// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/factory.h" #include "src/ast/ast-source-ranges.h" #include "src/ast/ast.h" #include "src/base/bits.h" #include "src/builtins/accessors.h" #include "src/builtins/constants-table-builder.h" #include "src/codegen/compiler.h" #include "src/execution/isolate-inl.h" #include "src/execution/protectors-inl.h" #include "src/heap/heap-inl.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/read-only-heap.h" #include "src/ic/handler-configuration-inl.h" #include "src/init/bootstrapper.h" #include "src/interpreter/interpreter.h" #include "src/logging/counters.h" #include "src/logging/log.h" #include "src/numbers/conversions.h" #include "src/numbers/hash-seed-inl.h" #include "src/objects/allocation-site-inl.h" #include "src/objects/allocation-site-scopes.h" #include "src/objects/api-callbacks.h" #include "src/objects/arguments-inl.h" #include "src/objects/bigint.h" #include "src/objects/cell-inl.h" #include "src/objects/debug-objects-inl.h" #include "src/objects/embedder-data-array-inl.h" #include "src/objects/feedback-cell-inl.h" #include "src/objects/fixed-array-inl.h" #include "src/objects/foreign-inl.h" #include "src/objects/frame-array-inl.h" #include "src/objects/instance-type-inl.h" #include "src/objects/js-array-inl.h" #include "src/objects/js-collection-inl.h" #include "src/objects/js-generator-inl.h" #include "src/objects/js-regexp-inl.h" #include "src/objects/js-weak-refs-inl.h" #include "src/objects/literal-objects-inl.h" #include "src/objects/microtask-inl.h" #include "src/objects/module-inl.h" #include "src/objects/promise-inl.h" #include "src/objects/scope-info.h" #include "src/objects/stack-frame-info-inl.h" #include "src/objects/struct-inl.h" #include "src/objects/template-objects-inl.h" #include "src/objects/transitions-inl.h" #include "src/strings/unicode-inl.h" namespace v8 { namespace internal { namespace { int ComputeCodeObjectSize(const CodeDesc& desc) { bool has_unwinding_info = desc.unwinding_info != nullptr; DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) || (!has_unwinding_info && desc.unwinding_info_size == 0)); int body_size = desc.instr_size; int unwinding_info_size_field_size = kInt64Size; if (has_unwinding_info) { body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size + unwinding_info_size_field_size; } int object_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment)); DCHECK(IsAligned(static_cast(object_size), kCodeAlignment)); return object_size; } } // namespace Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc, Code::Kind kind) : isolate_(isolate), code_desc_(desc), kind_(kind), source_position_table_(isolate_->factory()->empty_byte_array()) {} MaybeHandle Factory::CodeBuilder::BuildInternal( bool retry_allocation_or_fail) { const auto factory = isolate_->factory(); // Allocate objects needed for code initialization. Handle reloc_info = factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld); Handle data_container; // Use a canonical off-heap trampoline CodeDataContainer if possible. const int32_t promise_rejection_flag = Code::IsPromiseRejectionField::encode(true); if (read_only_data_container_ && (kind_specific_flags_ == 0 || kind_specific_flags_ == promise_rejection_flag)) { const ReadOnlyRoots roots(isolate_); const auto canonical_code_data_container = kind_specific_flags_ == 0 ? roots.trampoline_trivial_code_data_container_handle() : roots.trampoline_promise_rejection_code_data_container_handle(); DCHECK_EQ(canonical_code_data_container->kind_specific_flags(), kind_specific_flags_); data_container = canonical_code_data_container; } else { data_container = factory->NewCodeDataContainer( 0, read_only_data_container_ ? AllocationType::kReadOnly : AllocationType::kOld); data_container->set_kind_specific_flags(kind_specific_flags_); } Handle code; { int object_size = ComputeCodeObjectSize(code_desc_); Heap* heap = isolate_->heap(); CodePageCollectionMemoryModificationScope code_allocation(heap); HeapObject result; if (retry_allocation_or_fail) { result = heap->AllocateRawWith(object_size, AllocationType::kCode); } else { result = heap->AllocateRawWith(object_size, AllocationType::kCode); // Return an empty handle if we cannot allocate the code object. if (result.is_null()) return MaybeHandle(); } if (!is_movable_) { result = heap->EnsureImmovableCode(result, object_size); } // The code object has not been fully initialized yet. We rely on the // fact that no allocation will happen from this point on. DisallowHeapAllocation no_gc; result.set_map_after_allocation(*factory->code_map(), SKIP_WRITE_BARRIER); code = handle(Code::cast(result), isolate_); DCHECK(IsAligned(code->address(), kCodeAlignment)); DCHECK_IMPLIES( !heap->memory_allocator()->code_range().is_empty(), heap->memory_allocator()->code_range().contains(code->address())); constexpr bool kIsNotOffHeapTrampoline = false; const bool has_unwinding_info = code_desc_.unwinding_info != nullptr; code->set_raw_instruction_size(code_desc_.instr_size); code->set_relocation_info(*reloc_info); code->initialize_flags(kind_, has_unwinding_info, is_turbofanned_, stack_slots_, kIsNotOffHeapTrampoline); code->set_builtin_index(builtin_index_); code->set_code_data_container(*data_container); code->set_deoptimization_data(*deoptimization_data_); code->set_source_position_table(*source_position_table_); code->set_safepoint_table_offset(code_desc_.safepoint_table_offset); code->set_handler_table_offset(code_desc_.handler_table_offset); code->set_constant_pool_offset(code_desc_.constant_pool_offset); code->set_code_comments_offset(code_desc_.code_comments_offset); // Allow self references to created code object by patching the handle to // point to the newly allocated Code object. Handle self_reference; if (self_reference_.ToHandle(&self_reference)) { DCHECK(self_reference->IsOddball()); DCHECK(Oddball::cast(*self_reference).kind() == Oddball::kSelfReferenceMarker); if (FLAG_embedded_builtins) { auto builder = isolate_->builtins_constants_table_builder(); if (builder != nullptr) builder->PatchSelfReference(self_reference, code); } *(self_reference.location()) = code->ptr(); } // Migrate generated code. // The generated code can contain embedded objects (typically from handles) // in a pointer-to-tagged-value format (i.e. with indirection like a handle) // that are dereferenced during the copy to point directly to the actual // heap