// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/load-elimination.h" #include "src/compiler/access-builder.h" #include "src/compiler/common-operator.h" #include "src/compiler/js-graph.h" #include "src/compiler/node-properties.h" #include "src/heap/factory.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { namespace compiler { namespace { bool IsRename(Node* node) { switch (node->opcode()) { case IrOpcode::kCheckHeapObject: case IrOpcode::kFinishRegion: case IrOpcode::kTypeGuard: return !node->IsDead(); default: return false; } } Node* ResolveRenames(Node* node) { while (IsRename(node)) { node = node->InputAt(0); } return node; } bool MayAlias(Node* a, Node* b) { if (a != b) { if (!NodeProperties::GetType(a).Maybe(NodeProperties::GetType(b))) { return false; } else if (IsRename(b)) { return MayAlias(a, b->InputAt(0)); } else if (IsRename(a)) { return MayAlias(a->InputAt(0), b); } else if (b->opcode() == IrOpcode::kAllocate) { switch (a->opcode()) { case IrOpcode::kAllocate: case IrOpcode::kHeapConstant: case IrOpcode::kParameter: return false; default: break; } } else if (a->opcode() == IrOpcode::kAllocate) { switch (b->opcode()) { case IrOpcode::kHeapConstant: case IrOpcode::kParameter: return false; default: break; } } } return true; } bool MustAlias(Node* a, Node* b) { return ResolveRenames(a) == ResolveRenames(b); } } // namespace Reduction LoadElimination::Reduce(Node* node) { if (FLAG_trace_turbo_load_elimination) { if (node->op()->EffectInputCount() > 0) { PrintF(" visit #%d:%s", node->id(), node->op()->mnemonic()); if (node->op()->ValueInputCount() > 0) { PrintF("("); for (int i = 0; i < node->op()->ValueInputCount(); ++i) { if (i > 0) PrintF(", "); Node* const value = NodeProperties::GetValueInput(node, i); PrintF("#%d:%s", value->id(), value->op()->mnemonic()); } PrintF(")"); } PrintF("\n"); for (int i = 0; i < node->op()->EffectInputCount(); ++i) { Node* const effect = NodeProperties::GetEffectInput(node, i); if (AbstractState const* const state = node_states_.Get(effect)) { PrintF(" state[%i]: #%d:%s\n", i, effect->id(), effect->op()->mnemonic()); state->Print(); } else { PrintF(" no state[%i]: #%d:%s\n", i, effect->id(), effect->op()->mnemonic()); } } } } switch (node->opcode()) { case IrOpcode::kMapGuard: return ReduceMapGuard(node); case IrOpcode::kCheckMaps: return ReduceCheckMaps(node); case IrOpcode::kCompareMaps: return ReduceCompareMaps(node); case IrOpcode::kEnsureWritableFastElements: return ReduceEnsureWritableFastElements(node); case IrOpcode::kMaybeGrowFastElements: return ReduceMaybeGrowFastElements(node); case IrOpcode::kTransitionElementsKind: return ReduceTransitionElementsKind(node); case IrOpcode::kLoadField: return ReduceLoadField(node, FieldAccessOf(node->op())); case IrOpcode::kStoreField: return ReduceStoreField(node, FieldAccessOf(node->op())); case IrOpcode::kLoadElement: return ReduceLoadElement(node); case IrOpcode::kStoreElement: return ReduceStoreElement(node); case IrOpcode::kTransitionAndStoreElement: return ReduceTransitionAndStoreElement(node); case IrOpcode::kStoreTypedElement: return ReduceStoreTypedElement(node); case IrOpcode::kEffectPhi: return ReduceEffectPhi(node); case IrOpcode::kDead: break; case IrOpcode::kStart: return ReduceStart(node); default: return ReduceOtherNode(node); } return NoChange(); } namespace { bool IsCompatible(MachineRepresentation r1, MachineRepresentation r2) { if (r1 == r2) return true; return IsAnyCompressedTagged(r1) && IsAnyCompressedTagged(r2); } } // namespace LoadElimination::AbstractState const LoadElimination::AbstractState::empty_state_; Node* LoadElimination::AbstractElements::Lookup( Node* object, Node* index, MachineRepresentation representation) const { for (Element const element : elements_) { if (element.object == nullptr) continue; DCHECK_NOT_NULL(element.index); DCHECK_NOT_NULL(element.value); if (MustAlias(object, element.object) && MustAlias(index, element.index) && IsCompatible(representation, element.representation)) { return element.value; } } return nullptr; } LoadElimination::AbstractElements const* LoadElimination::AbstractElements::Kill(Node* object, Node* index, Zone* zone) const { for (Element const element : this->elements_) { if (element.object == nullptr) continue; if (MayAlias(object, element.object)) { AbstractElements* that = new (zone) AbstractElements(zone); for (Element const element : this->elements_) { if (element.object == nullptr) continue; DCHECK_NOT_NULL(element.index); DCHECK_NOT_NULL(element.value); if (!MayAlias(object, element.object) || !NodeProperties::GetType(index).Maybe( NodeProperties::GetType(element.index))) { that->elements_[that->next_index_++] = element; } } that->next_index_ %= arraysize(elements_); return that; } } return this; } bool LoadElimination::AbstractElements::Equals( AbstractElements const* that) const { if (this == that) return true; for (size_t i = 0; i < arraysize(elements_); ++i) { Element this_element = this->elements_[i]; if (this_element.object == nullptr) continue; for (size_t j = 0;; ++j) { if (j == arraysize(elements_)) return false; Element that_element = that->elements_[j]; if (this_element.object == that_element.object && this_element.index == that_element.index && this_element.value == that_element.value) { break; } } } for (size_t i = 0; i < arraysize(elements_); ++i) { Element that_element = that->elements_[i]; if (that_element.object == nullptr) continue; for (size_t j = 0;; ++j) { if (j == arraysize(elements_)) return false; Element this_element = this->elements_[j]; if (that_element.object == this_element.object && that_element.index == this_element.index && that_element.value == this_element.value) { break; } } } return true; } LoadElimination::AbstractElements const* LoadElimination::AbstractElements::Merge(AbstractElements const* that, Zone* zone) const { if (this->Equals(that)) return this; AbstractElements* copy = new (zone) AbstractElements(zone); for (Element const this_element : this->elements_) { if (this_element.object == nullptr) continue; for (Element const that_element : that->elements_) { if (this_element.object == that_element.object && this_element.index == that_element.index && this_element.value == that_element.value) { copy->elements_[copy->next_index_++] = this_element; break; } } } copy->next_index_ %= arraysize(elements_); return copy; } void LoadElimination::AbstractElements::Print() const { for (Element const& element : elements_) { if (element.object) { PrintF(" #%d:%s @ #%d:%s -> #%d:%s\n", element.object->id(), element.object->op()->mnemonic(), element.index->id(), element.index->op()->mnemonic(), element.value->id(), element.value->op()->mnemonic()); } } } LoadElimination::FieldInfo const* LoadElimination::AbstractField::Lookup( Node* object) const { for (auto& pair : info_for_node_) { if (pair.first->IsDead()) continue; if (MustAlias(object, pair.first)) return &pair.second; } return nullptr; } namespace { bool MayAlias(MaybeHandle x, MaybeHandle y) { if (!x.address()) return true; if (!y.address()) return true; if (x.address() != y.address()) return false; return true; } } // namespace class LoadElimination::AliasStateInfo { public: AliasStateInfo(const AbstractState* state, Node* object, Handle map) : state_(state), object_(object), map_(map) {} AliasStateInfo(const AbstractState* state, Node* object) : state_(state), object_(object) {} bool MayAlias(Node* other) const; private: const AbstractState* state_; Node* object_; MaybeHandle map_; }; LoadElimination::AbstractField const* LoadElimination::AbstractField::KillConst( Node* object, Zone* zone) const { for (auto pair : this->info_for_node_) { if (pair.first->IsDead()) continue; // If we previously recorded information about a const store on the given // 'object', we might not have done it on the same node; e.g. we might now // identify the object by a FinishRegion node, whereas the initial const // store was performed on the Allocate node. We therefore remove information // on all nodes that must alias with 'object'. if (MustAlias(object, pair.first)) { AbstractField* that = new (zone) AbstractField(zone); for (auto pair : this->info_for_node_) { if (!MustAlias(object, pair.first)) { that->info_for_node_.insert(pair); } } return that; } } return this; } LoadElimination::AbstractField const* LoadElimination::AbstractField::Kill( const AliasStateInfo& alias_info, MaybeHandle name, Zone* zone) const { for (auto pair : this->info_for_node_) { if (pair.first->IsDead()) continue; if (alias_info.MayAlias(pair.first)) { AbstractField* that = new (zone) AbstractField(zone); for (auto pair : this->info_for_node_) { if (!alias_info.MayAlias(pair.first) || !MayAlias(name, pair.second.name)) { that->info_for_node_.insert(pair); } } return that; } } return this; } void LoadElimination::AbstractField::Print() const { for (auto pair : info_for_node_) { PrintF(" #%d:%s -> #%d:%s [repr=%s]\n", pair.first->id(), pair.first->op()->mnemonic(), pair.second.value->id(), pair.second.value->op()->mnemonic(), MachineReprToString(pair.second.representation)); } } LoadElimination::AbstractMaps::AbstractMaps(Zone* zone) : info_for_node_(zone) {} LoadElimination::AbstractMaps::AbstractMaps(Node* object, ZoneHandleSet maps, Zone* zone) : info_for_node_(zone) { object = ResolveRenames(object); info_for_node_.insert(std::make_pair(object, maps)); } bool LoadElimination::AbstractMaps::Lookup( Node* object, ZoneHandleSet* object_maps) const { auto it = info_for_node_.find(ResolveRenames(object)); if (it == info_for_node_.end()) return false; *object_maps = it->second; return true; } LoadElimination::AbstractMaps const* LoadElimination::AbstractMaps::Kill( const AliasStateInfo& alias_info, Zone* zone) const { for (auto pair : this->info_for_node_) { if (alias_info.MayAlias(pair.first)) { AbstractMaps* that = new (zone) AbstractMaps(zone); for (auto pair : this->info_for_node_) { if (!alias_info.MayAlias(pair.first)) that->info_for_node_.insert(pair); } return that; } } return this; } LoadElimination::AbstractMaps const* LoadElimination::AbstractMaps::Merge( AbstractMaps const* that, Zone* zone) const { if (this->Equals(that)) return this; AbstractMaps* copy = new (zone) AbstractMaps(zone); for (auto this_it : this->info_for_node_) { Node* this_object = this_it.first; ZoneHandleSet this_maps = this_it.second; auto that_it = that->info_for_node_.find(this_object); if (that_it != that->info_for_node_.end() && that_it->second == this_maps) { copy->info_for_node_.insert(this_it); } } return copy; } LoadElimination::AbstractMaps const* LoadElimination::AbstractMaps::Extend( Node* object, ZoneHandleSet maps, Zone* zone) const { AbstractMaps* that = new (zone) AbstractMaps(zone); that->info_for_node_ = this->info_for_node_; object = ResolveRenames(object); that->info_for_node_[object] = maps; return that; } void LoadElimination::AbstractMaps::Print() const { AllowHandleDereference allow_handle_dereference; StdoutStream os; for (auto pair : info_for_node_) { os << " #" << pair.first->id() << ":" << pair.first->op()->mnemonic() << std::endl; ZoneHandleSet const& maps = pair.second; for (size_t i = 0; i < maps.size(); ++i) { os << " - " << Brief(*maps[i]) << std::endl; } } } bool LoadElimination::AbstractState::FieldsEquals( AbstractFields const& this_fields, AbstractFields const& that_fields) const { for (size_t i = 0u; i < this_fields.size(); ++i) { AbstractField const* this_field = this_fields[i]; AbstractField const* that_field = that_fields[i]; if (this_field) { if (!that_field || !that_field->Equals(this_field)) return false; } else if (that_field) { return false; } } return true; } bool LoadElimination::AbstractState::Equals(AbstractState const* that) const { if (this->elements_) { if (!that->elements_ || !that->elements_->Equals(this->elements_)) { return false; } } else if (that->elements_) { return false; } if (!FieldsEquals(this->fields_, that->fields_) || !FieldsEquals(this->const_fields_, that->const_fields_)) { return false; } if (this->maps_) { if (!that->maps_ || !that->maps_->Equals(this->maps_)) { return false; } } else if (that->maps_) { return false; } return true; } void LoadElimination::AbstractState::FieldsMerge( AbstractFields* this_fields, AbstractFields const& that_fields, Zone* zone) { for (size_t i = 0; i < this_fields->size(); ++i) { AbstractField const*& this_field = (*this_fields)[i]; if (this_field) { if (that_fields[i]) { this_field = this_field->Merge(that_fields[i], zone); } else { this_field = nullptr; } } } } void LoadElimination::AbstractState::Merge(AbstractState const* that, Zone* zone) { // Merge the information we have about the elements. if (this->elements_) { this->elements_ = that->elements_ ? that->elements_->Merge(this->elements_, zone) : nullptr; } // Merge the information we have about the fields. FieldsMerge(&this->fields_, that->fields_, zone); FieldsMerge(&this->const_fields_, that->const_fields_, zone); // Merge the information we have about the maps. if (this->maps_) { this->maps_ = that->maps_ ? that->maps_->Merge(this->maps_, zone) : nullptr; } } bool LoadElimination::AbstractState::LookupMaps( Node* object, ZoneHandleSet* object_map) const { return this->maps_ && this->maps_->Lookup(object, object_map); } LoadElimination::AbstractState const* LoadElimination::AbstractState::SetMaps( Node* object, ZoneHandleSet maps, Zone* zone) const { AbstractState* that = new (zone) AbstractState(*this); if (that->maps_) { that->maps_ = that->maps_->Extend(object, maps, zone); } else { that->maps_ = new (zone) AbstractMaps(object, maps, zone); } return that; } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillMaps( const AliasStateInfo& alias_info, Zone* zone) const { if (this->maps_) { AbstractMaps const* that_maps = this->maps_->Kill(alias_info, zone); if (this->maps_ != that_maps) { AbstractState* that = new (zone) AbstractState(*this); that->maps_ = that_maps; return that; } } return this; } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillMaps( Node* object, Zone* zone) const { AliasStateInfo alias_info(this, object); return KillMaps(alias_info, zone); } Node* LoadElimination::AbstractState::LookupElement( Node* object, Node* index, MachineRepresentation representation) const { if (this->elements_) { return this->elements_->Lookup(object, index, representation); } return nullptr; } LoadElimination::AbstractState const* LoadElimination::AbstractState::AddElement(Node* object, Node* index, Node* value, MachineRepresentation representation, Zone* zone) const { AbstractState* that = new (zone) AbstractState(*this); if (that->elements_) { that->elements_ = that->elements_->Extend(object, index, value, representation, zone); } else { that->elements_ = new (zone) AbstractElements(object, index, value, representation, zone); } return that; } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillElement(Node* object, Node* index, Zone* zone) const { if (this->elements_) { AbstractElements const* that_elements = this->elements_->Kill(object, index, zone); if (this->elements_ != that_elements) { AbstractState* that = new (zone) AbstractState(*this); that->elements_ = that_elements; return that; } } return this; } LoadElimination::AbstractState const* LoadElimination::AbstractState::AddField( Node* object, IndexRange index_range, LoadElimination::FieldInfo info, Zone* zone) const { AbstractState* that = new (zone) AbstractState(*this); AbstractFields& fields = info.const_field_info.IsConst() ? that->const_fields_ : that->fields_; for (int index : index_range) { if (fields[index]) { fields[index] = fields[index]->Extend(object, info, zone); } else { fields[index] = new (zone) AbstractField(object, info, zone); } } return that; } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillConstField(Node* object, IndexRange index_range, Zone* zone) const { AliasStateInfo alias_info(this, object); AbstractState* that = nullptr; for (int index : index_range) { if (AbstractField const* this_field = this->const_fields_[index]) { this_field = this_field->KillConst(object, zone); if (this->const_fields_[index] != this_field) { if (!that) that = new (zone) AbstractState(*this); that->const_fields_[index] = this_field; } } } return that ? that : this; } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillField( Node* object, IndexRange index_range, MaybeHandle name, Zone* zone) const { AliasStateInfo alias_info(this, object); return KillField(alias_info, index_range, name, zone); } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillField( const AliasStateInfo& alias_info, IndexRange index_range, MaybeHandle name, Zone* zone) const { AbstractState* that = nullptr; for (int index : index_range) { if (AbstractField const* this_field = this->fields_[index]) { this_field = this_field->Kill(alias_info, name, zone); if (this->fields_[index] != this_field) { if (!that) that = new (zone) AbstractState(*this); that->fields_[index] = this_field; } } } return that ? that : this; } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillFields(Node* object, MaybeHandle name, Zone* zone) const { AliasStateInfo alias_info(this, object); for (size_t i = 0;; ++i) { if (i == fields_.size()) return this; if (AbstractField const* this_field = this->fields_[i]) { AbstractField const* that_field = this_field->Kill(alias_info, name, zone); if (that_field != this_field) { AbstractState* that = new (zone) AbstractState(*this); that->fields_[i] = that_field; while (++i < fields_.size()) { if (this->fields_[i] != nullptr) { that->fields_[i] = this->fields_[i]->Kill(alias_info, name, zone); } } return