// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS #include "src/api/api-arguments.h" #include "src/codegen/code-factory.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/logging/counters.h" // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. #include "src/codegen/macro-assembler-inl.h" #include "src/codegen/mips/constants-mips.h" #include "src/codegen/register-configuration.h" #include "src/heap/heap-inl.h" #include "src/objects/cell.h" #include "src/objects/foreign.h" #include "src/objects/heap-number.h" #include "src/objects/js-generator.h" #include "src/objects/objects-inl.h" #include "src/objects/smi.h" #include "src/runtime/runtime.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { __ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, t0); __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, t0, Operand(zero_reg)); __ GetObjectType(a2, a3, t0); __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, t0, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- a1 : target function (preserved for callee) // -- a3 : new target (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ Push(a1, a3, a1); __ CallRuntime(function_id, 1); // Restore target function and new target. __ Pop(a1, a3); } static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Addu(a2, v0, Code::kHeaderSize - kHeapObjectTag); __ Jump(a2); } namespace { void LoadRealStackLimit(MacroAssembler* masm, Register destination) { DCHECK(masm->root_array_available()); Isolate* isolate = masm->isolate(); ExternalReference limit = ExternalReference::address_of_real_jslimit(isolate); DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); intptr_t offset = TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); __ Lw(destination, MemOperand(kRootRegister, static_cast(offset))); } void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a3 : new target // -- cp : context // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0); __ SmiUntag(a0); // The receiver for the builtin/api call. __ PushRoot(RootIndex::kTheHoleValue); // Set up pointer to last argument. __ Addu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(t3, a0); // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a3: new target // -- t2: pointer to last argument // -- t3: counter // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Lsa(t0, t2, t3, kPointerSizeLog2); __ lw(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Addu(t3, t3, Operand(-1)); __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); // Call the function. // a0: number of arguments (untagged) // a1: constructor function // a3: new target ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); // Restore context from the frame. __ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ lw(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ Lsa(sp, sp, a1, kPointerSizeLog2 - 1); __ Addu(sp, sp, kPointerSize); __ Ret(); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch1, Register scratch2, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. LoadRealStackLimit(masm, scratch1); // Make scratch1 the space we have left. The stack might already be overflowed // here which will cause scratch1 to become negative. __ subu(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. __ sll(scratch2, num_args, kPointerSizeLog2); // Signed comparison. __ Branch(stack_overflow, le, scratch1, Operand(scratch2)); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a1: constructor function // -- a3: new target // -- cp: context // -- ra: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0, a1); __ PushRoot(RootIndex::kTheHoleValue); __ Push(a3); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- a1 and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments (tagged) // -- sp[4*kPointerSize]: context // ----------------------------------- __ lw(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); __ DecodeField(t2); __ JumpIfIsInRange(t2, kDefaultDerivedConstructor, kDerivedConstructor, ¬_create_implicit_receiver); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, t2, t3); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ Branch(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(v0, RootIndex::kTheHoleValue); // ----------- S t a t e ------------- // -- v0: receiver // -- Slot 4 / sp[0*kPointerSize]: new target // -- Slot 3 / sp[1*kPointerSize]: padding // -- Slot 2 / sp[2*kPointerSize]: constructor function // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(a3); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(v0, v0); // ----------- S t a t e ------------- // -- r3: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ lw(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ lw(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(a0); // Set up pointer to last argument. __ Addu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, a0, t0, t1, &stack_overflow); __ Branch(&enough_stack_space); __ bind(&stack_overflow); // Restore the context from the frame. __ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); __ bind(&enough_stack_space); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(t3, a0); // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a3: new target // -- t2: pointer to last argument // -- t3: counter // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- a1 and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Lsa(t0, t2, t3, kPointerSizeLog2); __ lw(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Addu(t3, t3, Operand(-1)); __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); // Call the function. ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- v0: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(v0, RootIndex::kUndefinedValue, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(v0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, t2, t2); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE)); __ Branch(&use_receiver); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ lw(v0, MemOperand(sp, 0 * kPointerSize)); __ JumpIfRoot(v0, RootIndex::kTheHoleValue, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ lw(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ Lsa(sp, sp, a1, kPointerSizeLog2 - kSmiTagSize); __ Addu(sp, sp, kPointerSize); __ Ret(); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } // Clobbers scratch1 and scratch2; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, Register scratch1, Register scratch2) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; LoadRealStackLimit(masm, scratch1); // Make a2 the space we have left. The stack might already be overflowed // here which will cause a2 to become negative. __ Subu(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. __ sll(scratch2, argc, kPointerSizeLog2); // Signed comparison. __ Branch(&okay, gt, scratch1, Operand(scratch2)); // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } namespace { // Used by JSEntryTrampoline to refer C++ parameter to JSEntryVariant. constexpr int kPushedStackSpace = kCArgsSlotsSize + (kNumCalleeSaved + 1) * kPointerSize + kNumCalleeSavedFPU * kDoubleSize + 4 * kPointerSize + EntryFrameConstants::kCallerFPOffset; // Called with the native C calling convention. The corresponding function // signature is either: // // using JSEntryFunction = GeneratedCode; // or // using JSEntryFunction = GeneratedCode; // // Passes through a0, a1, a2, a3 and stack to JSEntryTrampoline. void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, Builtins::Name entry_trampoline) { Label invoke, handler_entry, exit; int pushed_stack_space = kCArgsSlotsSize; { NoRootArrayScope no_root_array(masm); // Registers: // a0: root_register_value // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved | ra.bit()); pushed_stack_space += kNumCalleeSaved * kPointerSize + kPointerSize /* ra */; // Save callee-saved FPU registers. __ MultiPushFPU(kCalleeSavedFPU); pushed_stack_space += kNumCalleeSavedFPU * kDoubleSize; // Set up the reserved register for 0.0. __ Move(kDoubleRegZero, 0.0); // Initialize