objects. These pointers can include references to the code object // itself, through the self_reference parameter. code->CopyFromNoFlush(heap, code_desc_); code->clear_padding(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) code->ObjectVerify(isolate_); #endif // Flush the instruction cache before changing the permissions. // Note: we do this before setting permissions to ReadExecute because on // some older ARM kernels there is a bug which causes an access error on // cache flush instructions to trigger access error on non-writable memory. // See https://bugs.chromium.org/p/v8/issues/detail?id=8157 code->FlushICache(); } return code; } MaybeHandle Factory::CodeBuilder::TryBuild() { return BuildInternal(false); } Handle Factory::CodeBuilder::Build() { return BuildInternal(true).ToHandleChecked(); } HeapObject Factory::AllocateRawWithImmortalMap(int size, AllocationType allocation, Map map, AllocationAlignment alignment) { HeapObject result = isolate()->heap()->AllocateRawWith( size, allocation, AllocationOrigin::kRuntime, alignment); result.set_map_after_allocation(map, SKIP_WRITE_BARRIER); return result; } HeapObject Factory::AllocateRawWithAllocationSite( Handle map, AllocationType allocation, Handle allocation_site) { DCHECK(map->instance_type() != MAP_TYPE); int size = map->instance_size(); if (!allocation_site.is_null()) size += AllocationMemento::kSize; HeapObject result = isolate()->heap()->AllocateRawWith(size, allocation); WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; result.set_map_after_allocation(*map, write_barrier_mode); if (!allocation_site.is_null()) { AllocationMemento alloc_memento = AllocationMemento::unchecked_cast( Object(result.ptr() + map->instance_size())); InitializeAllocationMemento(alloc_memento, *allocation_site); } return result; } void Factory::InitializeAllocationMemento(AllocationMemento memento, AllocationSite allocation_site) { memento.set_map_after_allocation(*allocation_memento_map(), SKIP_WRITE_BARRIER); memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); if (FLAG_allocation_site_pretenuring) { allocation_site.IncrementMementoCreateCount(); } } HeapObject Factory::AllocateRawArray(int size, AllocationType allocation) { HeapObject result = isolate()->heap()->AllocateRawWith(size, allocation); if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) { MemoryChunk* chunk = MemoryChunk::FromHeapObject(result); chunk->SetFlag(MemoryChunk::HAS_PROGRESS_BAR); } return result; } HeapObject Factory::AllocateRawFixedArray(int length, AllocationType allocation) { if (length < 0 || length > FixedArray::kMaxLength) { isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); } return AllocateRawArray(FixedArray::SizeFor(length), allocation); } HeapObject Factory::AllocateRawWeakArrayList(int capacity, AllocationType allocation) { if (capacity < 0 || capacity > WeakArrayList::kMaxCapacity) { isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); } return AllocateRawArray(WeakArrayList::SizeForCapacity(capacity), allocation); } HeapObject Factory::New(Handle map, AllocationType allocation) { DCHECK(map->instance_type() != MAP_TYPE); int size = map->instance_size(); HeapObject result = isolate()->heap()->AllocateRawWith(size, allocation); // New space objects are allocated white. WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; result.set_map_after_allocation(*map, write_barrier_mode); return result; } Handle Factory::NewFillerObject(int size, bool double_align, AllocationType allocation, AllocationOrigin origin) { AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned; Heap* heap = isolate()->heap(); HeapObject result = heap->AllocateRawWith( size, allocation, origin, alignment); heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo); return Handle(result, isolate()); } Handle Factory::NewPrototypeInfo() { Handle result = Handle::cast( NewStruct(PROTOTYPE_INFO_TYPE, AllocationType::kOld)); result->set_prototype_users(Smi::kZero); result->set_registry_slot(PrototypeInfo::UNREGISTERED); result->set_bit_field(0); result->set_module_namespace(*undefined_value()); return result; } Handle Factory::NewEnumCache(Handle keys, Handle indices) { Handle result = Handle::cast( NewStruct(ENUM_CACHE_TYPE, AllocationType::kOld)); result->set_keys(*keys); result->set_indices(*indices); return result; } Handle Factory::NewTuple2(Handle value1, Handle value2, AllocationType allocation) { Handle result = Handle::cast(NewStruct(TUPLE2_TYPE, allocation)); result->set_value1(*value1); result->set_value2(*value2); return result; } Handle Factory::NewArrayBoilerplateDescription( ElementsKind elements_kind, Handle constant_values) { Handle result = Handle::cast( NewStruct(ARRAY_BOILERPLATE_DESCRIPTION_TYPE, AllocationType::kOld)); result->set_elements_kind(elements_kind); result->set_constant_elements(*constant_values); return result; } Handle Factory::NewTemplateObjectDescription( Handle raw_strings, Handle cooked_strings) { DCHECK_EQ(raw_strings->length(), cooked_strings->length()); DCHECK_LT(0, raw_strings->length()); Handle result = Handle::cast( NewStruct(TEMPLATE_OBJECT_DESCRIPTION_TYPE, AllocationType::kOld)); result->set_raw_strings(*raw_strings); result->set_cooked_strings(*cooked_strings); return result; } Handle Factory::NewOddball(Handle map, const char* to_string, Handle to_number, const char* type_of, byte kind) { Handle oddball(Oddball::cast(New(map, AllocationType::kReadOnly)), isolate()); Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind); return oddball; } Handle Factory::NewSelfReferenceMarker() { return NewOddball(self_reference_marker_map(), "self_reference_marker", handle(Smi::FromInt(-1), isolate()), "undefined", Oddball::kSelfReferenceMarker); } Handle Factory::NewPropertyArray(int length) { DCHECK_LE(0, length); if (length == 0) return empty_property_array(); HeapObject result = AllocateRawFixedArray(length, AllocationType::kYoung); result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER); Handle array(PropertyArray::cast(result), isolate()); array->initialize_length(length); MemsetTagged(array->data_start(), *undefined_value(), length); return array; } Handle Factory::NewFixedArrayWithFiller(RootIndex map_root_index, int length, Object filler, AllocationType allocation) { HeapObject result = AllocateRawFixedArray(length, allocation); DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); Map map = Map::cast(isolate()->root(map_root_index)); result.set_map_after_allocation(map, SKIP_WRITE_BARRIER); Handle array(FixedArray::cast(result), isolate()); array->set_length(length); MemsetTagged(array->data_start(), filler, length); return array; } template Handle Factory::NewFixedArrayWithMap(RootIndex map_root_index, int length, AllocationType allocation) { static_assert(std::is_base_of::value, "T must be a descendant of FixedArray"); // Zero-length case must be handled outside, where the knowledge about // the map is. DCHECK_LT(0, length); return Handle::cast(NewFixedArrayWithFiller( map_root_index, length, *undefined_value(), allocation)); } template Handle Factory::NewWeakFixedArrayWithMap(RootIndex map_root_index, int length, AllocationType allocation) { static_assert(std::is_base_of::value, "T must be a descendant of WeakFixedArray"); // Zero-length case must be handled outside. DCHECK_LT(0, length); HeapObject result = AllocateRawArray(WeakFixedArray::SizeFor(length), AllocationType::kOld); Map map = Map::cast(isolate()->root(map_root_index)); result.set_map_after_allocation(map, SKIP_WRITE_BARRIER); Handle array(WeakFixedArray::cast(result), isolate()); array->set_length(length); MemsetTagged(ObjectSlot(array->data_start()), *undefined_value(), length); return Handle::cast(array); } template Handle Factory::NewFixedArrayWithMap( RootIndex, int, AllocationType allocation); Handle Factory::NewFixedArray(int length, AllocationType allocation) { DCHECK_LE(0, length); if (length == 0) return empty_fixed_array(); return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length, *undefined_value(), allocation); } Handle Factory::NewWeakFixedArray(int length, AllocationType allocation) { DCHECK_LE(0, length); if (length == 0) return empty_weak_fixed_array(); HeapObject result = AllocateRawArray(WeakFixedArray::SizeFor(length), allocation); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kWeakFixedArrayMap)); result.set_map_after_allocation(*weak_fixed_array_map(), SKIP_WRITE_BARRIER); Handle array(WeakFixedArray::cast(result), isolate()); array->set_length(length); MemsetTagged(ObjectSlot(array->data_start()), *undefined_value(), length); return array; } MaybeHandle Factory::TryNewFixedArray( int length, AllocationType allocation_type) { DCHECK_LE(0, length); if (length == 0) return empty_fixed_array(); int size = FixedArray::SizeFor(length); Heap* heap = isolate()->heap(); AllocationResult allocation = heap->AllocateRaw(size, allocation_type); HeapObject result; if (!allocation.To(&result)) return MaybeHandle(); if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) { MemoryChunk* chunk = MemoryChunk::FromHeapObject(result); chunk->SetFlag(MemoryChunk::HAS_PROGRESS_BAR); } result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER); Handle array(FixedArray::cast(result), isolate()); array->set_length(length); MemsetTagged(array->data_start(), ReadOnlyRoots(heap).undefined_value(), length); return array; } Handle Factory::NewFixedArrayWithHoles(int length, AllocationType allocation) { DCHECK_LE(0, length); if (length == 0) return empty_fixed_array(); return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length, *the_hole_value(), allocation); } Handle Factory::NewUninitializedFixedArray(int length) { DCHECK_LE(0, length); if (length == 0) return empty_fixed_array(); // TODO(ulan): As an experiment this temporarily returns an initialized fixed // array. After getting canary/performance coverage, either remove the // function or revert to returning uninitilized array. return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length, *undefined_value(), AllocationType::kYoung); } Handle Factory::NewClosureFeedbackCellArray( int length) { if (length == 0) return empty_closure_feedback_cell_array(); Handle feedback_cell_array = NewFixedArrayWithMap( RootIndex::kClosureFeedbackCellArrayMap, length, AllocationType::kYoung); return feedback_cell_array; } Handle Factory::NewFeedbackVector( Handle shared, Handle closure_feedback_cell_array) { int length = shared->feedback_metadata().slot_count(); DCHECK_LE(0, length); int size = FeedbackVector::SizeFor(length); HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld, *feedback_vector_map()); Handle vector(FeedbackVector::cast(result), isolate()); vector->set_shared_function_info(*shared); vector->set_optimized_code_weak_or_smi(MaybeObject::FromSmi(Smi::FromEnum( FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution : OptimizationMarker::kNone))); vector->set_length(length); vector->set_invocation_count(0); vector->set_profiler_ticks(0); vector->clear_padding(); vector->set_closure_feedback_cell_array(*closure_feedback_cell_array); // TODO(leszeks): Initialize based on the feedback metadata. MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length); return vector; } Handle Factory::NewEmbedderDataArray(int length) { DCHECK_LE(0, length); int size = EmbedderDataArray::SizeFor(length); HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kYoung, *embedder_data_array_map()); Handle array(EmbedderDataArray::cast(result), isolate()); array->set_length(length); if (length > 0) { ObjectSlot start(array->slots_start()); ObjectSlot end(array->slots_end()); size_t slot_count = end - start; MemsetTagged(start, *undefined_value(), slot_count); } return array; } Handle Factory::NewObjectBoilerplateDescription( int boilerplate, int all_properties, int index_keys, bool has_seen_proto) { DCHECK_GE(boilerplate, 0); DCHECK_GE(all_properties, index_keys); DCHECK_GE(index_keys, 0); int backing_store_size = all_properties - index_keys - (has_seen_proto ? 