// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/concurrent-marking.h" #include #include #include "include/v8config.h" #include "src/base/template-utils.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-inl.h" #include "src/heap/heap.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/marking.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/worklist.h" #include "src/isolate.h" #include "src/objects/hash-table-inl.h" #include "src/utils-inl.h" #include "src/utils.h" #include "src/v8.h" namespace v8 { namespace internal { class ConcurrentMarkingState final : public MarkingStateBase { public: explicit ConcurrentMarkingState(LiveBytesMap* live_bytes) : live_bytes_(live_bytes) {} Bitmap* bitmap(const MemoryChunk* chunk) { return Bitmap::FromAddress(chunk->address() + MemoryChunk::kHeaderSize); } void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) { (*live_bytes_)[chunk] += by; } // The live_bytes and SetLiveBytes methods of the marking state are // not used by the concurrent marker. private: LiveBytesMap* live_bytes_; }; // Helper class for storing in-object slot addresses and values. class SlotSnapshot { public: SlotSnapshot() : number_of_slots_(0) {} int number_of_slots() const { return number_of_slots_; } Object** slot(int i) const { return snapshot_[i].first; } Object* value(int i) const { return snapshot_[i].second; } void clear() { number_of_slots_ = 0; } void add(Object** slot, Object* value) { snapshot_[number_of_slots_].first = slot; snapshot_[number_of_slots_].second = value; ++number_of_slots_; } private: static const int kMaxSnapshotSize = JSObject::kMaxInstanceSize / kPointerSize; int number_of_slots_; std::pair snapshot_[kMaxSnapshotSize]; DISALLOW_COPY_AND_ASSIGN(SlotSnapshot); }; class ConcurrentMarkingVisitor final : public HeapVisitor { public: using BaseClass = HeapVisitor; explicit ConcurrentMarkingVisitor( ConcurrentMarking::MarkingWorklist* shared, ConcurrentMarking::MarkingWorklist* bailout, LiveBytesMap* live_bytes, WeakObjects* weak_objects, ConcurrentMarking::EmbedderTracingWorklist* embedder_objects, int task_id, bool embedder_tracing_enabled) : shared_(shared, task_id), bailout_(bailout, task_id), weak_objects_(weak_objects), embedder_objects_(embedder_objects, task_id), marking_state_(live_bytes), task_id_(task_id), embedder_tracing_enabled_(embedder_tracing_enabled) {} template static V8_INLINE T* Cast(HeapObject* object) { return T::cast(object); } bool ShouldVisit(HeapObject* object) { return marking_state_.GreyToBlack(object); } bool AllowDefaultJSObjectVisit() { return false; } void ProcessStrongHeapObject(HeapObject* host, Object** slot, HeapObject* heap_object) { MarkObject(heap_object); MarkCompactCollector::RecordSlot(host, slot, heap_object); } void ProcessWeakHeapObject(HeapObject* host, HeapObjectReference** slot, HeapObject* heap_object) { #ifdef THREAD_SANITIZER // Perform a dummy acquire load to tell TSAN that there is no data race // in mark-bit initialization. See MemoryChunk::Initialize for the // corresponding release store. MemoryChunk* chunk = MemoryChunk::FromAddress(heap_object->address()); CHECK_NOT_NULL(chunk->synchronized_heap()); #endif if (marking_state_.IsBlackOrGrey(heap_object)) { // Weak references with live values are directly processed here to // reduce the processing time of weak cells during the main GC // pause. MarkCompactCollector::RecordSlot(host, slot, heap_object); } else { // If we do not know about liveness of the value, we have to process // the reference when we know the liveness of the whole transitive // closure. weak_objects_->weak_references.Push(task_id_, std::make_pair(host, slot)); } } void VisitPointers(HeapObject* host, Object** start, Object** end) override { for (Object** slot = start; slot < end; slot++) { Object* object = base::AsAtomicPointer::Relaxed_Load(slot); DCHECK(!HasWeakHeapObjectTag(object)); if (object->IsHeapObject()) { ProcessStrongHeapObject(host, slot, HeapObject::cast(object)); } } } void