the root register. // C calling convention. The first argument is passed in a0. __ mov(kRootRegister, a0); } // We build an EntryFrame. __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ li(t2, Operand(StackFrame::TypeToMarker(type))); __ li(t1, Operand(StackFrame::TypeToMarker(type))); __ li(t0, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ lw(t0, MemOperand(t0)); __ Push(t3, t2, t1, t0); pushed_stack_space += 4 * kPointerSize; // Set up frame pointer for the frame to be pushed. __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); pushed_stack_space += EntryFrameConstants::kCallerFPOffset; // Registers: // a0: root_register_value // // Stack: // caller fp | // function slot | entry frame // context slot | // bad fp (0xFF...F) | // callee saved registers + ra // 4 args slots // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp = ExternalReference::Create( IsolateAddressId::kJSEntrySPAddress, masm->isolate()); __ li(t1, js_entry_sp); __ lw(t2, MemOperand(t1)); __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg)); __ sw(fp, MemOperand(t1)); __ li(t0, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont); __ nop(); // Branch delay slot nop. __ bind(&non_outermost_js); __ li(t0, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ push(t0); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); // Store the current pc as the handler offset. It's used later to create the // handler table. masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ li(t0, ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate())); __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. __ LoadRoot(v0, RootIndex::kException); __ b(&exit); // b exposes branch delay slot. __ nop(); // Branch delay slot nop. // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bal(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // // Preserve a1, a2 and a3 passed by C++ and pass them to the trampoline. // // Stack: // handler frame // entry frame // callee saved registers + ra // 4 args slots // // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Handle trampoline_code = masm->isolate()->builtins()->builtin_handle(entry_trampoline); DCHECK_EQ(kPushedStackSpace, pushed_stack_space); __ Call(trampoline_code, RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // v0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(t1); __ Branch(&non_outermost_js_2, ne, t1, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ li(t1, ExternalReference(js_entry_sp)); __ sw(zero_reg, MemOperand(t1)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(t1); __ li(t0, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ sw(t1, MemOperand(t0)); // Reset the stack to the callee saved registers. __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); // Restore callee-saved fpu registers. __ MultiPopFPU(kCalleeSavedFPU); // Restore callee saved registers from the stack. __ MultiPop(kCalleeSaved | ra.bit()); // Return. __ Jump(ra); } } // namespace void Builtins::Generate_JSEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kJSEntryTrampoline); } void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, Builtins::kJSConstructEntryTrampoline); } void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kRunMicrotasksTrampoline); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // ----------- S t a t e ------------- // -- a0: root_register_value (unused) // -- a1: new.target // -- a2: function // -- a3: receiver_pointer // -- [fp + kPushedStackSpace + 0 * kPointerSize]: argc // -- [fp + kPushedStackSpace + 1 * kPointerSize]: argv // ----------------------------------- // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ li(cp, context_address); __ lw(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(a2, a3); __ mov(a3, a1); __ mov(a1, a2); __ lw(s0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a0, MemOperand(s0, kPushedStackSpace + EntryFrameConstants::kArgcOffset)); __ lw(s0, MemOperand(s0, kPushedStackSpace + EntryFrameConstants::kArgvOffset)); // a0: argc // a1: function // a3: new.target // s0: argv // Check if we have enough stack space to push all arguments. // Clobbers a2 and t0. Generate_CheckStackOverflow(masm, a0, a2, t0); // Copy arguments to the stack in a loop. // a0: argc // s0: argv, i.e. points to first arg Label loop, entry; __ Lsa(t2, s0, a0, kPointerSizeLog2); __ b(&entry); __ nop(); // Branch delay slot nop. // t2 points past last arg. __ bind(&loop); __ lw(t0, MemOperand(s0)); // Read next parameter. __ addiu(s0, s0, kPointerSize); __ lw(t0, MemOperand(t0)); // Dereference handle. __ push(t0); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(t2)); // a0: argc // a1: function // a3: new.target // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(t0, RootIndex::kUndefinedValue); __ mov(s0, t0); __ mov(s1, t0); __ mov(s2, t0); __ mov(s3, t0); __ mov(s4, t0); __ mov(s5, t0); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code. Handle builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { // a1: microtask_queue __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), a1); __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ GetObjectType(sfi_data, scratch1, scratch1); __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE)); __ lw(sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : the value to pass to the generator // -- a1 : the JSGeneratorObject to resume // -- ra : return address // ----------------------------------- __ AssertGeneratorObject(a1); // Store input value into generator object. __ sw(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3, kRAHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ lw(cp, FieldMemOperand(t0, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ li(t1, debug_hook); __ lb(t1, MemOperand(t1)); __ Branch(&prepare_step_in_if_stepping, ne, t1, Operand(zero_reg)); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ li(t1, debug_suspended_generator); __ lw(t1, MemOperand(t1)); __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(t1)); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; LoadRealStackLimit(masm, kScratchReg); __ Branch(&stack_overflow, lo, sp, Operand(kScratchReg)); // Push receiver. __ lw(t1, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); __ Push(t1); // ----------- S t a t e ------------- // -- a1 : the JSGeneratorObject to resume // -- t0 : generator function // -- cp : generator context // -- ra : return address // -- sp[0] : generator receiver // ----------------------------------- // Copy the function arguments from the generator object's register file. __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ lhu(a3, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); __ lw(t1, FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ Move(t2, zero_reg); __ bind(&loop); __ Subu(a3, a3, Operand(1)); __ Branch(&done_loop, lt, a3, Operand(zero_reg)); __ Lsa(kScratchReg, t1, t2, kPointerSizeLog2); __ lw(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize)); __ Push(kScratchReg); __ Addu(t2, t2, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, a3, a0); __ GetObjectType(a3, a3, a3); __ Assert(eq, AbortReason::kMissingBytecodeArray, a3, Operand(BYTECODE_ARRAY_TYPE)); } // Resume (Ignition/TurboFan) generator object. { __ lw(a0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ lhu(a0, FieldMemOperand( a0, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ Move(a3, a1); __ Move(a1, t0); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); __ Jump(a2); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, t0); // Push hole as receiver since we do not use it for stepping. __ PushRoot(RootIndex::kTheHoleValue); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(a1); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(a1); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); // This should be unreachable. } } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store code entry in the closure. __ sw(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ lw(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lw(args_count, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); // Drop receiver + arguments. __ Addu(sp, sp, args_count); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker))); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- a3 : new target (preserved for callee if needed, and caller) // -- a1 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK(!AreAliased(feedback_vector, a1, a3, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = a1; Register optimized_code_entry = scratch1; __ lw(optimized_code_entry, FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeWeakOrSmiOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak cell to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ Branch(&fallthrough, eq, optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kNone))); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ Assert( eq, AbortReason::kExpectedOptimizationSentinel, optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ lw(scratch2, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ lw(scratch2, FieldMemOperand( scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); __ And(scratch2, scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit)); __ Branch(&found_deoptimized_code, ne, scratch2, Operand(zero_reg)); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Addu(a2, optimized_code_entry, Code::kHeaderSize - kHeapObjectTag); __ Jump(a2); // Optimized code slot contains deoptimized code, evict it and re-enter the // losure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Register scratch2, Label* if_return) { Register bytecode_size_table = scratch1; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ li(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); __ Branch(&process_bytecode, hi, bytecode, Operand(3)); __ And(scratch2, bytecode, Operand(1)); __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg)); // Load the next bytecode and update table to the wide scaled table. __ Addu(bytecode_offset, bytecode_offset, Operand(1)); __ Addu(scratch2, bytecode_array, bytecode_offset); __ lbu(bytecode, MemOperand(scratch2)); __ Addu(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ Addu(bytecode_offset, bytecode_offset, Operand(1)); __ Addu(scratch2, bytecode_array, bytecode_offset); __ lbu(bytecode, MemOperand(scratch2)); __ Addu(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ Branch(if_return, eq, bytecode, \ Operand(static_cast(interpreter::Bytecode::k##NAME))); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ Lsa(scratch2, bytecode_size_table, bytecode, 2); __ lw(scratch2, MemOperand(scratch2)); __ Addu(bytecode_offset, bytecode_offset, scratch2); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o a1: the JS function object being called. // o a3: the incoming new target or generator object // o cp: our context // o fp: the caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { Register closure = a1; Register feedback_vector = a2; // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ lw(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ lw(kInterpreterBytecodeArrayRegister, FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, t0); // The bytecode array could have been flushed from the shared function info, // if so, call into CompileLazy. Label compile_lazy; __ GetObjectType(kInterpreterBytecodeArrayRegister, a0, a0); __ Branch(&compile_lazy, ne, a0, Operand(BYTECODE_ARRAY_TYPE)); // Load the feedback vector from the closure. __ lw(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ lw(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); Label push_stack_frame; // Check if feedback vector is valid. If valid, check for optimized code // and update invocation count. Otherwise, setup the stack frame. __ lw(t0, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); __ lhu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); __ Branch(&push_stack_frame, ne, t0, Operand(FEEDBACK_VECTOR_TYPE)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, t0, t3, t1); // Increment invocation count for the function. __ lw(t0, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); __ Addu(t0, t0, Operand(1)); __ sw(t0, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). __ bind(&push_stack_frame); FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are // 8-bit fields next to each other, so we could just optimize by writing a // 16-bit. These static asserts guard our assumption is valid. STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == BytecodeArray::kOsrNestingLevelOffset + kCharSize); STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); __ sh(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kOsrNestingLevelOffset)); // Load initial bytecode offset. __ li(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(t0, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, t0); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ lw(t0, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ Subu(t1, sp, Operand(t0)); LoadRealStackLimit(masm, a2); __ Branch(&ok, hs, t1, Operand(a2)); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(t1, RootIndex::kUndefinedValue); __ Branch(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(t1); // Continue loop if not done. __ bind(&loop_check); __ Subu(t0, t0, Operand(kPointerSize)); __ Branch(&loop_header, ge, t0, Operand(zero_reg)); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r3. Label no_incoming_new_target_or_generator_register; __ lw(t1, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ Branch(&no_incoming_new_target_or_generator_register, eq, t1, Operand(zero_reg)); __ Lsa(t1, fp, t1, kPointerSizeLog2); __ sw(a3, MemOperand(t1)); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator with undefined. __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ li(kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ Addu(a0, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ lbu(t3, MemOperand(a0)); __ Lsa(kScratchReg, kInterpreterDispatchTableRegister, t3, kPointerSizeLog2); __ lw(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ lw(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lw(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ Addu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ lbu(a1, MemOperand(a1)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, a1, a2, a3, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in v0. LeaveInterpreterFrame(masm, t0); __ Jump(ra); __ bind(&compile_lazy); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); // Unreachable code. __ break_(0xCC); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register scratch, Register scratch2) { // Find the address of the last argument. __ mov(scratch2, num_args); __ sll(scratch2, scratch2, kPointerSizeLog2); __ Subu(scratch2, index, Operand(scratch2)); // Push the arguments. Label loop_header, loop_check; __ Branch(&loop_check); __ bind(&loop_header); __ lw(scratch, MemOperand(index)); __ Addu(index, index, Operand(-kPointerSize)); __ push(scratch); __ bind(&loop_check); __ Branch(&loop_header, gt, index, Operand(scratch2)); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- a1 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; __ Addu(t0, a0, Operand(1)); // Add one for receiver. Generate_StackOverflowCheck(masm, t0, t4, t1, &stack_overflow); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(RootIndex::kUndefinedValue); __ mov(t0, a0); // No receiver. } // This function modifies a2, t4 and t1. Generate_InterpreterPushArgs(masm, t0, a2, t4, t1); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(a2); // Pass the spread in a register __ Subu(a0, a0, Operand(1)); // Subtract one for spread } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- a0 : argument count (not including receiver) // -- a3 : new target // -- a1 : constructor to call // -- a2 : allocation site feedback if available, undefined otherwise. // -- t4 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver. __ push(zero_reg); Generate_StackOverflowCheck(masm, a0, t1, t0, &stack_overflow); // This function modified t4, t1 and t0. Generate_InterpreterPushArgs(masm, a0, t4, t1, t0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(a2); // Pass the spread in a register __ Subu(a0, a0, Operand(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(a2, t0); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(a1); // Tail call to the array construct stub (still in the caller // context at this point). __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with a0, a1, and a3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with a0, a1, and a3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); // If the SFI function_data is an InterpreterData, the function will have a // custom copy of the interpreter entry trampoline for profiling. If so, // get the custom trampoline, otherwise grab the entry address of the global // trampoline. __ lw(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ lw(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset)); __ GetObjectType(t0, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister); __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister, Operand(INTERPRETER_DATA_TYPE)); __ lw(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset)); __ Addu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Branch(&trampoline_loaded); __ bind(&builtin_trampoline); __ li(t0, ExternalReference:: address_of_interpreter_entry_trampoline_instruction_start( masm->isolate())); __ lw(t0, MemOperand(t0)); __ bind(&trampoline_loaded); __ Addu(ra, t0, Operand(interpreter_entry_return_pc_offset.value())); // Initialize the dispatch table register. __ li(kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ lw(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, kScratchReg, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); __ Assert(eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1, Operand(BYTECODE_ARRAY_TYPE)); } // Get the target bytecode offset from the frame. __ lw(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ Addu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ lbu(t3, MemOperand(a1)); __ Lsa(a1, kInterpreterDispatchTableRegister, t3, kPointerSizeLog2); __ lw(kJavaScriptCallCodeStartRegister, MemOperand(a1)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Advance the current bytecode offset stored within the given interpreter // stack frame. This simulates what all bytecode handlers do upon completion // of the underlying operation. __ lw(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lw(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ Addu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ lbu(a1, MemOperand(a1)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, a1, a2, a3, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(a2, kInterpreterBytecodeOffsetRegister); __ sw(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : new target (preserved for callee) // -- a3 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ Move(t4, a0); // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ SmiTag(a0); __ Push(a0, a1, a3, a1); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ Branch(&over, ne, t4, Operand(j)); } for (int i = j - 1; i >= 0; --i) { __ lw(t4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(t4); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(RootIndex::kUndefinedValue); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(v0, &failed); __ Drop(2); __ pop(t4); __ SmiUntag(t4); scope.GenerateLeaveFrame(); __ Addu(t4, t4, Operand(1)); __ Lsa(sp, sp, t4, kPointerSizeLog2); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); __ Jump(a2); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ sw(v0, MemOperand( sp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ lw(fp, MemOperand( sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); // Load builtin index (stored as a Smi) and use it to get the builtin start // address from the builtins table. __ Pop(t0); __ Addu(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(ra); __ LoadEntryFromBuiltinIndex(t0); __ Jump(t0); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code()); __ lw(v0, MemOperand(sp, 0 * kPointerSize)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove accumulator. } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ lw(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(a0); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. __ Ret(eq, v0, Operand(Smi::zero())); // Drop the handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. __ LeaveFrame(StackFrame::STUB); // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(a1); // Compute the target address = code_obj + header_size + osr_offset // = + #header_size + __ Addu(v0, v0, a1); __ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- // 1. Load receiver into a1, argArray into a0 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg; Register scratch = t0; __ LoadRoot(a2, RootIndex::kUndefinedValue); __ mov(a3, a2); // Lsa() cannot be used hare as scratch value used later. __ sll(scratch, a0, kPointerSizeLog2); __ Addu(a0, sp, Operand(scratch)); __ lw(a1, MemOperand(a0)); // receiver __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a2, MemOperand(a0)); // thisArg __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a3, MemOperand(a0)); // argArray __ bind(&no_arg); __ Addu(sp, sp, Operand(scratch)); __ sw(a2, MemOperand(sp)); __ mov(a2, a3); } // ----------- S t a t e ------------- // -- a2 : argArray // -- a1 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(a2, RootIndex::kNullValue, &no_arguments); __ JumpIfRoot(a2, RootIndex::kUndefinedValue, &no_arguments); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ mov(a0, zero_reg); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ PushRoot(RootIndex::kUndefinedValue); __ Addu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack. // a0: actual number of arguments __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); __ lw(a1, MemOperand(kScratchReg)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ Lsa(a2, sp, a0, kPointerSizeLog2); __ bind(&loop); __ lw(kScratchReg, MemOperand(a2, -kPointerSize)); __ sw(kScratchReg, MemOperand(a2)); __ Subu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Subu(a0, a0, Operand(1)); __ Pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argumentsList // -- sp[4] : thisArgument // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into a1 (if present), argumentsList into a0 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label no_arg; Register scratch = t0; __ LoadRoot(a1, RootIndex::kUndefinedValue); __ mov(a2, a1); __ mov(a3, a1); __ sll(scratch, a0, kPointerSizeLog2); __ mov(a0, scratch); __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(zero_reg)); __ Addu(a0, sp, Operand(a0)); __ lw(a1, MemOperand(a0)); // target __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a2, MemOperand(a0)); // thisArgument __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a3, MemOperand(a0)); // argumentsList __ bind(&no_arg); __ Addu(sp, sp, Operand(scratch)); __ sw(a2, MemOperand(sp)); __ mov(a2, a3); } // ----------- S t a t e ------------- // -- a2 : argumentsList // -- a1 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : new.target (optional) // -- sp[4] : argumentsList // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into a1 (if present), argumentsList into a0 (if present), // new.target into a3 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label no_arg; Register scratch = t0; __ LoadRoot(a1, RootIndex::kUndefinedValue); __ mov(a2, a1); // Lsa() cannot be used hare as scratch value used later. __ sll(scratch, a0, kPointerSizeLog2); __ Addu(a0, sp, Operand(scratch)); __ sw(a2, MemOperand(a0)); // receiver __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a1, MemOperand(a0)); // target __ mov(a3, a1); // new.target defaults to target __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a2, MemOperand(a0)); // argumentsList __ Subu(a0, a0, Operand(kPointerSize)); __ Branch(&no_arg, lt, a0, Operand(sp)); __ lw(a3, MemOperand(a0)); // new.target __ bind(&no_arg); __ Addu(sp, sp, Operand(scratch)); } // ----------- S t a t e ------------- // -- a2 : argumentsList // -- a3 : new.target // -- a1 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ sll(a0, a0, kSmiTagSize); __ li(t0, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit()); __ Push(Smi::zero()); // Padding. __ Addu(fp, sp, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ lw(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ Lsa(sp, sp, a1, kPointerSizeLog2 - kSmiTagSize); // Adjust for the receiver. __ Addu(sp, sp, Operand(kPointerSize)); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle code) { // ----------- S t a t e ------------- // -- a1 : target // -- a0 : number of parameters on the stack (not including the receiver) // -- a2 : arguments list (a FixedArray) // -- t0 : len (number of elements to push from args) // -- a3 : new.target (for [[Construct]]) // ----------------------------------- if (masm->emit_debug_code()) { // Allow a2 to be a FixedArray, or a FixedDoubleArray if t0 == 0. Label ok, fail; __ AssertNotSmi(a2); __ GetObjectType(a2, t8, t8); __ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE)); __ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ Branch(&ok, eq, t0, Operand(0)); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. Label stack_overflow; Generate_StackOverflowCheck(masm, t0, kScratchReg, t1, &stack_overflow); // Push arguments onto the stack (thisArgument is already on the stack). { __ mov(t2, zero_reg); Label done, push, loop; __ LoadRoot(t1, RootIndex::kTheHoleValue); __ bind(&loop); __ Branch(&done, eq, t2, Operand(t0)); __ Lsa(kScratchReg, a2, t2, kPointerSizeLog2); __ lw(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize)); __ Branch(&push, ne, t1, Operand(kScratchReg)); __ LoadRoot(kScratchReg, RootIndex::kUndefinedValue); __ bind(&push); __ Push(kScratchReg); __ Addu(t2, t2, Operand(1)); __ Branch(&loop); __ bind(&done); __ Addu(a0, a0, t2); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle code) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a3 : the new.target (for [[Construct]] calls) // -- a1 : the target to call (can be any Object) // -- a2 : start index (to support rest parameters) // ----------------------------------- // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(a3, &new_target_not_constructor); __ lw(t1, FieldMemOperand(a3, HeapObject::kMapOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(Map::IsConstructorBit::kMask)); __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg)); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(a3); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ lw(t3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(t2, MemOperand(t3, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Branch(&arguments_adaptor, eq, t2, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); { __ lw(t2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(t2, FieldMemOperand(t2, JSFunction::kSharedFunctionInfoOffset)); __ lhu(t2, FieldMemOperand( t2, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(t3, fp); } __ Branch(&arguments_done); __ bind(&arguments_adaptor); { // Just get the length from the ArgumentsAdaptorFrame. __ lw(t2, MemOperand(t3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(t2); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ Subu(t2, t2, a2); __ Branch(&stack_done, le, t2, Operand(zero_reg)); { // Check for stack overflow. Generate_StackOverflowCheck(masm, t2, t0, t1, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ Addu(a0, a0, t2); __ bind(&loop); { __ Lsa(kScratchReg, t3, t2, kPointerSizeLog2); __ lw(kScratchReg, MemOperand(kScratchReg, 1 * kPointerSize)); __ push(kScratchReg); __ Subu(t2, t2, Operand(1)); __ Branch(&loop, ne, t2, Operand(zero_reg)); } } } __ Branch(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(a1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); __ And(kScratchReg, a3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg)); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); __ And(kScratchReg, a3, Operand(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg)); { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } else { Label convert_to_object, convert_receiver; __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); __ lw(a3, MemOperand(kScratchReg)); __ JumpIfSmi(a3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(a3, t0, t0); __ Branch(&done_convert, hs, t0, Operand(FIRST_JS_RECEIVER_TYPE)); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(a3, RootIndex::kUndefinedValue, &convert_global_proxy); __ JumpIfNotRoot(a3, RootIndex::kNullValue, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } __ Branch(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ sll(a0, a0, kSmiTagSize); // Smi tagged. __ Push(a0, a1); __ mov(a0, a3); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mov(a3, v0); __ Pop(a0, a1); __ sra(a0, a0, kSmiTagSize); // Un-tag. } __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); __ sw(a3, MemOperand(kScratchReg)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- __ lhu(a2, FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(a0); ParameterCount expected(a2); __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(a1); // Patch the receiver to [[BoundThis]]. { __ lw(kScratchReg, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); __ Lsa(t0, sp, a0, kPointerSizeLog2); __ sw(kScratchReg, MemOperand(t0)); } // Load [[BoundArguments]] into a2 and length of that into t0. __ lw(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(t0); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- t0 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ sll(t1, t0, kPointerSizeLog2); __ Subu(sp, sp, Operand(t1)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". LoadRealStackLimit(masm, kScratchReg); __ Branch(&done, hs, sp, Operand(kScratchReg)); // Restore the stack pointer. __ Addu(sp, sp, Operand(t1)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(t1, zero_reg); __ bind(&loop); __ Branch(&done_loop, gt, t1, Operand(a0)); __ Lsa(t2, sp, t0, kPointerSizeLog2); __ lw(kScratchReg, MemOperand(t2)); __ Lsa(t2, sp, t1, kPointerSizeLog2); __ sw(kScratchReg, MemOperand(t2)); __ Addu(t0, t0, Operand(1)); __ Addu(t1, t1, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(t0); __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Subu(t0, t0, Operand(1)); __ Branch(&done_loop, lt, t0, Operand(zero_reg)); __ Lsa(t1, a2, t0, kPointerSizeLog2); __ lw(kScratchReg, MemOperand(t1)); __ Lsa(t1, sp, a0, kPointerSizeLog2); __ sw(kScratchReg, MemOperand(t1)); __ Addu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Call the [[BoundTargetFunction]] via the Call builtin. __ lw(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(a1, &non_callable); __ bind(&non_smi); __ GetObjectType(a1, t1, t2); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Check if target has a [[Call]] internal method. __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(Map::IsCallableBit::kMask)); __ Branch(&non_callable, eq, t1, Operand(zero_reg)); // Check if target is a proxy and call CallProxy external builtin __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); __ sw(a1, MemOperand(kScratchReg)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (checked to be a JSFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(a1); __ AssertFunction(a1); // Calling convention for function specific ConstructStubs require // a2 to contain either an AllocationSite or undefined. __ LoadRoot(a2, RootIndex::kUndefinedValue); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kFlagsOffset)); __ And(t0, t0, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ Branch(&call_generic_stub, eq, t0, Operand(zero_reg)); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(a1); __ AssertBoundFunction(a1); // Load [[BoundArguments]] into a2 and length of that into t0. __ lw(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(t0); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a3 : the new target (checked to be a constructor) // -- t0 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ sll(t1, t0, kPointerSizeLog2); __ Subu(sp, sp, Operand(t1)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". LoadRealStackLimit(masm, kScratchReg); __ Branch(&done, hs, sp, Operand(kScratchReg)); // Restore the stack pointer. __ Addu(sp, sp, Operand(t1)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(t1, zero_reg); __ bind(&loop); __ Branch(&done_loop, ge, t1, Operand(a0)); __ Lsa(t2, sp, t0, kPointerSizeLog2); __ lw(kScratchReg, MemOperand(t2)); __ Lsa(t2, sp, t1, kPointerSizeLog2); __ sw(kScratchReg, MemOperand(t2)); __ Addu(t0, t0, Operand(1)); __ Addu(t1, t1, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ SmiUntag(t0); __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Subu(t0, t0, Operand(1)); __ Branch(&done_loop, lt, t0, Operand(zero_reg)); __ Lsa(t1, a2, t0, kPointerSizeLog2); __ lw(kScratchReg, MemOperand(t1)); __ Lsa(t1, sp, a0, kPointerSizeLog2); __ sw(kScratchReg, MemOperand(t1)); __ Addu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label skip_load; __ Branch(&skip_load, ne, a1, Operand(a3)); __ lw(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip_load); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ lw(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (can be any Object) // -- a3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(a1, &non_constructor); // Check if target has a [[Construct]] internal method. __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t3, t3, Operand(Map::IsConstructorBit::kMask)); __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); // Dispatch based on instance type. __ lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); // Only dispatch to bound functions after checking whether they are // constructors. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Only dispatch to proxies after checking whether they are constructors. __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); __ sw(a1, MemOperand(kScratchReg)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // -- a3: new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, t1, kScratchReg, &stack_overflow); // Calculate copy start address into a0 and copy end address into t1. __ Lsa(a0, fp, a0, kPointerSizeLog2 - kSmiTagSize); // Adjust for return address and receiver. __ Addu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ sll(t1, a2, kPointerSizeLog2); __ subu(t1, a0, t1); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // t1: copy end address Label copy; __ bind(©); __ lw(t0, MemOperand(a0)); __ push(t0); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t1)); __ addiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, t1, kScratchReg, &stack_overflow); // Calculate copy start address into a0 and copy end address into t3. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ Lsa(a0, fp, a0, kPointerSizeLog2 - kSmiTagSize); // Adjust for return address and receiver. __ Addu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Addu(t3, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // t3: copy end address Label copy; __ bind(©); __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Subu(sp, sp, kPointerSize); __ Subu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t3)); __ sw(t0, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ LoadRoot(t0, RootIndex::kUndefinedValue); __ sll(t2, a2, kPointerSizeLog2); __ Subu(t1, fp, Operand(t2)); // Adjust for frame. __ Subu(t1, t1, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); Label fill; __ bind(&fill); __ Subu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(t1)); __ sw(t0, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ mov(a0, a2); // a0 : expected number of arguments // a1 : function (passed through to callee) // a3 : new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); __ Call(a2); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); __ Jump(a2); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in t0 by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(kWasmCompileLazyFuncIndexRegister); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf(); constexpr RegList fp_regs = DoubleRegister::ListOf(); __ MultiPush(gp_regs); __ MultiPushFPU(fp_regs); // Pass instance and function index as an explicit arguments to the runtime // function. __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister); // Load the correct CEntry builtin from the instance object. __ lw(a2, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kIsolateRootOffset)); auto centry_id = Builtins::kCEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit; __ lw(a2, MemOperand(a2, IsolateData::builtin_slot_offset(centry_id))); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::zero()); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, a2); // Restore registers. __ MultiPopFPU(fp_regs); __ MultiPop(gp_regs); } // Finally, jump to the entrypoint. __ Jump(kScratchReg, v0, 0); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // Called from JavaScript; parameters are on stack as if calling JS function // a0: number of arguments including receiver // a1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == kArgvInRegister: // a2: pointer to the first argument if (argv_mode == kArgvInRegister) { // Move argv into the correct register. __ mov(s1, a2); } else { // Compute the argv pointer in a callee-saved register. __ Lsa(s1, sp, a0, kPointerSizeLog2); __ Subu(s1, s1, kPointerSize); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame( save_doubles == kSaveFPRegs, 0, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // s0: number of arguments including receiver (C callee-saved) // s1: pointer to first argument (C callee-saved) // s2: pointer to builtin function (C callee-saved) // Prepare arguments for C routine. // a0 = argc __ mov(s0, a0); __ mov(s2, a1); // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We // also need to reserve the 4 argument slots on the stack. __ AssertStackIsAligned(); // a0 = argc, a1 = argv, a2 = isolate __ li(a2, ExternalReference::isolate_address(masm->isolate())); __ mov(a1, s1); __ StoreReturnAddressAndCall(s2); // Result returned in v0 or v1:v0 - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ LoadRoot(t0, RootIndex::kException); __ Branch(&exception_returned, eq, t0, Operand(v0)); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ li(a2, pending_exception_address); __ lw(a2, MemOperand(a2)); __ LoadRoot(t0, RootIndex::kTheHoleValue); // Cannot use check here as it attempts to generate call into runtime. __ Branch(&okay, eq, t0, Operand(a2)); __ stop(); __ bind(&okay); } // Exit C frame and return. // v0:v1: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == kArgvInRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // s0: still holds argc (callee-saved). : s0; __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set v0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, a0); __ mov(a0, zero_reg); __ mov(a1, zero_reg); __ li(a2, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ li(cp, pending_handler_context_address); __ lw(cp, MemOperand(cp)); __ li(sp, pending_handler_sp_address); __ lw(sp, MemOperand(sp)); __ li(fp, pending_handler_fp_address); __ lw(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label zero; __ Branch(&zero, eq, cp, Operand(zero_reg)); __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&zero); // Reset the masking register. This is done independent of the underlying // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work // with both configurations. It is safe to always do this, because the // underlying register is caller-saved and can be arbitrarily clobbered. __ ResetSpeculationPoisonRegister(); // Compute the handler entry address and jump to it. __ li(t9, pending_handler_entrypoint_address); __ lw(t9, MemOperand(t9)); __ Jump(t9); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label done; Register result_reg = t0; Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2); DoubleRegister double_scratch = kScratchDoubleReg; // Account for saved regs. const int kArgumentOffset = 4 * kPointerSize; __ Push(result_reg); __ Push(scratch, scratch2, scratch3); // Load double input. __ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset)); // Clear cumulative exception flags and save the FCSR. __ cfc1(scratch2, FCSR); __ ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. __ Trunc_w_d(double_scratch, double_scratch); // Move the converted value into the result register. __ mfc1(scratch3, double_scratch); // Retrieve and restore the FCSR. __ cfc1(scratch, FCSR); __ ctc1(scratch2, FCSR); // Check for overflow and NaNs. __ And( scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions then set result_reg and we are done. Label error; __ Branch(&error, ne, scratch, Operand(zero_reg)); __ Move(result_reg, scratch3); __ Branch(&done); __ bind(&error); // Load the double value and perform a manual truncation. Register input_high = scratch2; Register input_low = scratch3; __ lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset)); __ lw(input_high, MemOperand(sp, kArgumentOffset + Register::kExponentOffset)); Label normal_exponent; // Extract the biased exponent in result. __ Ext(result_reg, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Check for Infinity and NaNs, which should return 0. __ Subu(scratch, result_reg, HeapNumber::kExponentMask); __ Movz(result_reg, zero_reg, scratch); __ Branch(&done, eq, scratch, Operand(zero_reg)); // Express exponent as delta to (number of mantissa bits + 31). __ Subu(result_reg, result_reg, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); // If the delta is strictly positive, all bits would be shifted away, // which means that we can return 0. __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); __ mov(result_reg, zero_reg); __ Branch(&done); __ bind(&normal_exponent); const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; // Calculate shift. __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); // Save the sign. Register sign = result_reg; result_reg = no_reg; __ And(sign, input_high, Operand(HeapNumber::kSignMask)); // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need // to check for this specific case. Label high_shift_needed, high_shift_done; __ Branch(&high_shift_needed, lt, scratch, Operand(32)); __ mov(input_high, zero_reg); __ Branch(&high_shift_done); __ bind(&high_shift_needed); // Set the implicit 1 before the mantissa part in input_high. __ Or(input_high, input_high, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); // Shift the mantissa bits to the correct position. // We don't need to clear non-mantissa bits as they will be shifted away. // If they weren't, it would mean that the answer is in the 32bit range. __ sllv(input_high, input_high, scratch); __ bind(&high_shift_done); // Replace the shifted bits with bits from the lower mantissa word. Label pos_shift, shift_done; __ li(kScratchReg, 32); __ subu(scratch, kScratchReg, scratch); __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); // Negate scratch. __ Subu(scratch, zero_reg, scratch); __ sllv(input_low, input_low, scratch); __ Branch(&shift_done); __ bind(&pos_shift); __ srlv(input_low, input_low, scratch); __ bind(&shift_done); __ Or(input_high, input_high, Operand(input_low)); // Restore sign if necessary. __ mov(scratch, sign); result_reg = sign; sign = no_reg; __ Subu(result_reg, zero_reg, input_high); __ Movz(result_reg, input_high, scratch); __ bind(&done); __ sw(result_reg, MemOperand(sp, kArgumentOffset)); __ Pop(scratch, scratch2, scratch3); __ Pop(result_reg); __ Ret(); } void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- a1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ SmiTst(a3, kScratchReg); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, kScratchReg, Operand(zero_reg)); __ GetObjectType(a3, a3, t0); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, t0, Operand(MAP_TYPE)); // Figure out the right elements kind. __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into a3. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(a3); // Initial elements kind should be packed elements. __ Assert(eq, AbortReason::kInvalidElementsKindForInternalPackedArray, a3, Operand(PACKED_ELEMENTS)); // No arguments should be passed. __ Assert(eq, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray, a0, Operand(0)); } __ Jump( BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed), RelocInfo::CODE_TARGET); } namespace { int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, MemOperand return_value_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); DCHECK(function_address == a1 || function_address == a2); Label profiler_enabled, end_profiler_check; __ li(t9, ExternalReference::is_profiling_address(isolate)); __ lb(t9, MemOperand(t9, 0)); __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg)); __ li(t9, ExternalReference::address_of_runtime_stats_flag()); __ lw(t9, MemOperand(t9, 0)); __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg)); { // Call the api function directly. __ mov(t9, function_address); __ Branch(&end_profiler_check); } __ bind(&profiler_enabled); { // Additional parameter is the address of the actual callback. __ li(t9, thunk_ref); } __ bind(&end_profiler_check); // Allocate HandleScope in callee-save registers. __ li(s5, next_address); __ lw(s0, MemOperand(s5, kNextOffset)); __ lw(s1, MemOperand(s5, kLimitOffset)); __ lw(s2, MemOperand(s5, kLevelOffset)); __ Addu(s2, s2, Operand(1)); __ sw(s2, MemOperand(s5, kLevelOffset)); __ StoreReturnAddressAndCall(t9); Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // Load value from ReturnValue. __ lw(v0, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ sw(s0, MemOperand(s5, kNextOffset)); if (__ emit_debug_code()) { __ lw(a1, MemOperand(s5, kLevelOffset)); __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); } __ Subu(s2, s2, Operand(1)); __ sw(s2, MemOperand(s5, kLevelOffset)); __ lw(kScratchReg, MemOperand(s5, kLimitOffset)); __ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg)); // Leave the API exit frame. __ bind(&leave_exit_frame); if (stack_space_operand == nullptr) { DCHECK_NE(stack_space, 0); __ li(s0, Operand(stack_space)); } else { DCHECK_EQ(stack_space, 0); // The ExitFrame contains four MIPS argument slots after the call so this // must be accounted for. // TODO(jgruber): Investigate if this is needed by the direct call. __ Drop(kCArgSlotCount); __ lw(s0, *stack_space_operand); } static constexpr bool kDontSaveDoubles = false; static constexpr bool kRegisterContainsSlotCount = false; __ LeaveExitFrame(kDontSaveDoubles, s0, NO_EMIT_RETURN, kRegisterContainsSlotCount); // Check if the function scheduled an exception. __ LoadRoot(t0, RootIndex::kTheHoleValue); __ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate)); __ lw(t1, MemOperand(kScratchReg)); __ Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); __ Ret(); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ sw(s1, MemOperand(s5, kLimitOffset)); __ mov(s0, v0); __ mov(a0, v0); __ PrepareCallCFunction(1, s1); __ li(a0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); __ mov(v0, s0); __ jmp(&leave_exit_frame); } } // namespace void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- cp : context // -- a1 : api function address // -- a2 : arguments count (not including the receiver) // -- a3 : call data // -- a0 : holder // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1) * 4] : first argument // -- sp[(argc + 0) * 4] : receiver // ----------------------------------- Register api_function_address = a1; Register argc = a2; Register call_data = a3; Register holder = a0; Register scratch = t0; Register base = t1; // For addressing MemOperands on the