1 : 0); DCHECK_GE(backing_store_size, 0); bool has_different_size_backing_store = boilerplate != backing_store_size; // Space for name and value for every boilerplate property + LiteralType flag. int size = 2 * boilerplate + ObjectBoilerplateDescription::kDescriptionStartIndex; if (has_different_size_backing_store) { // An extra entry for the backing store size. size++; } Handle description = Handle::cast( NewFixedArrayWithMap(RootIndex::kObjectBoilerplateDescriptionMap, size, AllocationType::kOld)); if (has_different_size_backing_store) { DCHECK_IMPLIES((boilerplate == (all_properties - index_keys)), has_seen_proto); description->set_backing_store_size(backing_store_size); } description->set_flags(0); return description; } Handle Factory::NewFixedDoubleArray(int length) { if (length == 0) return empty_fixed_array(); if (length < 0 || length > FixedDoubleArray::kMaxLength) { isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); } int size = FixedDoubleArray::SizeFor(length); Map map = *fixed_double_array_map(); HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kYoung, map, kDoubleAligned); Handle array(FixedDoubleArray::cast(result), isolate()); array->set_length(length); return array; } Handle Factory::NewFixedDoubleArrayWithHoles(int length) { DCHECK_LE(0, length); Handle array = NewFixedDoubleArray(length); if (length > 0) { Handle::cast(array)->FillWithHoles(0, length); } return array; } Handle Factory::NewFeedbackMetadata( int slot_count, int feedback_cell_count, AllocationType allocation) { DCHECK_LE(0, slot_count); int size = FeedbackMetadata::SizeFor(slot_count); HeapObject result = AllocateRawWithImmortalMap(size, allocation, *feedback_metadata_map()); Handle data(FeedbackMetadata::cast(result), isolate()); data->set_slot_count(slot_count); data->set_closure_feedback_cell_count(feedback_cell_count); // Initialize the data section to 0. int data_size = size - FeedbackMetadata::kHeaderSize; Address data_start = data->address() + FeedbackMetadata::kHeaderSize; memset(reinterpret_cast(data_start), 0, data_size); // Fields have been zeroed out but not initialized, so this object will not // pass object verification at this point. return data; } Handle Factory::NewFrameArray(int number_of_frames) { DCHECK_LE(0, number_of_frames); Handle result = NewFixedArrayWithHoles(FrameArray::LengthFor(number_of_frames)); result->set(FrameArray::kFrameCountIndex, Smi::kZero); return Handle::cast(result); } template Handle Factory::AllocateSmallOrderedHashTable(Handle map, int capacity, AllocationType allocation) { // Capacity must be a power of two, since we depend on being able // to divide and multiple by 2 (kLoadFactor) to derive capacity // from number of buckets. If we decide to change kLoadFactor // to something other than 2, capacity should be stored as another // field of this object. DCHECK_EQ(T::kLoadFactor, 2); capacity = base::bits::RoundUpToPowerOfTwo32(Max(T::kMinCapacity, capacity)); capacity = Min(capacity, T::kMaxCapacity); DCHECK_LT(0, capacity); DCHECK_EQ(0, capacity % T::kLoadFactor); int size = T::SizeFor(capacity); HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map); Handle table(T::cast(result), isolate()); table->Initialize(isolate(), capacity); return table; } Handle Factory::NewSmallOrderedHashSet( int capacity, AllocationType allocation) { return AllocateSmallOrderedHashTable( small_ordered_hash_set_map(), capacity, allocation); } Handle Factory::NewSmallOrderedHashMap( int capacity, AllocationType allocation) { return AllocateSmallOrderedHashTable( small_ordered_hash_map_map(), capacity, allocation); } Handle Factory::NewSmallOrderedNameDictionary( int capacity, AllocationType allocation) { Handle dict = AllocateSmallOrderedHashTable( small_ordered_name_dictionary_map(), capacity, allocation); dict->SetHash(PropertyArray::kNoHashSentinel); return dict; } Handle Factory::NewOrderedHashSet() { return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity) .ToHandleChecked(); } Handle Factory::NewOrderedHashMap() { return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity) .ToHandleChecked(); } Handle Factory::NewOrderedNameDictionary() { return OrderedNameDictionary::Allocate(isolate(), OrderedNameDictionary::kMinCapacity) .ToHandleChecked(); } Handle Factory::NewAccessorPair() { Handle accessors = Handle::cast( NewStruct(ACCESSOR_PAIR_TYPE, AllocationType::kOld)); accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER); accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER); return accessors; } // Internalized strings are created in the old generation (data space). Handle Factory::InternalizeUtf8String( const Vector& string) { Vector utf8_data = Vector::cast(string); Utf8Decoder decoder(utf8_data); if (decoder.is_ascii()) return InternalizeString(utf8_data); if (decoder.is_one_byte()) { std::unique_ptr buffer(new uint8_t[decoder.utf16_length()]); decoder.Decode(buffer.get(), utf8_data); return InternalizeString( Vector(buffer.get(), decoder.utf16_length())); } std::unique_ptr buffer(new uint16_t[decoder.utf16_length()]); decoder.Decode(buffer.get(), utf8_data); return InternalizeString( Vector(buffer.get(), decoder.utf16_length())); } template Handle Factory::InternalizeString(const Vector& string, bool convert_encoding) { SequentialStringKey key(string, HashSeed(isolate()), convert_encoding); return InternalizeStringWithKey(&key); } template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) Handle Factory::InternalizeString( const Vector& string, bool convert_encoding); template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) Handle Factory::InternalizeString( const Vector& string, bool convert_encoding); template Handle Factory::InternalizeString(Handle string, int from, int length, bool convert_encoding) { SeqSubStringKey key(isolate(), string, from, length, convert_encoding); return InternalizeStringWithKey(&key); } template Handle Factory::InternalizeString( Handle string, int from, int length, bool convert_encoding); template Handle Factory::InternalizeString( Handle string, int from, int length, bool convert_encoding); template Handle Factory::InternalizeStringWithKey(StringTableKey* key) { return StringTable::LookupKey(isolate(), key); } MaybeHandle Factory::NewStringFromOneByte( const Vector& string, AllocationType allocation) { DCHECK_NE(allocation, AllocationType::kReadOnly); int length = string.length(); if (length == 0) return empty_string(); if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); Handle result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, NewRawOneByteString(string.length(), allocation), String); DisallowHeapAllocation no_gc; // Copy the characters into the new object. CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(), length); return result; } MaybeHandle Factory::NewStringFromUtf8(const Vector& string, AllocationType allocation) { Vector utf8_data = Vector::cast(string); Utf8Decoder decoder(utf8_data); if (decoder.utf16_length() == 0) return empty_string(); if (decoder.is_one_byte()) { // Allocate string. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawOneByteString(decoder.utf16_length(), allocation), String); DisallowHeapAllocation no_gc; decoder.Decode(result->GetChars(no_gc), utf8_data); return result; } // Allocate string. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(decoder.utf16_length(), allocation), String); DisallowHeapAllocation no_gc; decoder.Decode(result->GetChars(no_gc), utf8_data); return result; } MaybeHandle Factory::NewStringFromUtf8SubString( Handle str, int begin, int length, AllocationType allocation) { Vector utf8_data; { DisallowHeapAllocation no_gc; utf8_data = Vector(str->GetChars(no_gc) + begin, length); } Utf8Decoder decoder(utf8_data); if (length == 1) { uint16_t t; // Decode even in the case of length 1 since it can be a bad character. decoder.Decode(&t, utf8_data); return LookupSingleCharacterStringFromCode(t); } if (decoder.is_ascii()) { // If the string is ASCII, we can just make a substring. // TODO(v8): the allocation flag is ignored in this case. return NewSubString(str, begin, begin + length); } DCHECK_GT(decoder.utf16_length(), 0); if (decoder.is_one_byte()) { // Allocate string. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawOneByteString(decoder.utf16_length(), allocation), String); DisallowHeapAllocation no_gc; // Update pointer references, since the original string may have moved after // allocation. utf8_data = Vector(str->GetChars(no_gc) + begin, length); decoder.Decode(result->GetChars(no_gc), utf8_data); return result; } // Allocate string. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(decoder.utf16_length(), allocation), String); DisallowHeapAllocation no_gc; // Update pointer references, since the original string may have moved after // allocation. utf8_data = Vector(str->GetChars(no_gc) + begin, length); decoder.Decode(result->GetChars(no_gc), utf8_data); return result; } MaybeHandle Factory::NewStringFromTwoByte(const uc16* string, int length, AllocationType allocation) { DCHECK_NE(allocation, AllocationType::kReadOnly); if (length == 0) return empty_string(); if (String::IsOneByte(string, length)) { if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); Handle result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, NewRawOneByteString(length, allocation), String); DisallowHeapAllocation no_gc; CopyChars(result->GetChars(no_gc), string, length); return result; } else { Handle result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, NewRawTwoByteString(length, allocation), String); DisallowHeapAllocation no_gc; CopyChars(result->GetChars(no_gc), string, length); return result; } } MaybeHandle Factory::NewStringFromTwoByte( const Vector& string, AllocationType allocation) { return NewStringFromTwoByte(string.begin(), string.length(), allocation); } MaybeHandle Factory::NewStringFromTwoByte( const ZoneVector* string, AllocationType allocation) { return NewStringFromTwoByte(string->data(), static_cast(string->size()), allocation); } namespace { bool inline IsOneByte(Handle str) { return str->IsOneByteRepresentation(); } inline void WriteOneByteData(Handle s, uint8_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(*s, chars, 0, len); } inline void WriteTwoByteData(Handle s, uint16_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(*s, chars, 0, len); } } // namespace Handle Factory::AllocateRawOneByteInternalizedString( int length, uint32_t hash_field) { CHECK_GE(String::kMaxLength, length); // The canonical empty_string is the only zero-length string we allow. DCHECK_IMPLIES( length == 0, isolate()->roots_table()[RootIndex::kempty_string] == kNullAddress); Map map = *one_byte_internalized_string_map(); int size = SeqOneByteString::SizeFor(length); HeapObject result = AllocateRawWithImmortalMap(size, isolate()->heap()->CanAllocateInReadOnlySpace() ? AllocationType::kReadOnly : AllocationType::kOld, map); Handle answer(SeqOneByteString::cast(result), isolate()); answer->set_length(length); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); return answer; } Handle Factory::AllocateTwoByteInternalizedString( const Vector& str, uint32_t hash_field) { Handle result = AllocateRawTwoByteInternalizedString(str.length(), hash_field); DisallowHeapAllocation no_gc; // Fill in the characters. MemCopy(result->GetChars(no_gc), str.begin(), str.length() * kUC16Size); return result; } Handle Factory::AllocateRawTwoByteInternalizedString( int length, uint32_t hash_field) { CHECK_GE(String::kMaxLength, length); DCHECK_NE(0, length); // Use Heap::empty_string() instead. Map map = *internalized_string_map(); int size = SeqTwoByteString::SizeFor(length); HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld, map); Handle answer(SeqTwoByteString::cast(result), isolate()); answer->set_length(length); answer->set_hash_field(hash_field); DCHECK_EQ(size, result.Size()); return answer; } template Handle Factory::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { DCHECK_LE(0, chars); DCHECK_GE(String::kMaxLength, chars); // Compute map and object size. int size; Map map; if (is_one_byte) { map = *one_byte_internalized_string_map(); size = SeqOneByteString::SizeFor(chars); } else { map = *internalized_string_map(); size = SeqTwoByteString::SizeFor(chars); } HeapObject result = AllocateRawWithImmortalMap(size, isolate()->heap()->CanAllocateInReadOnlySpace() ? AllocationType::kReadOnly : AllocationType::kOld, map); Handle answer(String::cast(result), isolate()); answer->set_length(chars); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); DisallowHeapAllocation no_gc; if (is_one_byte) { WriteOneByteData(t, SeqOneByteString::cast(*answer).GetChars(no_gc), chars); } else { WriteTwoByteData(t, SeqTwoByteString::cast(*answer).GetChars(no_gc), chars); } return answer; } Handle Factory::NewOneByteInternalizedString( const Vector& str, uint32_t hash_field) { Handle result = AllocateRawOneByteInternalizedString(str.length(), hash_field); DisallowHeapAllocation no_allocation; MemCopy(result->GetChars(no_allocation), str.begin(), str.length()); return result; } Handle Factory::NewTwoByteInternalizedString( const Vector& str, uint32_t hash_field) { return AllocateTwoByteInternalizedString(str, hash_field); } Handle Factory::NewInternalizedStringImpl(Handle string, int chars, uint32_t hash_field) { if (IsOneByte(string)) { return AllocateInternalizedStringImpl(string, chars, hash_field); } return AllocateInternalizedStringImpl(string, chars, hash_field); } namespace { MaybeHandle GetInternalizedStringMap(Factory* f, Handle string) { switch (string->map().instance_type()) { case