that; } } } } LoadElimination::AbstractState const* LoadElimination::AbstractState::KillAll( Zone* zone) const { // Kill everything except for const fields for (size_t i = 0; i < const_fields_.size(); ++i) { if (const_fields_[i]) { AbstractState* that = new (zone) AbstractState(); that->const_fields_ = const_fields_; return that; } } return LoadElimination::empty_state(); } LoadElimination::FieldInfo const* LoadElimination::AbstractState::LookupField( Node* object, IndexRange index_range, ConstFieldInfo const_field_info) const { // Check if all the indices in {index_range} contain identical information. // If not, a partially overlapping access has invalidated part of the value. base::Optional result; for (int index : index_range) { LoadElimination::FieldInfo const* info = nullptr; if (const_field_info.IsConst()) { if (AbstractField const* this_field = const_fields_[index]) { info = this_field->Lookup(object); } if (!(info && info->const_field_info == const_field_info)) return nullptr; } else { if (AbstractField const* this_field = fields_[index]) { info = this_field->Lookup(object); } if (!info) return nullptr; } if (!result.has_value()) { result = info; } else { // We detected a partially overlapping access here. // We currently don't seem to have such accesses, so this code path is // unreachable, but if we eventually have them, it is safe to return // nullptr and continue the analysis. But store-store elimination is // currently unsafe for such overlapping accesses, so when we remove // this check, we should double-check that store-store elimination can // handle it too. DCHECK_EQ(**result, *info); } } return *result; } bool LoadElimination::AliasStateInfo::MayAlias(Node* other) const { // If {object} is being initialized right here (indicated by {object} being // an Allocate node instead of a FinishRegion node), we know that {other} // can only alias with {object} if they refer to exactly the same node. if (object_->opcode() == IrOpcode::kAllocate) { return object_ == other; } // Decide aliasing based on the node kinds. if (!compiler::MayAlias(object_, other)) { return false; } // Decide aliasing based on maps (if available). Handle map; if (map_.ToHandle(&map)) { ZoneHandleSet other_maps; if (state_->LookupMaps(other, &other_maps) && other_maps.size() == 1) { if (map.address() != other_maps.at(0).address()) { return false; } } } return true; } void LoadElimination::AbstractState::Print() const { if (maps_) { PrintF(" maps:\n"); maps_->Print(); } if (elements_) { PrintF(" elements:\n"); elements_->Print(); } for (size_t i = 0; i < fields_.size(); ++i) { if (AbstractField const* const field = fields_[i]) { PrintF(" field %zu:\n", i); field->Print(); } } for (size_t i = 0; i < const_fields_.size(); ++i) { if (AbstractField const* const const_field = const_fields_[i]) { PrintF(" const field %zu:\n", i); const_field->Print(); } } } LoadElimination::AbstractState const* LoadElimination::AbstractStateForEffectNodes::Get(Node* node) const { size_t const id = node->id(); if (id < info_for_node_.size()) return info_for_node_[id]; return nullptr; } void LoadElimination::AbstractStateForEffectNodes::Set( Node* node, AbstractState const* state) { size_t const id = node->id(); if (id >= info_for_node_.size()) info_for_node_.resize(id + 1, nullptr); info_for_node_[id] = state; } Reduction LoadElimination::ReduceMapGuard(Node* node) { ZoneHandleSet const& maps = MapGuardMapsOf(node->op()); Node* const object = NodeProperties::GetValueInput(node, 0); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); ZoneHandleSet object_maps; if (state->LookupMaps(object, &object_maps)) { if (maps.contains(object_maps)) return Replace(effect); // TODO(turbofan): Compute the intersection. } state = state->SetMaps(object, maps, zone()); return UpdateState(node, state); } Reduction LoadElimination::ReduceCheckMaps(Node* node) { ZoneHandleSet const& maps = CheckMapsParametersOf(node->op()).maps(); Node* const object = NodeProperties::GetValueInput(node, 0); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); ZoneHandleSet object_maps; if (state->LookupMaps(object, &object_maps)) { if (maps.contains(object_maps)) return Replace(effect); // TODO(turbofan): Compute the intersection. } state = state->SetMaps(object, maps, zone()); return UpdateState(node, state); } Reduction LoadElimination::ReduceCompareMaps(Node* node) { ZoneHandleSet const& maps = CompareMapsParametersOf(node->op()); Node* const object = NodeProperties::GetValueInput(node, 0); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); ZoneHandleSet object_maps; if (state->LookupMaps(object, &object_maps)) { if (maps.contains(object_maps)) { Node* value = jsgraph()->TrueConstant(); ReplaceWithValue(node, value, effect); return Replace(value); } // TODO(turbofan): Compute the intersection. } return UpdateState(node, state); } Reduction LoadElimination::ReduceEnsureWritableFastElements(Node* node) { Node* const object = NodeProperties::GetValueInput(node, 0); Node* const elements = NodeProperties::GetValueInput(node, 1); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); // Check if the {elements} already have the fixed array map. ZoneHandleSet elements_maps; ZoneHandleSet fixed_array_maps(factory()->fixed_array_map()); if (state->LookupMaps(elements, &elements_maps) && fixed_array_maps.contains(elements_maps)) { ReplaceWithValue(node, elements, effect); return Replace(elements); } // We know that the resulting elements have the fixed array map. state = state->SetMaps(node, fixed_array_maps, zone()); // Kill the previous elements on {object}. state = state->KillField(object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); // Add the new elements on {object}. state = state->AddField( object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), {node, MachineType::RepCompressedTaggedPointer()}, zone()); return