepOrigin step_origin) { HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); DCHECK(!IsStopped()); DCHECK_EQ( 0, heap_->local_embedder_heap_tracer()->NumberOfCachedWrappersToTrace()); double remaining_time_in_ms = 0.0; intptr_t step_size_in_bytes = GCIdleTimeHandler::EstimateMarkingStepSize( kStepSizeInMs, heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); const bool incremental_wrapper_tracing = state_ == MARKING && FLAG_incremental_marking_wrappers && heap_->local_embedder_heap_tracer()->InUse(); do { if (incremental_wrapper_tracing && trace_wrappers_toggle_) { EmbedderStep(kStepSizeInMs); } else { Step(step_size_in_bytes, completion_action, step_origin); } trace_wrappers_toggle_ = !trace_wrappers_toggle_; remaining_time_in_ms = deadline_in_ms - heap()->MonotonicallyIncreasingTimeInMs(); } while (remaining_time_in_ms >= kStepSizeInMs && !IsComplete() && !marking_worklist()->IsEmpty()); return remaining_time_in_ms; } void IncrementalMarking::FinalizeSweeping() { DCHECK(state_ == SWEEPING); if (heap_->mark_compact_collector()->sweeping_in_progress() && (!FLAG_concurrent_sweeping || !heap_->mark_compact_collector()->sweeper()->AreSweeperTasksRunning())) { heap_->mark_compact_collector()->EnsureSweepingCompleted(); } if (!heap_->mark_compact_collector()->sweeping_in_progress()) { #ifdef DEBUG heap_->VerifyCountersAfterSweeping(); #endif StartMarking(); } } size_t IncrementalMarking::StepSizeToKeepUpWithAllocations() { // Update bytes_allocated_ based on the allocation counter. size_t current_counter = heap_->OldGenerationAllocationCounter(); bytes_allocated_ += current_counter - old_generation_allocation_counter_; old_generation_allocation_counter_ = current_counter; return bytes_allocated_; } size_t IncrementalMarking::StepSizeToMakeProgress() { // We increase step size gradually based on the time passed in order to // leave marking work to standalone tasks. The ramp up duration and the // target step count are chosen based on benchmarks. const int kRampUpIntervalMs = 300; const size_t kTargetStepCount = 256; const size_t kTargetStepCountAtOOM = 32; size_t oom_slack = heap()->new_space()->Capacity() + 64 * MB; if (!heap()->CanExpandOldGeneration(oom_slack)) { return heap()->OldGenerationSizeOfObjects() / kTargetStepCountAtOOM; } size_t step_size = Max(initial_old_generation_size_ / kTargetStepCount, IncrementalMarking::kMinStepSizeInBytes); double time_passed_ms = heap_->MonotonicallyIncreasingTimeInMs() - start_time_ms_; double factor = Min(time_passed_ms / kRampUpIntervalMs, 1.0); return static_cast(factor * step_size); } void IncrementalMarking::AdvanceIncrementalMarkingOnAllocation() { // Code using an AlwaysAllocateScope assumes that the GC state does not // change; that implies that no marking steps must be performed. if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking || (state_ != SWEEPING && state_ != MARKING) || heap_->always_allocate()) { return; } size_t bytes_to_process = StepSizeToKeepUpWithAllocations() + StepSizeToMakeProgress(); if (bytes_to_process >= IncrementalMarking::kMinStepSizeInBytes) { HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); // The first step after Scavenge will see many allocated bytes. // Cap the step size to distribute the marking work more uniformly. size_t max_step_size = GCIdleTimeHandler::EstimateMarkingStepSize( kMaxStepSizeInMs, heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); bytes_to_process = Min(bytes_to_process, max_step_size); size_t bytes_processed = 0; if (FLAG_concurrent_marking) { bytes_processed = Step(bytes_to_process, GC_VIA_STACK_GUARD, StepOrigin::kV8, WorklistToProcess::kBailout); bytes_to_process = (bytes_processed >= bytes_to_process) ? 0 : bytes_to_process - bytes_processed; size_t current_bytes_marked_concurrently = heap()->concurrent_marking()->TotalMarkedBytes(); // The concurrent_marking()->TotalMarkedBytes() is not monothonic for a // short period of time when a concurrent marking task is finishing. if (current_bytes_marked_concurrently > bytes_marked_concurrently_) { bytes_marked_ahead_of_schedule_ += current_bytes_marked_concurrently - bytes_marked_concurrently_; bytes_marked_concurrently_ = current_bytes_marked_concurrently; } } if (bytes_marked_ahead_of_schedule_ >= bytes_to_process) { // Steps performed in tasks and concurrently have put us ahead of // schedule. We skip processing of marking dequeue here and thus shift // marking time from inside V8 to standalone tasks. bytes_marked_ahead_of_schedule_ -= bytes_to_process; bytes_processed += bytes_to_process; bytes_to_process = IncrementalMarking::kMinStepSizeInBytes; } bytes_processed += Step(bytes_to_process, GC_VIA_STACK_GUARD, StepOrigin::kV8, WorklistToProcess::kAll); bytes_allocated_ -= Min(bytes_allocated_, bytes_processed); } } size_t IncrementalMarking::Step(size_t bytes_to_process, CompletionAction action, StepOrigin step_origin, WorklistToProcess worklist_to_process) { double start = heap_->MonotonicallyIncreasingTimeInMs(); if (state_ == SWEEPING) { TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL_SWEEPING); FinalizeSweeping(); } size_t bytes_processed = 0; if (state_ == MARKING) { if (FLAG_concurrent_marking) { heap_->new_space()->ResetOriginalTop(); // It is safe to merge back all objects that were on hold to the shared // work list at Step because we are at a safepoint where all objects // are properly initialized. marking_worklist()->shared()->MergeGlobalPool( marking_worklist()->on_hold()); } // Only print marking worklist in debug mode to save ~40KB of code size. #ifdef DEBUG if (FLAG_trace_incremental_marking && FLAG_trace_concurrent_marking && FLAG_trace_gc_verbose) { marking_worklist()->Print(); } #endif if (worklist_to_process == WorklistToProcess::kBailout) { bytes_processed = ProcessMarkingWorklist(bytes_to_process); } else { bytes_processed = ProcessMarkingWorklist(bytes_to_process); } if (step_origin == StepOrigin::kTask) { bytes_marked_ahead_of_schedule_ += bytes_processed; } if (marking_worklist()->IsEmpty()) { if (heap_->local_embedder_heap_tracer() ->ShouldFinalizeIncrementalMarking()) { if (!finalize_marking_completed_) { FinalizeMarking(action); } else { MarkingComplete(action); } } else { heap_->local_embedder_heap_tracer()->NotifyV8MarkingWorklistWasEmpty(); } } } if (FLAG_concurrent_marking) { heap_->concurrent_marking()->RescheduleTasksIfNeeded(); } double end = heap_->MonotonicallyIncreasingTimeInMs(); double duration = (end - start); // Note that we report zero bytes here when sweeping was in progress or // when we just started incremental marking. In these cases we did not // process the marking deque. heap_->tracer()->AddIncrementalMarkingStep(duration, bytes_processed); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Step %s %" PRIuS "KB (%" PRIuS "KB) in %.1f\n", step_origin == StepOrigin::kV8 ? "in v8" : "in task", bytes_processed / KB, bytes_to_process / KB, duration); } if (FLAG_trace_concurrent_marking) { heap_->isolate()->PrintWithTimestamp( "Concurrently marked %" PRIuS "KB\n", heap_->concurrent_marking()->TotalMarkedBytes() / KB); } return bytes_processed; } } // namespace internal } // namespace v8