STRING_TYPE: return f->internalized_string_map(); case ONE_BYTE_STRING_TYPE: return f->one_byte_internalized_string_map(); case EXTERNAL_STRING_TYPE: return f->external_internalized_string_map(); case EXTERNAL_ONE_BYTE_STRING_TYPE: return f->external_one_byte_internalized_string_map(); case UNCACHED_EXTERNAL_STRING_TYPE: return f->uncached_external_internalized_string_map(); case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE: return f->uncached_external_one_byte_internalized_string_map(); default: return MaybeHandle(); // No match found. } } } // namespace MaybeHandle Factory::InternalizedStringMapForString( Handle string) { // If the string is in the young generation, it cannot be used as // internalized. if (Heap::InYoungGeneration(*string)) return MaybeHandle(); return GetInternalizedStringMap(this, string); } template Handle Factory::InternalizeExternalString(Handle string) { Handle cast_string = Handle::cast(string); Handle map = GetInternalizedStringMap(this, string).ToHandleChecked(); Handle external_string( StringClass::cast(New(map, AllocationType::kOld)), isolate()); external_string->set_length(cast_string->length()); external_string->set_hash_field(cast_string->hash_field()); external_string->SetResource(isolate(), nullptr); isolate()->heap()->RegisterExternalString(*external_string); return external_string; } template Handle Factory::InternalizeExternalString(Handle); template Handle Factory::InternalizeExternalString(Handle); MaybeHandle Factory::NewRawOneByteString( int length, AllocationType allocation) { if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString); } DCHECK_GT(length, 0); // Use Factory::empty_string() instead. int size = SeqOneByteString::SizeFor(length); DCHECK_GE(SeqOneByteString::kMaxSize, size); HeapObject result = AllocateRawWithImmortalMap(size, allocation, *one_byte_string_map()); Handle string(SeqOneByteString::cast(result), isolate()); string->set_length(length); string->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, string->Size()); return string; } MaybeHandle Factory::NewRawTwoByteString( int length, AllocationType allocation) { if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString); } DCHECK_GT(length, 0); // Use Factory::empty_string() instead. int size = SeqTwoByteString::SizeFor(length); DCHECK_GE(SeqTwoByteString::kMaxSize, size); HeapObject result = AllocateRawWithImmortalMap(size, allocation, *string_map()); Handle string(SeqTwoByteString::cast(result), isolate()); string->set_length(length); string->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, string->Size()); return string; } Handle Factory::LookupSingleCharacterStringFromCode(uint16_t code) { if (code <= unibrow::Latin1::kMaxChar) { { DisallowHeapAllocation no_allocation; Object value = single_character_string_cache()->get(code); if (value != *undefined_value()) { return handle(String::cast(value), isolate()); } } uint8_t buffer[] = {static_cast(code)}; Handle result = InternalizeString(Vector(buffer, 1)); single_character_string_cache()->set(code, *result); return result; } uint16_t buffer[] = {code}; return InternalizeString(Vector(buffer, 1)); } static inline Handle MakeOrFindTwoCharacterString(Isolate* isolate, uint16_t c1, uint16_t c2) { if ((c1 | c2) <= unibrow::Latin1::kMaxChar) { uint8_t buffer[] = {static_cast(c1), static_cast(c2)}; return isolate->factory()->InternalizeString( Vector(buffer, 2)); } uint16_t buffer[] = {c1, c2}; return isolate->factory()->InternalizeString( Vector(buffer, 2)); } template Handle ConcatStringContent(Handle result, Handle first, Handle second) { DisallowHeapAllocation pointer_stays_valid; SinkChar* sink = result->GetChars(pointer_stays_valid); String::WriteToFlat(*first, sink, 0, first->length()); String::WriteToFlat(*second, sink + first->length(), 0, second->length()); return result; } MaybeHandle Factory::NewConsString(Handle left, Handle right) { if (left->IsThinString()) { left = handle(Handle::cast(left)->actual(), isolate()); } if (right->IsThinString()) { right = handle(Handle::cast(right)->actual(), isolate()); } int left_length = left->length(); if (left_length == 0) return right; int right_length = right->length(); if (right_length == 0) return left; int length = left_length + right_length; if (length == 2) { uint16_t c1 = left->Get(0); uint16_t c2 = right->Get(0); return MakeOrFindTwoCharacterString(isolate(), c1, c2); } // Make sure that an out of memory exception is thrown if the length // of the new cons string is too large. if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } bool left_is_one_byte = left->IsOneByteRepresentation(); bool right_is_one_byte = right->IsOneByteRepresentation(); bool is_one_byte = left_is_one_byte && right_is_one_byte; // If the resulting string is small make a flat string. if (length < ConsString::kMinLength) { // Note that neither of the two inputs can be a slice because: STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength); DCHECK(left->IsFlat()); DCHECK(right->IsFlat()); STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength); if (is_one_byte) { Handle result = NewRawOneByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; uint8_t* dest = result->GetChars(no_gc); // Copy left part. const uint8_t* src = left->IsExternalString() ? Handle::cast(left)->GetChars() : Handle::cast(left)->GetChars(no_gc); for (int i = 0; i < left_length; i++) *dest++ = src[i]; // Copy right part. src = right->IsExternalString() ? Handle::cast(right)->GetChars() : Handle::cast(right)->GetChars(no_gc); for (int i = 0; i < right_length; i++) *dest++ = src[i]; return result; } return ConcatStringContent( NewRawTwoByteString(length).ToHandleChecked(), left, right); } return NewConsString(left, right, length, is_one_byte); } Handle Factory::NewConsString(Handle left, Handle right, int length, bool one_byte) { DCHECK(!left->IsThinString()); DCHECK(!right->IsThinString()); DCHECK_GE(length, ConsString::kMinLength); DCHECK_LE(length, String::kMaxLength); Handle result( ConsString::cast( one_byte ? New(cons_one_byte_string_map(), AllocationType::kYoung) : New(cons_string_map(), AllocationType::kYoung)), isolate()); DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); result->set_hash_field(String::kEmptyHashField); result->set_length(length); result->set_first(*left, mode); result->set_second(*right, mode); return result; } Handle Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) { DCHECK_GE(lead, 