UpdateState(node, state); } Reduction LoadElimination::ReduceMaybeGrowFastElements(Node* node) { GrowFastElementsParameters params = GrowFastElementsParametersOf(node->op()); Node* const object = NodeProperties::GetValueInput(node, 0); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); if (params.mode() == GrowFastElementsMode::kDoubleElements) { // We know that the resulting elements have the fixed double array map. state = state->SetMaps( node, ZoneHandleSet(factory()->fixed_double_array_map()), zone()); } else { // We know that the resulting elements have the fixed array map or the COW // version thereof (if we didn't grow and it was already COW before). ZoneHandleSet fixed_array_maps(factory()->fixed_array_map()); fixed_array_maps.insert(factory()->fixed_cow_array_map(), zone()); state = state->SetMaps(node, fixed_array_maps, zone()); } // Kill the previous elements on {object}. state = state->KillField(object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); // Add the new elements on {object}. state = state->AddField( object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), {node, MachineType::RepCompressedTaggedPointer()}, zone()); return UpdateState(node, state); } Reduction LoadElimination::ReduceTransitionElementsKind(Node* node) { ElementsTransition transition = ElementsTransitionOf(node->op()); Node* const object = NodeProperties::GetValueInput(node, 0); Handle source_map(transition.source()); Handle target_map(transition.target()); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); switch (transition.mode()) { case ElementsTransition::kFastTransition: break; case ElementsTransition::kSlowTransition: // Kill the elements as well. AliasStateInfo alias_info(state, object, source_map); state = state->KillField( alias_info, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); break; } ZoneHandleSet object_maps; if (state->LookupMaps(object, &object_maps)) { if (ZoneHandleSet(target_map).contains(object_maps)) { // The {object} already has the {target_map}, so this TransitionElements // {node} is fully redundant (independent of what {source_map} is). return Replace(effect); } if (object_maps.contains(ZoneHandleSet(source_map))) { object_maps.remove(source_map, zone()); object_maps.insert(target_map, zone()); AliasStateInfo alias_info(state, object, source_map); state = state->KillMaps(alias_info, zone()); state = state->SetMaps(object, object_maps, zone()); } } else { AliasStateInfo alias_info(state, object, source_map); state = state->KillMaps(alias_info, zone()); } return UpdateState(node, state); } Reduction LoadElimination::ReduceTransitionAndStoreElement(Node* node) { Node* const object = NodeProperties::GetValueInput(node, 0); Handle double_map(DoubleMapParameterOf(node->op())); Handle fast_map(FastMapParameterOf(node->op())); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); // We need to add the double and fast maps to the set of possible maps for // this object, because we don't know which of those we'll transition to. // Additionally, we should kill all alias information. ZoneHandleSet object_maps; if (state->LookupMaps(object, &object_maps)) { object_maps.insert(double_map, zone()); object_maps.insert(fast_map, zone()); state = state->KillMaps(object, zone()); state = state->SetMaps(object, object_maps, zone()); } // Kill the elements as well. state = state->KillField(object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); return UpdateState(node, state); } Reduction LoadElimination::ReduceLoadField(Node* node, FieldAccess const& access) { Node* object = NodeProperties::GetValueInput(node, 0); Node* effect = NodeProperties::GetEffectInput(node); Node* control = NodeProperties::GetControlInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); if (access.offset == HeapObject::kMapOffset && access.base_is_tagged == kTaggedBase) { DCHECK(IsAnyCompressedTagged(access.machine_type.representation())); ZoneHandleSet object_maps; if (state->LookupMaps(object, &object_maps) && object_maps.size() == 1) { Node* value = jsgraph()->HeapConstant(object_maps[0]); NodeProperties::SetType(value, Type::OtherInternal()); ReplaceWithValue(node, value, effect); return Replace(value); } } else { IndexRange field_index = FieldIndexOf(access); if (field_index != IndexRange::Invalid()) { MachineRepresentation representation = access.machine_type.representation(); FieldInfo const* lookup_result = state->LookupField(object, field_index, access.const_field_info); if (!lookup_result && access.const_field_info.IsConst()) { // If the access is const and we didn't find anything, also try to look // up information from mutable stores lookup_result = state->LookupField(object, field_index, ConstFieldInfo::None()); } if (lookup_result) { // Make sure we don't reuse values that were recorded with a different // representation or resurrect dead {replacement} nodes. Node* replacement = lookup_result->value; if (IsCompatible(representation, lookup_result->representation) && !replacement->IsDead()) { // Introduce a TypeGuard if the type of the {replacement} node is not // a subtype of the original {node}'s type. if (!NodeProperties::GetType(replacement) .Is(NodeProperties::GetType(node))) { Type replacement_type = Type::Intersect( NodeProperties::GetType(node), NodeProperties::GetType(replacement), graph()->zone()); replacement = effect = graph()->NewNode(common()->TypeGuard(replacement_type), replacement, effect, control); NodeProperties::SetType(replacement, replacement_type); } ReplaceWithValue(node, replacement, effect); return Replace(replacement); } } FieldInfo info(node, representation, access.name, access.const_field_info); state = state->AddField(object, field_index, info, zone()); } } Handle field_map; if (access.map.ToHandle(&field_map)) { state = state->SetMaps(node, ZoneHandleSet(field_map), zone()); } return