VisitPointers(HeapObject* host, MaybeObject** start, MaybeObject** end) override { for (MaybeObject** slot = start; slot < end; slot++) { MaybeObject* object = base::AsAtomicPointer::Relaxed_Load(slot); HeapObject* heap_object; if (object->GetHeapObjectIfStrong(&heap_object)) { // If the reference changes concurrently from strong to weak, the write // barrier will treat the weak reference as strong, so we won't miss the // weak reference. ProcessStrongHeapObject(host, reinterpret_cast(slot), heap_object); } else if (object->GetHeapObjectIfWeak(&heap_object)) { ProcessWeakHeapObject( host, reinterpret_cast(slot), heap_object); } } } // Weak list pointers should be ignored during marking. The lists are // reconstructed after GC. void VisitCustomWeakPointers(HeapObject* host, Object** start, Object** end) override {} void VisitPointersInSnapshot(HeapObject* host, const SlotSnapshot& snapshot) { for (int i = 0; i < snapshot.number_of_slots(); i++) { Object** slot = snapshot.slot(i); Object* object = snapshot.value(i); DCHECK(!HasWeakHeapObjectTag(object)); if (!object->IsHeapObject()) continue; HeapObject* heap_object = HeapObject::cast(object); MarkObject(heap_object); MarkCompactCollector::RecordSlot(host, slot, heap_object); } } // =========================================================================== // JS object ================================================================= // =========================================================================== int VisitJSObject(Map* map, JSObject* object) { return VisitJSObjectSubclass(map, object); } int VisitJSObjectFast(Map* map, JSObject* object) { return VisitJSObjectSubclass(map, object); } int VisitWasmInstanceObject(Map* map, WasmInstanceObject* object) { return VisitJSObjectSubclass(map, object); } // Some JS objects can carry back links to embedders that contain information // relevant to the garbage collectors. int VisitJSApiObject(Map* map, JSObject* object) { return VisitEmbedderTracingSubclass(map, object); } int VisitJSArrayBuffer(Map* map, JSArrayBuffer* object) { return VisitEmbedderTracingSubclass(map, object); } int VisitJSDataView(Map* map, JSDataView* object) { return VisitEmbedderTracingSubclass(map, object); } int VisitJSTypedArray(Map* map, JSTypedArray* object) { return VisitEmbedderTracingSubclass(map, object); } // =========================================================================== // Strings with pointers ===================================================== // =========================================================================== int VisitConsString(Map* map, ConsString* object) { int size = ConsString::BodyDescriptor::SizeOf(map, object); const SlotSnapshot& snapshot = MakeSlotSnapshot(map, object, size); if (!ShouldVisit(object)) return 0; VisitPointersInSnapshot(object, snapshot); return size; } int VisitSlicedString(Map* map, SlicedString* object) { int size = SlicedString::BodyDescriptor::SizeOf(map, object); const SlotSnapshot& snapshot = MakeSlotSnapshot(map, object, size); if (!ShouldVisit(object)) return 0; VisitPointersInSnapshot(object, snapshot); return size; } int VisitThinString(Map* map, ThinString* object) { int size = ThinString::BodyDescriptor::SizeOf(map, object); const SlotSnapshot& snapshot = MakeSlotSnapshot(map, object, size); if (!ShouldVisit(object)) return 0; VisitPointersInSnapshot(object, snapshot); return size; } // =========================================================================== // Strings without pointers ================================================== // =========================================================================== int VisitSeqOneByteString(Map* map, SeqOneByteString* object) { int size = SeqOneByteString::SizeFor(object->synchronized_length()); if (!ShouldVisit(object)) return 0; VisitMapPointer(object, object->map_slot()); return size; } int VisitSeqTwoByteString(Map* map, SeqTwoByteString* object) { int size = SeqTwoByteString::SizeFor(object->synchronized_length()); if (!ShouldVisit(object)) return 0; VisitMapPointer(object, object->map_slot()); return size; } // =========================================================================== // Fixed array object ======================================================== // =========================================================================== int VisitFixedArray(Map* map, FixedArray* object) { return VisitLeftTrimmableArray(map, object); } int VisitFixedDoubleArray(Map* map, FixedDoubleArray* object) { return VisitLeftTrimmableArray(map, object); } // =========================================================================== // Code object =============================================================== // =========================================================================== int VisitCode(Map* map, Code* object) { bailout_.Push(object); return 0; } // =========================================================================== // Side-effectful visitation. // =========================================================================== int VisitBytecodeArray(Map* map, BytecodeArray* object) { if (!ShouldVisit(object)) return 0; int size = BytecodeArray::BodyDescriptor::SizeOf(map, object); VisitMapPointer(object, object->map_slot()); BytecodeArray::BodyDescriptor::IterateBody(map, object, size, this); object->MakeOlder(); return size; } int VisitMap(Map* meta_map, Map* map) { if (marking_state_.IsGrey(map)) { // Maps have ad-hoc weakness for descriptor arrays. They also clear the // code-cache. Conservatively visit strong fields skipping the // descriptor array field and the code cache field. VisitMapPointer(map, map->map_slot()); VisitPointer(map, HeapObject::RawField(map, Map::kPrototypeOffset)); VisitPointer( map, HeapObject::RawField(map, Map::kConstructorOrBackPointerOffset)); VisitPointer(map, HeapObject::RawMaybeWeakField( map, Map::kTransitionsOrPrototypeInfoOffset)); VisitPointer(map, HeapObject::RawField(map, Map::kDependentCodeOffset)); bailout_.Push(map); } return 0; } int VisitTransitionArray(Map* map, TransitionArray* array) { if (!ShouldVisit(array)) return 0; VisitMapPointer(array, array->map_slot()); int size = TransitionArray::BodyDescriptor::SizeOf(map, array); TransitionArray::BodyDescriptor::IterateBody(map, array, size, this); weak_objects_->transition_arrays.Push(task_id_, array); return size; } int VisitJSWeakCollection(Map* map, JSWeakCollection* object) { return VisitJSObjectSubclass(map, object); } int VisitEphemeronHashTable(Map* map, EphemeronHashTable* table) { if (!ShouldVisit(table)) return 0; weak_objects_->ephemeron_hash_tables.Push(task_id_, table); for (int i = 0; i < table->Capacity(); i++) { Object** key_slot = table->RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(i)); HeapObject* key = HeapObject::cast(table->KeyAt(i)); MarkCompactCollector::RecordSlot(table, key_slot, key); Object** value_slot = table->RawFieldOfElementAt(EphemeronHashTable::EntryToValueIndex(i)); if (marking_state_.IsBlackOrGrey(key)) { VisitPointer(table, value_slot); } else { Object* value_obj = table->ValueAt(i); if (value_obj->IsHeapObject()) { HeapObject* value = HeapObject::cast(value_obj); MarkCompactCollector::RecordSlot(table, value_slot, value); // Revisit ephemerons with both key and value unreachable at end // of concurrent marking cycle. if (marking_state_.IsWhite(value)) { weak_objects_->discovered_ephemerons.Push(task_id_, Ephemeron{key, value}); } } } } return table->SizeFromMap(map); } // Implements ephemeron semantics: Marks value if key is already reachable. // Returns true if value was actually marked. bool VisitEphemeron(HeapObject* key, HeapObject* value) { if (marking_state_.IsBlackOrGrey(key)) { if (marking_state_.WhiteToGrey(value)) { shared_.Push(value); return true; } } else if (marking_state_.IsWhite(value)) { weak_objects_->next_ephemerons.Push(task_id_, Ephemeron{key, value}); } return false; } void MarkObject(HeapObject* object) { #ifdef