0xD800); DCHECK_LE(lead, 0xDBFF); DCHECK_GE(trail, 0xDC00); DCHECK_LE(trail, 0xDFFF); Handle str = isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked(); DisallowHeapAllocation no_allocation; uc16* dest = str->GetChars(no_allocation); dest[0] = lead; dest[1] = trail; return str; } Handle Factory::NewProperSubString(Handle str, int begin, int end) { #if VERIFY_HEAP if (FLAG_verify_heap) str->StringVerify(isolate()); #endif DCHECK(begin > 0 || end < str->length()); str = String::Flatten(isolate(), str); int length = end - begin; if (length <= 0) return empty_string(); if (length == 1) { return LookupSingleCharacterStringFromCode(str->Get(begin)); } if (length == 2) { // Optimization for 2-byte strings often used as keys in a decompression // dictionary. Check whether we already have the string in the string // table to prevent creation of many unnecessary strings. uint16_t c1 = str->Get(begin); uint16_t c2 = str->Get(begin + 1); return MakeOrFindTwoCharacterString(isolate(), c1, c2); } if (!FLAG_string_slices || length < SlicedString::kMinLength) { if (str->IsOneByteRepresentation()) { Handle result = NewRawOneByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; uint8_t* dest = result->GetChars(no_gc); String::WriteToFlat(*str, dest, begin, end); return result; } else { Handle result = NewRawTwoByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; uc16* dest = result->GetChars(no_gc); String::WriteToFlat(*str, dest, begin, end); return result; } } int offset = begin; if (str->IsSlicedString()) { Handle slice = Handle::cast(str); str = Handle(slice->parent(), isolate()); offset += slice->offset(); } if (str->IsThinString()) { Handle thin = Handle::cast(str); str = handle(thin->actual(), isolate()); } DCHECK(str->IsSeqString() || str->IsExternalString()); Handle map = str->IsOneByteRepresentation() ? sliced_one_byte_string_map() : sliced_string_map(); Handle slice( SlicedString::cast(New(map, AllocationType::kYoung)), isolate()); slice->set_hash_field(String::kEmptyHashField); slice->set_length(length); slice->set_parent(*str); slice->set_offset(offset); return slice; } MaybeHandle Factory::NewExternalStringFromOneByte( const ExternalOneByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast(String::kMaxLength)) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } if (length == 0) return empty_string(); Handle map = resource->IsCacheable() ? external_one_byte_string_map() : uncached_external_one_byte_string_map(); Handle external_string( ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate()); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->SetResource(isolate(), resource); isolate()->heap()->RegisterExternalString(*external_string); return external_string; } MaybeHandle Factory::NewExternalStringFromTwoByte( const ExternalTwoByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast(String::kMaxLength)) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } if (length == 0) return empty_string(); Handle map = resource->IsCacheable() ? external_string_map() : uncached_external_string_map(); Handle external_string( ExternalTwoByteString::cast(New(map, AllocationType::kOld)), isolate()); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->SetResource(isolate(), resource); isolate()->heap()->RegisterExternalString(*external_string); return external_string; } Handle Factory::NewNativeSourceString( const ExternalOneByteString::Resource* resource) { size_t length = resource->length(); DCHECK_LE(length, static_cast(String::kMaxLength)); Handle map = native_source_string_map(); Handle external_string( ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate()); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->SetResource(isolate(), resource); isolate()->heap()->RegisterExternalString(*external_string); return external_string; } Handle Factory::NewJSStringIterator(Handle string) { Handle map(isolate()->native_context()->initial_string_iterator_map(), isolate()); Handle flat_string = String::Flatten(isolate(), string); Handle iterator = Handle::cast(NewJSObjectFromMap(map)); iterator->set_string(*flat_string); iterator->set_index(0); return iterator; } Handle Factory::NewSymbol(AllocationType allocation) { DCHECK(allocation != AllocationType::kYoung); // Statically ensure that it is safe to allocate symbols in paged spaces. STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize); HeapObject result = AllocateRawWithImmortalMap(Symbol::kSize, allocation, *symbol_map()); // Generate a random hash value. int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask); Handle symbol(Symbol::cast(result), isolate()); symbol->set_hash_field(Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); symbol->set_name(*undefined_value()); symbol->set_flags(0); DCHECK(!symbol->is_private()); return symbol; } Handle Factory::NewPrivateSymbol(AllocationType allocation) { DCHECK(allocation != AllocationType::kYoung); Handle symbol = NewSymbol(allocation); symbol->set_is_private(true); return symbol; } Handle Factory::NewPrivateNameSymbol(Handle name) { Handle symbol = NewSymbol(); symbol->set_is_private_name(); symbol->set_name(*name); return symbol; } Handle Factory::NewContext(RootIndex map_root_index, int size, int variadic_part_length, AllocationType allocation) { DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); DCHECK_LE(Context::kTodoHeaderSize, size); DCHECK(IsAligned(size, kTaggedSize)); DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length); DCHECK_LE(Context::SizeFor(variadic_part_length), size); Map map = Map::cast(isolate()->root(map_root_index)); HeapObject result = AllocateRawWithImmortalMap(size, allocation, map); Handle context(Context::cast(result), isolate()); context->initialize_length_and_extension_bit(variadic_part_length); DCHECK_EQ(context->SizeFromMap(map), size); if (size > Context::kTodoHeaderSize) { ObjectSlot start = context->RawField(Context::kTodoHeaderSize); ObjectSlot end = context->RawField(size); size_t slot_count = end - start; MemsetTagged(start, *undefined_value(), slot_count); } return context; } Handle Factory::NewNativeContext() { Handle context = Handle::cast( NewContext(RootIndex::kNativeContextMap, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS, AllocationType::kOld)); context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info()); context->set_previous(Context::unchecked_cast(Smi::zero())); context->set_extension(*the_hole_value()); context->set_native_context(*context); context->set_errors_thrown(Smi::zero()); context->set_math_random_index(Smi::zero()); context->set_serialized_objects(*empty_fixed_array()); context->set_microtask_queue(nullptr); context->set_osr_code_cache(*empty_weak_fixed_array()); return context; } Handle Factory::NewScriptContext(Handle outer, Handle scope_info) { DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE); int variadic_part_length = scope_info->ContextLength(); Handle context = NewContext( RootIndex::kScriptContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kOld); context->set_scope_info(*scope_info); context->set_previous(*outer); context->set_extension(*the_hole_value()); context->set_native_context(*outer); DCHECK(context->IsScriptContext()); return context; } Handle Factory::NewScriptContextTable() { Handle context_table = NewFixedArrayWithMap( RootIndex::kScriptContextTableMap, ScriptContextTable::kMinLength); context_table->set_used(0); return context_table; } Handle Factory::NewModuleContext(Handle module, Handle outer, Handle scope_info) { DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE); int variadic_part_length = scope_info->ContextLength(); Handle context = NewContext( RootIndex::kModuleContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kOld); context->set_scope_info(*scope_info); context->set_previous(*outer); context->set_extension(*module); context->set_native_context(*outer); DCHECK(context->IsModuleContext()); return context; } Handle Factory::NewFunctionContext(Handle outer, Handle scope_info) { RootIndex mapRootIndex; switch (scope_info->scope_type()) { case EVAL_SCOPE: mapRootIndex = RootIndex::kEvalContextMap; break; case FUNCTION_SCOPE: mapRootIndex = RootIndex::kFunctionContextMap; break; default: UNREACHABLE(); } int variadic_part_length = scope_info->ContextLength(); Handle context = NewContext(mapRootIndex, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kYoung); context->set_scope_info(*scope_info); context->set_previous(*outer); context->set_extension(*the_hole_value()); context->set_native_context(outer->native_context()); return context; } Handle Factory::NewCatchContext(Handle previous, Handle scope_info, Handle thrown_object) { DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE); STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); // TODO(ishell): Take the details from CatchContext class. int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1; Handle context = NewContext( RootIndex::kCatchContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kYoung); context->set_scope_info(*scope_info); context->set_previous(*previous); context->set_extension(*the_hole_value()); context->set_native_context(previous->native_context()); context->set(Context::THROWN_OBJECT_INDEX, *thrown_object); return context; } Handle Factory::NewDebugEvaluateContext(Handle previous, Handle scope_info, Handle extension, Handle wrapped, Handle blacklist) { STATIC_ASSERT(Context::BLACK_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1); DCHECK(scope_info->IsDebugEvaluateScope()); Handle ext = extension.is_null() ? Handle::cast(the_hole_value()) : Handle::cast(extension); // TODO(ishell): Take the details from DebugEvaluateContextContext class. int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 2; Handle c = NewContext(RootIndex::kDebugEvaluateContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kYoung); c->set_scope_info(*scope_info); c->set_previous(*previous); c->set_native_context(previous->native_context()); c->set_extension(*ext); if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped); if (!blacklist.is_null()) c->set(Context::BLACK_LIST_INDEX, *blacklist); return c; } Handle Factory::NewWithContext(Handle previous, Handle scope_info, Handle extension) { DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE); // TODO(ishell): Take the details from WithContext class. int variadic_part_length = Context::MIN_CONTEXT_SLOTS; Handle context = NewContext( RootIndex::kWithContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kYoung); context->set_scope_info(*scope_info); context->set_previous(*previous); context->set_extension(*extension); context->set_native_context(previous->native_context()); return context; } Handle Factory::NewBlockContext(Handle previous, Handle scope_info) { DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE, scope_info->scope_type() == CLASS_SCOPE); int variadic_part_length = scope_info->ContextLength(); Handle context = NewContext( RootIndex::kBlockContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kYoung); context->set_scope_info(*scope_info); context->set_previous(*previous); context->set_extension(*the_hole_value()); context->set_native_context(previous->native_context()); return context; } Handle Factory::NewBuiltinContext(Handle native_context, int variadic_part_length) { DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length); Handle context = NewContext( RootIndex::kFunctionContextMap, Context::SizeFor(variadic_part_length), variadic_part_length, AllocationType::kYoung); context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info()); context->set_previous(*native_context); context->set_extension(*the_hole_value()); context->set_native_context(*native_context); return context; } Handle Factory::NewStruct(InstanceType type, AllocationType allocation) { Map map = Map::GetStructMap(isolate(), type); int size = map.instance_size(); HeapObject result = AllocateRawWithImmortalMap(size, allocation, map); Handle str(Struct::cast(result), isolate()); str->InitializeBody(size); return str; } Handle Factory::NewAliasedArgumentsEntry( int aliased_context_slot) { Handle entry = Handle::cast( NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung)); entry->set_aliased_context_slot(aliased_context_slot); return entry; } Handle Factory::NewAccessorInfo() { Handle info = Handle::cast( NewStruct(ACCESSOR_INFO_TYPE, AllocationType::kOld)); DisallowHeapAllocation no_gc; info->set_name(*empty_string()); info->set_flags(0); // Must clear the flags, it was initialized as undefined. info->set_is_sloppy(true); info->set_initial_property_attributes(NONE); // Clear some other fields that should not be undefined. info->set_getter(Smi::kZero); info->set_setter(Smi::kZero); info->set_js_getter(Smi::kZero); return info; } Handle