UpdateState(node, state); } Reduction LoadElimination::ReduceStoreField(Node* node, FieldAccess const& access) { Node* const object = NodeProperties::GetValueInput(node, 0); Node* const new_value = NodeProperties::GetValueInput(node, 1); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); if (access.offset == HeapObject::kMapOffset && access.base_is_tagged == kTaggedBase) { DCHECK(IsAnyCompressedTagged(access.machine_type.representation())); // Kill all potential knowledge about the {object}s map. state = state->KillMaps(object, zone()); Type const new_value_type = NodeProperties::GetType(new_value); if (new_value_type.IsHeapConstant()) { // Record the new {object} map information. ZoneHandleSet object_maps( new_value_type.AsHeapConstant()->Ref().AsMap().object()); state = state->SetMaps(object, object_maps, zone()); } } else { IndexRange field_index = FieldIndexOf(access); if (field_index != IndexRange::Invalid()) { bool is_const_store = access.const_field_info.IsConst(); MachineRepresentation representation = access.machine_type.representation(); FieldInfo const* lookup_result = state->LookupField(object, field_index, access.const_field_info); if (lookup_result && (!is_const_store || V8_ENABLE_DOUBLE_CONST_STORE_CHECK_BOOL)) { // At runtime, we should never encounter // - any store replacing existing info with a different, incompatible // representation, nor // - two consecutive const stores, unless the latter is a store into // a literal. // However, we may see such code statically, so we guard against // executing it by emitting Unreachable. // TODO(gsps): Re-enable the double const store check even for // non-debug builds once we have identified other FieldAccesses // that should be marked mutable instead of const // (cf. JSCreateLowering::AllocateFastLiteral). bool incompatible_representation = !lookup_result->name.is_null() && !IsCompatible(representation, lookup_result->representation); bool illegal_double_const_store = is_const_store && !access.is_store_in_literal; if (incompatible_representation || illegal_double_const_store) { Node* control = NodeProperties::GetControlInput(node); Node* unreachable = graph()->NewNode(common()->Unreachable(), effect, control); return Replace(unreachable); } if (lookup_result->value == new_value) { // This store is fully redundant. return Replace(effect); } } // Kill all potentially aliasing fields and record the new value. FieldInfo new_info(new_value, representation, access.name, access.const_field_info); if (is_const_store && access.is_store_in_literal) { // We only kill const information when there is a chance that we // previously stored information about the given const field (namely, // when we observe const stores to literals). state = state->KillConstField(object, field_index, zone()); } state = state->KillField(object, field_index, access.name, zone()); state = state->AddField(object, field_index, new_info, zone()); if (is_const_store) { // For const stores, we track information in both the const and the // mutable world to guard against field accesses that should have // been marked const, but were not. new_info.const_field_info = ConstFieldInfo::None(); state = state->AddField(object, field_index, new_info, zone()); } } else { // Unsupported StoreField operator. state = state->KillFields(object, access.name, zone()); } } return UpdateState(node, state); } Reduction LoadElimination::ReduceLoadElement(Node* node) { Node* const object = NodeProperties::GetValueInput(node, 0); Node* const index = NodeProperties::GetValueInput(node, 1); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); // Only handle loads that do not require truncations. ElementAccess const& access = ElementAccessOf(node->op()); switch (access.machine_type.representation()) { case MachineRepresentation::kNone: case MachineRepresentation::kBit: case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: case MachineRepresentation::kWord64: case MachineRepresentation::kFloat32: // TODO(turbofan): Add support for doing the truncations. break; case MachineRepresentation::kFloat64: case MachineRepresentation::kSimd128: case MachineRepresentation::kTaggedSigned: case MachineRepresentation::kTaggedPointer: case MachineRepresentation::kTagged: case MachineRepresentation::kCompressedSigned: case MachineRepresentation::kCompressedPointer: case MachineRepresentation::kCompressed: if (Node* replacement = state->LookupElement( object, index, access.machine_type.representation())) { // Make sure we don't resurrect dead {replacement} nodes. // Skip lowering if the type of the {replacement} node is not a subtype // of the original {node}'s type. // TODO(tebbi): We should insert a {TypeGuard} for the intersection of // these two types here once we properly handle {Type::None} everywhere. if (!replacement->IsDead() && NodeProperties::GetType(replacement) .Is(NodeProperties::GetType(node))) { ReplaceWithValue(node, replacement, effect); return Replace(replacement); } } state = state->AddElement(object, index, node, access.machine_type.representation(), zone()); return UpdateState(node, state); } return NoChange(); } Reduction LoadElimination::ReduceStoreElement(Node* node) { ElementAccess const& access = ElementAccessOf(node->op()); Node* const object = NodeProperties::GetValueInput(node, 0); Node* const index = NodeProperties::GetValueInput(node, 1); Node* const new_value = NodeProperties::GetValueInput(node, 2); Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); Node* const old_value = state->LookupElement(object, index, access.machine_type.representation()); if (old_value == new_value) { // This store is fully redundant. return Replace(effect); } // Kill all potentially aliasing elements. state = state->KillElement(object, index, zone()); // Only record the new value if the store doesn't have an implicit truncation. switch (access.machine_type.representation()) { case