THREAD_SANITIZER // Perform a dummy acquire load to tell TSAN that there is no data race // in mark-bit initialization. See MemoryChunk::Initialize for the // corresponding release store. MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); CHECK_NOT_NULL(chunk->synchronized_heap()); #endif if (marking_state_.WhiteToGrey(object)) { shared_.Push(object); } } private: // Helper class for collecting in-object slot addresses and values. class SlotSnapshottingVisitor final : public ObjectVisitor { public: explicit SlotSnapshottingVisitor(SlotSnapshot* slot_snapshot) : slot_snapshot_(slot_snapshot) { slot_snapshot_->clear(); } void VisitPointers(HeapObject* host, Object** start, Object** end) override { for (Object** p = start; p < end; p++) { Object* object = reinterpret_cast( base::Relaxed_Load(reinterpret_cast(p))); slot_snapshot_->add(p, object); } } void VisitPointers(HeapObject* host, MaybeObject** start, MaybeObject** end) override { // This should never happen, because we don't use snapshotting for objects // which contain weak references. UNREACHABLE(); } private: SlotSnapshot* slot_snapshot_; }; template int VisitJSObjectSubclass(Map* map, T* object) { int size = T::BodyDescriptor::SizeOf(map, object); int used_size = map->UsedInstanceSize(); DCHECK_LE(used_size, size); DCHECK_GE(used_size, T::kHeaderSize); const SlotSnapshot& snapshot = MakeSlotSnapshot(map, object, used_size); if (!ShouldVisit(object)) return 0; VisitPointersInSnapshot(object, snapshot); return size; } template int VisitEmbedderTracingSubclass(Map* map, T* object) { DCHECK(object->IsApiWrapper()); int size = VisitJSObjectSubclass(map, object); if (size && embedder_tracing_enabled_) { // Success: The object needs to be processed for embedder references on // the main thread. embedder_objects_.Push(object); } return size; } template int VisitLeftTrimmableArray(Map* map, T* object) { // The synchronized_length() function checks that the length is a Smi. // This is not necessarily the case if the array is being left-trimmed. Object* length = object->unchecked_synchronized_length(); if (!ShouldVisit(object)) return 0; // The cached length must be the actual length as the array is not black. // Left trimming marks the array black before over-writing the length. DCHECK(length->IsSmi()); int size = T::SizeFor(Smi::ToInt(length)); VisitMapPointer(object, object->map_slot()); T::BodyDescriptor::IterateBody(map, object, size, this); return size; } template const SlotSnapshot& MakeSlotSnapshot(Map* map, T* object, int size) { SlotSnapshottingVisitor visitor(&slot_snapshot_); visitor.VisitPointer(object, reinterpret_cast(object->map_slot())); T::BodyDescriptor::IterateBody(map, object, size, &visitor); return slot_snapshot_; } ConcurrentMarking::MarkingWorklist::View shared_; ConcurrentMarking::MarkingWorklist::View bailout_; WeakObjects* weak_objects_; ConcurrentMarking::EmbedderTracingWorklist::View embedder_objects_; ConcurrentMarkingState marking_state_; int task_id_; SlotSnapshot slot_snapshot_; bool embedder_tracing_enabled_; }; // Strings can change maps due to conversion to thin string or external strings. // Use reinterpret cast to avoid data race in slow dchecks. template <> ConsString* ConcurrentMarkingVisitor::Cast(HeapObject* object) { return reinterpret_cast(object); } template <> SlicedString* ConcurrentMarkingVisitor::Cast(HeapObject* object) { return reinterpret_cast(object); } template <> ThinString* ConcurrentMarkingVisitor::Cast(HeapObject* object) { return reinterpret_cast(object); } template <> SeqOneByteString* ConcurrentMarkingVisitor::Cast(HeapObject* object) { return reinterpret_cast(object); } template <> SeqTwoByteString* ConcurrentMarkingVisitor::Cast(HeapObject* object) { return reinterpret_cast(object); } // Fixed array can become a free space during left trimming. template <> FixedArray* ConcurrentMarkingVisitor::Cast(HeapObject* object) { return reinterpret_cast(object); } class ConcurrentMarking::Task : public CancelableTask { public: Task(Isolate* isolate, ConcurrentMarking* concurrent_marking, TaskState* task_state, int task_id) : CancelableTask(isolate), concurrent_marking_(concurrent_marking), task_state_(task_state), task_id_(task_id) {} ~Task() override = default; private: // v8::internal::CancelableTask overrides. void RunInternal() override { concurrent_marking_->Run(task_id_, task_state_); } ConcurrentMarking* concurrent_marking_; TaskState* task_state_; int task_id_; DISALLOW_COPY_AND_ASSIGN(Task); }; ConcurrentMarking::ConcurrentMarking(Heap* heap, MarkingWorklist* shared, MarkingWorklist* bailout, MarkingWorklist* on_hold, WeakObjects* weak_objects, EmbedderTracingWorklist* embedder_objects) : heap_(heap), shared_(shared), bailout_(bailout), on_hold_(on_hold), weak_objects_(weak_objects), embedder_objects_(embedder_objects) { // The runtime flag should be set only if the compile time flag was set. #ifndef V8_CONCURRENT_MARKING CHECK(!FLAG_concurrent_marking); #endif } void ConcurrentMarking::Run(int task_id, TaskState* task_state) { TRACE_BACKGROUND_GC(heap_->tracer(), GCTracer::BackgroundScope::MC_BACKGROUND_MARKING); size_t kBytesUntilInterruptCheck = 64 * KB; int kObjectsUntilInterrupCheck = 1000; ConcurrentMarkingVisitor visitor( shared_, bailout_, &task_state->live_bytes, weak_objects_, embedder_objects_, task_id, heap_->local_embedder_heap_tracer()->InUse()); double time_ms; size_t marked_bytes = 0; if (FLAG_trace_concurrent_marking) { heap_->isolate()->PrintWithTimestamp( "Starting concurrent marking task %d\n", task_id); } bool ephemeron_marked = false; { TimedScope scope(&time_ms); { Ephemeron ephemeron; while (weak_objects_->current_ephemerons.Pop(task_id, &ephemeron)) { if (visitor.VisitEphemeron(ephemeron.key, ephemeron.value)) { ephemeron_marked = true; } } } bool done = false; while (!done) { size_t current_marked_bytes = 0; int objects_processed = 0; while (current_marked_bytes < kBytesUntilInterruptCheck && objects_processed < kObjectsUntilInterrupCheck) { HeapObject* object; if (!shared_->Pop(task_id, &object)) { done = true; break; } objects_processed++; Address new_space_top = heap_->new_space()->original_top(); Address new_space_limit = heap_->new_space()->original_limit(); Address addr = object->address(); if (new_space_top <= addr && addr < new_space_limit) { on_hold_->Push(task_id, object); } else { Map* map = object->synchronized_map(); current_marked_bytes += visitor.Visit(map, object); } } marked_bytes += current_marked_bytes; base::AsAtomicWord::Relaxed_Store(&task_state->marked_bytes, marked_bytes); if (task_state->preemption_request) { TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.gc"), "ConcurrentMarking::Run Preempted"); break; } } if (done) { Ephemeron ephemeron; while (weak_objects_->discovered_ephemerons.Pop(task_id, &ephemeron)) { if (visitor.VisitEphemeron(ephemeron.key, ephemeron.value)) { ephemeron_marked = true; } } } shared_->FlushToGlobal(task_id); bailout_->FlushToGlobal(task_id); on_hold_->FlushToGlobal(task_id); embedder_objects_->FlushToGlobal(task_id); weak_objects_->transition_arrays.FlushToGlobal(task_id); weak_objects_->ephemeron_hash_tables.FlushToGlobal(task_id); weak_objects_->current_ephemerons.FlushToGlobal(task_id); weak_objects_->next_ephemerons.FlushToGlobal(task_id); weak_objects_->discovered_ephemerons.FlushToGlobal(task_id); weak_objects_->weak_references.FlushToGlobal(task_id); base::AsAtomicWord::Relaxed_Store(&task_state->marked_bytes, 0); total_marked_bytes_ += marked_bytes; if (ephemeron_marked) { set_ephemeron_marked(true); } { base::LockGuard guard(&pending_lock_); is_pending_[task_id] = false; --pending_task_count_; pending_condition_.NotifyAll(); } } if (FLAG_trace_concurrent_marking) { heap_->isolate()->PrintWithTimestamp( "Task %d concurrently marked %dKB in %.2fms\n", task_id, static_cast(marked_bytes / KB), time_ms); } } void ConcurrentMarking::ScheduleTasks() { DCHECK(!heap_->IsTearingDown()); if (!FLAG_concurrent_marking) return; base::LockGuard guard(&pending_lock_); DCHECK_EQ(0, pending_task_count_); if (task_count_ == 0) { static const int num_cores = V8::GetCurrentPlatform()->NumberOfWorkerThreads() + 1; #if defined(V8_OS_MACOSX) // Mac OSX 10.11 and prior seems to have trouble when doing concurrent // marking on competing hyper-threads (regresses Octane/Splay). As such, // only use num_cores/2, leaving one of those for the main thread. // TODO(ulan): Use all cores on Mac 10.12+. task_count_ = Max(1, Min(kMaxTasks, (num_cores / 2) - 1)); #else // defined(OS_MACOSX) // On other platforms use all logical cores, leaving one for the main // thread. task_count_ = Max(1, Min(kMaxTasks, num_cores - 1)); #endif // defined(OS_MACOSX) } // Task id 0 is for the main thread. for (int i = 1; i <= task_count_; i++) { if (!is_pending_[i]) { if (FLAG_trace_concurrent_marking) { heap_->isolate()->PrintWithTimestamp( "Scheduling concurrent marking task %d\n", i); } task_state_[i].preemption_request = false; is_pending_[i] = true; ++pending_task_count_; auto task = base::make_unique(heap_->isolate(), this, &task_state_[i], i); cancelable_id_[i] = task->id(); V8::GetCurrentPlatform()->CallOnWorkerThread(std::move(task)); } } DCHECK_EQ(task_count_, pending_task_count_); } void ConcurrentMarking::RescheduleTasksIfNeeded() { if (!FLAG_concurrent_marking || heap_->IsTearingDown()) return; { base::LockGuard guard(&pending_lock_); if (pending_task_count_ > 0) return; } if (!shared_->IsGlobalPoolEmpty() || !weak_objects_->current_ephemerons.IsEmpty() || !weak_objects_->discovered_ephemerons.IsEmpty()) { ScheduleTasks(); } } bool ConcurrentMarking::Stop(StopRequest stop_request) { if (!FLAG_concurrent_marking) return false; base::LockGuard guard(&pending_lock_); if (pending_task_count_ == 0) return false; if (stop_request != StopRequest::COMPLETE_TASKS_FOR_TESTING) { CancelableTaskManager* task_manager = heap_->isolate()->cancelable_task_manager(); for (int i = 1; i <= task_count_; i++) { if (is_pending_[i]) { if (task_manager->TryAbort(cancelable_id_[i]) == CancelableTaskManager::kTaskAborted) { is_pending_[i] = false; --pending_task_count_; } else if (stop_request == StopRequest::PREEMPT_TASKS) { task_state_[i].preemption_request = true; } } } } while (pending_task_count_ > 0) { pending_condition_.Wait(&pending_lock_); } for (int i = 1; i <= task_count_; i++) { DCHECK(!is_pending_[i]); } return true; } bool ConcurrentMarking::IsStopped() { if (!FLAG_concurrent_marking) return true; base::LockGuard guard(&pending_lock_); return pending_task_count_ == 0; } void ConcurrentMarking::FlushLiveBytes( MajorNonAtomicMarkingState* marking_state) { DCHECK_EQ(pending_task_count_, 0); for (int i = 1; i <= task_count_; i++) { LiveBytesMap& live_bytes = task_state_[i].live_bytes; for (auto pair : live_bytes) { // ClearLiveness sets the live bytes to zero. // Pages with zero live bytes might be already unmapped. if (pair.second != 0) { marking_state->IncrementLiveBytes(pair.first, pair.second); } } live_bytes.clear(); task_state_[i].marked_bytes = 0; } total_marked_bytes_ = 0; } void ConcurrentMarking::ClearLiveness(MemoryChunk* chunk) { for (int i = 1; i <= task_count_; i++) { if (task_state_[i].live_bytes.count(chunk)) { task_state_[i].live_bytes[chunk] = 0; } } } size_t ConcurrentMarking::TotalMarkedBytes() { size_t result = 0; for (int i = 1; i <= task_count_; i++) { result += base::AsAtomicWord::Relaxed_Load(&task_state_[i].marked_bytes); } result += total_marked_bytes_; return result; } ConcurrentMarking::PauseScope::PauseScope(ConcurrentMarking* concurrent_marking) : concurrent_marking_(concurrent_marking), resume_on_exit_(concurrent_marking_->Stop( ConcurrentMarking::StopRequest::PREEMPT_TASKS)) { DCHECK_IMPLIES(resume_on_exit_, FLAG_concurrent_marking); } ConcurrentMarking::PauseScope::~PauseScope() { if (resume_on_exit_) concurrent_marking_->RescheduleTasksIfNeeded(); } } // namespace internal } // namespace v8