// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/futex-emulation.h" #include #include "src/base/macros.h" #include "src/base/platform/time.h" #include "src/conversions.h" #include "src/handles-inl.h" #include "src/isolate.h" #include "src/objects-inl.h" #include "src/objects/js-array-buffer-inl.h" namespace v8 { namespace internal { using AtomicsWaitEvent = v8::Isolate::AtomicsWaitEvent; base::LazyMutex FutexEmulation::mutex_ = LAZY_MUTEX_INITIALIZER; base::LazyInstance::type FutexEmulation::wait_list_ = LAZY_INSTANCE_INITIALIZER; void FutexWaitListNode::NotifyWake() { // Lock the FutexEmulation mutex before notifying. We know that the mutex // will have been unlocked if we are currently waiting on the condition // variable. // // The mutex may also not be locked if the other thread is currently handling // interrupts, or if FutexEmulation::Wait was just called and the mutex // hasn't been locked yet. In either of those cases, we set the interrupted // flag to true, which will be tested after the mutex is re-locked. base::LockGuard lock_guard(FutexEmulation::mutex_.Pointer()); if (waiting_) { cond_.NotifyOne(); interrupted_ = true; } } FutexWaitList::FutexWaitList() : head_(nullptr), tail_(nullptr) {} void FutexWaitList::AddNode(FutexWaitListNode* node) { DCHECK(node->prev_ == nullptr && node->next_ == nullptr); if (tail_) { tail_->next_ = node; } else { head_ = node; } node->prev_ = tail_; node->next_ = nullptr; tail_ = node; } void FutexWaitList::RemoveNode(FutexWaitListNode* node) { if (node->prev_) { node->prev_->next_ = node->next_; } else { head_ = node->next_; } if (node->next_) { node->next_->prev_ = node->prev_; } else { tail_ = node->prev_; } node->prev_ = node->next_ = nullptr; } void AtomicsWaitWakeHandle::Wake() { // Adding a separate `NotifyWake()` variant that doesn't acquire the lock // itself would likely just add unnecessary complexity.. // The split lock by itself isn’t an issue, as long as the caller properly // synchronizes this with the closing `AtomicsWaitCallback`. { base::LockGuard lock_guard(FutexEmulation::mutex_.Pointer()); stopped_ = true; } isolate_->futex_wait_list_node()->NotifyWake(); } Object* FutexEmulation::Wait(Isolate* isolate, Handle array_buffer, size_t addr, int32_t value, double rel_timeout_ms) { DCHECK(addr < NumberToSize(array_buffer->byte_length())); void* backing_store = array_buffer->backing_store(); int32_t* p = reinterpret_cast(static_cast(backing_store) + addr); FutexWaitListNode* node = isolate->futex_wait_list_node(); node->backing_store_ = backing_store; node->wait_addr_ = addr; node->waiting_ = true; bool use_timeout = rel_timeout_ms != V8_INFINITY; base::TimeDelta rel_timeout; if (use_timeout) { // Convert to nanoseconds. double rel_timeout_ns = rel_timeout_ms * base::Time::kNanosecondsPerMicrosecond * base::Time::kMicrosecondsPerMillisecond; if (rel_timeout_ns > static_cast(std::numeric_limits::max())) { // 2**63 nanoseconds is 292 years. Let's just treat anything greater as // infinite. use_timeout = false; } else { rel_timeout = base::TimeDelta::FromNanoseconds( static_cast(rel_timeout_ns)); } } AtomicsWaitWakeHandle stop_handle(isolate); isolate->RunAtomicsWaitCallback(AtomicsWaitEvent::kStartWait, array_buffer, addr, value, rel_timeout_ms, &stop_handle); if (isolate->has_scheduled_exception()) { node->waiting_ = false; return isolate->PromoteScheduledException(); } Object* result; AtomicsWaitEvent callback_result = AtomicsWaitEvent::kWokenUp; do { // Not really a loop, just makes it easier to break out early. base::LockGuard lock_guard(mutex_.Pointer()); // Reset node->waiting_ = false when leaving this scope (but while // still holding the lock). ResetWaitingOnScopeExit reset_waiting(node); if (*p != value) { result = ReadOnlyRoots(isolate).not_equal(); callback_result = AtomicsWaitEvent::kNotEqual; break; } base::TimeTicks timeout_time; base::TimeTicks current_time; if (use_timeout) { current_time = base::TimeTicks::Now(); timeout_time = current_time + rel_timeout; } wait_list_.Pointer()->AddNode(node); while (true) { bool interrupted = node->interrupted_; node->interrupted_ = false; // Unlock the mutex here to prevent deadlock from lock ordering between // mutex_ and mutexes locked by HandleInterrupts. mutex_.Pointer()->Unlock(); // Because the mutex is unlocked, we have to be careful about not dropping // an interrupt. The notification can happen in three different places: // 1) Before Wait is called: the notification will be dropped, but // interrupted_ will be set to 1. This will be checked below. // 2) After interrupted has been checked here, but before mutex_ is // acquired: interrupted is checked again below, with mutex_ locked. // Because the wakeup signal also acquires mutex_, we know it will not // be able to notify until mutex_ is released below, when waiting on // the condition variable. // 3) After the mutex is released in the call to WaitFor(): this // notification will wake up the condition variable. node->waiting() will // be false, so we'll loop and then check interrupts. if (interrupted) { Object* interrupt_object = isolate->stack_guard()->HandleInterrupts(); if (interrupt_object->IsException(isolate)) { result = interrupt_object; callback_result = AtomicsWaitEvent::kTerminatedExecution; mutex_.Pointer()->Lock(); break; } } mutex_.Pointer()->Lock(); if (node->interrupted_) { // An interrupt occurred while the mutex_ was unlocked. Don't wait yet. continue; } if (stop_handle.has_stopped()) { node->waiting_ = false; callback_result = AtomicsWaitEvent::kAPIStopped; } if (!node->waiting_) { result = ReadOnlyRoots(isolate).ok(); break; } // No interrupts, now wait. if (use_timeout) { current_time = base::TimeTicks::Now(); if (current_time >= timeout_time) { result = ReadOnlyRoots(isolate).timed_out(); callback_result = AtomicsWaitEvent::kTimedOut; break; } base::TimeDelta time_until_timeout = timeout_time - current_time; DCHECK_GE(time_until_timeout.InMicroseconds(), 0); bool wait_for_result = node->cond_.WaitFor(mutex_.Pointer(), time_until_timeout); USE(wait_for_result); } else { node->cond_.Wait(mutex_.Pointer()); } // Spurious wakeup, interrupt or timeout. } wait_list_.Pointer()->RemoveNode(node); } while (0); isolate->RunAtomicsWaitCallback(callback_result, array_buffer, addr, value, rel_timeout_ms, nullptr); if (isolate->has_scheduled_exception()) { CHECK_NE(callback_result, AtomicsWaitEvent::kTerminatedExecution); result = isolate->PromoteScheduledException(); } return result; } Object* FutexEmulation::Wake(Handle array_buffer, size_t addr, uint32_t num_waiters_to_wake) { DCHECK(addr < NumberToSize(array_buffer->byte_length())); int waiters_woken = 0; void* backing_store = array_buffer->backing_store(); base::LockGuard lock_guard(mutex_.Pointer()); FutexWaitListNode* node = wait_list_.Pointer()->head_; while (node && num_waiters_to_wake > 0) { if (backing_store == node->backing_store_ && addr == node->wait_addr_) { node->waiting_ = false; node->cond_.NotifyOne(); if (num_waiters_to_wake != kWakeAll) { --num_waiters_to_wake; } waiters_woken++; } node = node->next_; } return Smi::FromInt(waiters_woken); } Object* FutexEmulation::NumWaitersForTesting(Handle array_buffer, size_t addr) { DCHECK(addr < NumberToSize(array_buffer->byte_length())); void* backing_store = array_buffer->backing_store(); base::LockGuard lock_guard(mutex_.Pointer()); int waiters = 0; FutexWaitListNode* node = wait_list_.Pointer()->head_; while (node) { if (backing_store == node->backing_store_ && addr == node->wait_addr_ && node->waiting_) { waiters++; } node = node->next_; } return Smi::FromInt(waiters); } } // namespace internal } // namespace v8