MachineRepresentation::kNone: case MachineRepresentation::kBit: case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: case MachineRepresentation::kWord64: case MachineRepresentation::kFloat32: // TODO(turbofan): Add support for doing the truncations. break; case MachineRepresentation::kFloat64: case MachineRepresentation::kSimd128: case MachineRepresentation::kTaggedSigned: case MachineRepresentation::kTaggedPointer: case MachineRepresentation::kTagged: case MachineRepresentation::kCompressedSigned: case MachineRepresentation::kCompressedPointer: case MachineRepresentation::kCompressed: state = state->AddElement(object, index, new_value, access.machine_type.representation(), zone()); break; } return UpdateState(node, state); } Reduction LoadElimination::ReduceStoreTypedElement(Node* node) { Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); if (state == nullptr) return NoChange(); return UpdateState(node, state); } LoadElimination::AbstractState const* LoadElimination::UpdateStateForPhi( AbstractState const* state, Node* effect_phi, Node* phi) { int predecessor_count = phi->InputCount() - 1; // TODO(jarin) Consider doing a union here. At the moment, we just keep this // consistent with AbstractState::Merge. // Check if all the inputs have the same maps. AbstractState const* input_state = node_states_.Get(NodeProperties::GetEffectInput(effect_phi, 0)); ZoneHandleSet object_maps; if (!input_state->LookupMaps(phi->InputAt(0), &object_maps)) return state; for (int i = 1; i < predecessor_count; i++) { input_state = node_states_.Get(NodeProperties::GetEffectInput(effect_phi, i)); ZoneHandleSet input_maps; if (!input_state->LookupMaps(phi->InputAt(i), &input_maps)) return state; if (input_maps != object_maps) return state; } return state->SetMaps(phi, object_maps, zone()); } Reduction LoadElimination::ReduceEffectPhi(Node* node) { Node* const effect0 = NodeProperties::GetEffectInput(node, 0); Node* const control = NodeProperties::GetControlInput(node); AbstractState const* state0 = node_states_.Get(effect0); if (state0 == nullptr) return NoChange(); if (control->opcode() == IrOpcode::kLoop) { // Here we rely on having only reducible loops: // The loop entry edge always dominates the header, so we can just take // the state from the first input, and compute the loop state based on it. AbstractState const* state = ComputeLoopState(node, state0); return UpdateState(node, state); } DCHECK_EQ(IrOpcode::kMerge, control->opcode()); // Shortcut for the case when we do not know anything about some input. int const input_count = node->op()->EffectInputCount(); for (int i = 1; i < input_count; ++i) { Node* const effect = NodeProperties::GetEffectInput(node, i); if (node_states_.Get(effect) == nullptr) return NoChange(); } // Make a copy of the first input's state and merge with the state // from other inputs. AbstractState* state = new (zone()) AbstractState(*state0); for (int i = 1; i < input_count; ++i) { Node* const input = NodeProperties::GetEffectInput(node, i); state->Merge(node_states_.Get(input), zone()); } // For each phi, try to compute the new state for the phi from // the inputs. AbstractState const* state_with_phis = state; for (Node* use : control->uses()) { if (use->opcode() == IrOpcode::kPhi) { state_with_phis = UpdateStateForPhi(state_with_phis, node, use); } } return UpdateState(node, state_with_phis); } Reduction LoadElimination::ReduceStart(Node* node) { return UpdateState(node, empty_state()); } Reduction LoadElimination::ReduceOtherNode(Node* node) { if (node->op()->EffectInputCount() == 1) { if (node->op()->EffectOutputCount() == 1) { Node* const effect = NodeProperties::GetEffectInput(node); AbstractState const* state = node_states_.Get(effect); // If we do not know anything about the predecessor, do not propagate // just yet because we will have to recompute anyway once we compute // the predecessor. if (state == nullptr) return NoChange(); // Check if this {node} has some uncontrolled side effects. if (!node->op()->HasProperty(Operator::kNoWrite)) { state = state->KillAll(zone()); } return UpdateState(node, state); } else { // Effect terminators should be handled specially. return NoChange(); } } DCHECK_EQ(0, node->op()->EffectInputCount()); DCHECK_EQ(0, node->op()->EffectOutputCount()); return NoChange(); } Reduction LoadElimination::UpdateState(Node* node, AbstractState const* state) { AbstractState const* original = node_states_.Get(node); // Only signal that the {node} has Changed, if the information about {state} // has changed wrt. the {original}. if (state != original) { if (original == nullptr || !state->Equals(original)) { node_states_.Set(node, state); return Changed(node); } } return NoChange(); } LoadElimination::AbstractState const* LoadElimination::ComputeLoopStateForStoreField( Node* current, LoadElimination::AbstractState const* state, FieldAccess const& access) const { Node* const object = NodeProperties::GetValueInput(current, 0); if (access.offset == HeapObject::kMapOffset) { // Invalidate what we know about the {object}s map. state = state->KillMaps(object, zone()); } else { IndexRange field_index = FieldIndexOf(access); if (field_index == IndexRange::Invalid()) { state = state->KillFields(object, access.name, zone()); } else { state = state->KillField(object, field_index, access.name, zone()); } } return state; } LoadElimination::AbstractState const* LoadElimination::ComputeLoopState( Node* node, AbstractState const* state) const { Node* const control = NodeProperties::GetControlInput(node); struct TransitionElementsKindInfo { ElementsTransition transition; Node* object; }; // Allocate zone data structures in a temporary zone with a lifetime limited // to this function to avoid blowing up the size of the stage-global zone. Zone temp_zone(zone()->allocator(), "Temporary scoped zone"); ZoneVector element_transitions_(&temp_zone); ZoneQueue queue(&temp_zone); ZoneSet visited(&temp_zone); visited.insert(node); for (int i = 1; i < control->InputCount(); ++i) { queue.push(node->InputAt(i)); } while (!queue.empty()) { Node* const current = queue.front(); queue.pop(); if (visited.find(current) == visited.end()) { visited.insert(current); if (!current->op()->HasProperty(Operator::kNoWrite)) { switch (current->opcode()) { case IrOpcode::kEnsureWritableFastElements: { Node* const object = NodeProperties::GetValueInput(current, 0); state = state->KillField( object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); break; } case IrOpcode::kMaybeGrowFastElements: { Node* const object = NodeProperties::GetValueInput(current, 0); state = state->KillField( object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); break; } case IrOpcode::kTransitionElementsKind: { ElementsTransition transition = ElementsTransitionOf(current->op()); Node* const object = NodeProperties::GetValueInput(current, 0); ZoneHandleSet object_maps; if (!state->LookupMaps(object, &object_maps) || !ZoneHandleSet(transition.target()) .contains(object_maps)) { element_transitions_.push_back({transition, object}); } break; } case IrOpcode::kTransitionAndStoreElement: { Node* const object = NodeProperties::GetValueInput(current, 0); // Invalidate what we know about the {object}s map. state = state->KillMaps(object, zone()); // Kill the elements as well. state = state->KillField( object, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); break; } case IrOpcode::kStoreField: { FieldAccess access = FieldAccessOf(current->op()); state = ComputeLoopStateForStoreField(current, state, access); break; } case IrOpcode::kStoreElement: { Node* const object = NodeProperties::GetValueInput(current, 0); Node* const index = NodeProperties::GetValueInput(current, 1); state = state->KillElement(object, index, zone()); break; } case IrOpcode::kStoreTypedElement: { // Doesn't affect anything we track with the state currently. break; } default: return state->KillAll(zone()); } } for (int i = 0; i < current->op()->EffectInputCount(); ++i) { queue.push(NodeProperties::GetEffectInput(current, i)); } } } // Finally, we apply the element transitions. For each transition, we will try // to only invalidate information about nodes that can have the transition's // source map. The trouble is that an object can be transitioned by some other // transition to the source map. In that case, the other transition will // invalidate the information, so we are mostly fine. // // The only bad case is // // mapA ---fast---> mapB ---slow---> mapC // // If we process the slow transition first on an object that has mapA, we will // ignore the transition because the object does not have its source map // (mapB). When we later process the fast transition, we invalidate the // object's map, but we keep the information about the object's elements. This // is wrong because the elements will be overwritten by the slow transition. // // Note that the slow-slow case is fine because either of the slow transition // will invalidate the elements field, so the processing order does not // matter. // // To handle the bad case properly, we first kill the maps using all // transitions. We kill the the fields later when all the transitions are // already reflected in the map information. for (const TransitionElementsKindInfo& t : element_transitions_) { AliasStateInfo alias_info(state, t.object, t.transition.source()); state = state->KillMaps(alias_info, zone()); } for (const TransitionElementsKindInfo& t : element_transitions_) { switch (t.transition.mode()) { case ElementsTransition::kFastTransition: break; case ElementsTransition::kSlowTransition: { AliasStateInfo alias_info(state, t.object, t.transition.source()); state = state->KillField( alias_info, FieldIndexOf(JSObject::kElementsOffset, kTaggedSize), MaybeHandle(), zone()); break; } } } return state; } // static LoadElimination::IndexRange LoadElimination::FieldIndexOf( int offset, int representation_size) { DCHECK(IsAligned(offset, kTaggedSize)); int field_index = offset / kTaggedSize - 1; DCHECK_EQ(0, representation_size % kTaggedSize); return IndexRange(field_index, representation_size / kTaggedSize); } // static LoadElimination::IndexRange LoadElimination::FieldIndexOf( FieldAccess const& access) { MachineRepresentation rep = access.machine_type.representation(); switch (rep) { case MachineRepresentation::kNone: case MachineRepresentation::kBit: case MachineRepresentation::kSimd128: UNREACHABLE(); case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kFloat32: // Currently untracked. return IndexRange::Invalid(); case MachineRepresentation::kFloat64: case MachineRepresentation::kWord32: case MachineRepresentation::kWord64: case MachineRepresentation::kTaggedSigned: case MachineRepresentation::kTaggedPointer: case MachineRepresentation::kTagged: case MachineRepresentation::kCompressedSigned: case MachineRepresentation::kCompressedPointer: case MachineRepresentation::kCompressed: break; } int representation_size = ElementSizeInBytes(rep); // We currently only track fields that are at least tagged pointer sized. if (representation_size < kTaggedSize) return IndexRange::Invalid(); DCHECK_EQ(0, representation_size % kTaggedSize); if (access.base_is_tagged != kTaggedBase) { // We currently only track tagged objects. return IndexRange::Invalid(); } return FieldIndexOf(access.offset, representation_size); } CommonOperatorBuilder* LoadElimination::common() const { return jsgraph()->common(); } Graph* LoadElimination::graph() const { return jsgraph()->graph(); } Isolate* LoadElimination::isolate() const { return jsgraph()->isolate(); } Factory* LoadElimination::factory() const { return jsgraph()->factory(); } } // namespace compiler } // namespace internal } // namespace v8