stack. DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch, base)); using FCA = FunctionCallbackArguments; STATIC_ASSERT(FCA::kArgsLength == 6); STATIC_ASSERT(FCA::kNewTargetIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); // Set up FunctionCallbackInfo's implicit_args on the stack as follows: // // Target state: // sp[0 * kPointerSize]: kHolder // sp[1 * kPointerSize]: kIsolate // sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue) // sp[3 * kPointerSize]: undefined (kReturnValue) // sp[4 * kPointerSize]: kData // sp[5 * kPointerSize]: undefined (kNewTarget) // Set up the base register for addressing through MemOperands. It will point // at the receiver (located at sp + argc * kPointerSize). __ Lsa(base, sp, argc, kPointerSizeLog2); // Reserve space on the stack. __ Subu(sp, sp, Operand(FCA::kArgsLength * kPointerSize)); // kHolder. __ sw(holder, MemOperand(sp, 0 * kPointerSize)); // kIsolate. __ li(scratch, ExternalReference::isolate_address(masm->isolate())); __ sw(scratch, MemOperand(sp, 1 * kPointerSize)); // kReturnValueDefaultValue and kReturnValue. __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ sw(scratch, MemOperand(sp, 2 * kPointerSize)); __ sw(scratch, MemOperand(sp, 3 * kPointerSize)); // kData. __ sw(call_data, MemOperand(sp, 4 * kPointerSize)); // kNewTarget. __ sw(scratch, MemOperand(sp, 5 * kPointerSize)); // Keep a pointer to kHolder (= implicit_args) in a scratch register. // We use it below to set up the FunctionCallbackInfo object. __ mov(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. static constexpr int kApiStackSpace = 4; static constexpr bool kDontSaveDoubles = false; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace); // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). // Arguments are after the return address (pushed by EnterExitFrame()). __ sw(scratch, MemOperand(sp, 1 * kPointerSize)); // FunctionCallbackInfo::values_ (points at the first varargs argument passed // on the stack). __ Subu(scratch, base, Operand(1 * kPointerSize)); __ sw(scratch, MemOperand(sp, 2 * kPointerSize)); // FunctionCallbackInfo::length_. __ sw(argc, MemOperand(sp, 3 * kPointerSize)); // We also store the number of bytes to drop from the stack after returning // from the API function here. // Note: Unlike on other architectures, this stores the number of slots to // drop, not the number of bytes. __ Addu(scratch, argc, Operand(FCA::kArgsLength + 1 /* receiver */)); __ sw(scratch, MemOperand(sp, 4 * kPointerSize)); // v8::InvocationCallback's argument. DCHECK(!AreAliased(api_function_address, scratch, a0)); __ Addu(a0, sp, Operand(1 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); // There are two stack slots above the arguments we constructed on the stack. // TODO(jgruber): Document what these arguments are. static constexpr int kStackSlotsAboveFCA = 2; MemOperand return_value_operand( fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize); static constexpr int kUseStackSpaceOperand = 0; MemOperand stack_space_operand(sp, 4 * kPointerSize); AllowExternalCallThatCantCauseGC scope(masm); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kUseStackSpaceOperand, &stack_space_operand, return_value_operand); } void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = t0; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = a2; // Here and below +1 is for name() pushed after the args_ array. using PCA = PropertyCallbackArguments; __ Subu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize); __ sw(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize)); __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ sw(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize)); __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ sw(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize)); __ sw(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) * kPointerSize)); __ li(scratch, ExternalReference::isolate_address(masm->isolate())); __ sw(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize)); __ sw(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize)); // should_throw_on_error -> false DCHECK_EQ(0, Smi::kZero.ptr()); __ sw(zero_reg, MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize)); __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ sw(scratch, MemOperand(sp, 0 * kPointerSize)); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ mov(a0, sp); // a0 = Handle __ Addu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_ const int kApiStackSpace = 1; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ sw(a1, MemOperand(sp, 1 * kPointerSize)); __ Addu(a1, sp, Operand(1 * kPointerSize)); // a1 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ lw(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); MemOperand* const kUseStackSpaceConstant = nullptr; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, kUseStackSpaceConstant, return_value_operand); } void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { // The sole purpose of DirectCEntry is for movable callers (e.g. any general // purpose Code object) to be able to call into C functions that may trigger // GC and thus move the caller. // // DirectCEntry places the return address on the stack (updated by the GC), // making the call GC safe. The irregexp backend relies on this. // Make place for arguments to fit C calling convention. Callers use // EnterExitFrame/LeaveExitFrame so they handle stack restoring and we don't // have to do that here. Any caller must drop kCArgsSlotsSize stack space // after the call. __ Subu(sp, sp, Operand(kCArgsSlotsSize)); __ sw(ra, MemOperand(sp, kCArgsSlotsSize)); // Store the return address. __ Call(t9); // Call the C++ function. __ lw(t9, MemOperand(sp, kCArgsSlotsSize)); // Return to calling code. if (FLAG_debug_code && FLAG_enable_slow_asserts) { // In case of an error the return address may point to a memory area // filled with kZapValue by the GC. Dereference the address and check for // this. __ lw(t0, MemOperand(t9)); __ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, t0, Operand(reinterpret_cast(kZapValue))); } __ Jump(t9); } void Builtins::Generate_MemCopyUint8Uint8(MacroAssembler* masm) { // This code assumes that cache lines are 32 bytes and if the cache line is // larger it will not work correctly. { Label lastb, unaligned, aligned, chkw, loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop, leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw, ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop; // The size of each prefetch. uint32_t pref_chunk = 32; // The maximum size of a prefetch, it must not be less than pref_chunk. // If the real size of a prefetch is greater than max_pref_size and // the kPrefHintPrepareForStore hint is used, the code will not work // correctly. uint32_t max_pref_size = 128; DCHECK(pref_chunk < max_pref_size); // pref_limit is set based on the fact that we never use an offset // greater then 5 on a store pref and that a single pref can // never be larger then max_pref_size. uint32_t pref_limit = (5 * pref_chunk) + max_pref_size; int32_t pref_hint_load = kPrefHintLoadStreamed; int32_t pref_hint_store = kPrefHintPrepareForStore; uint32_t loadstore_chunk = 4; // The initial prefetches may fetch bytes that are before the buffer being // copied. Start copies with an offset of 4 so avoid this situation when // using kPrefHintPrepareForStore. DCHECK(pref_hint_store != kPrefHintPrepareForStore || pref_chunk * 4 >= max_pref_size); // If the size is less than 8, go to lastb. Regardless of size, // copy dst pointer to v0 for the retuen value. __ slti(t2, a2, 2 * loadstore_chunk); __ bne(t2, zero_reg, &lastb); __ mov(v0, a0); // In delay slot. // If src and dst have different alignments, go to unaligned, if they // have the same alignment (but are not actually aligned) do a partial // load/store to make them aligned. If they are both already aligned // we can start copying at aligned. __ xor_(t8, a1, a0); __ andi(t8, t8, loadstore_chunk - 1); // t8 is a0/a1 word-displacement. __ bne(t8, zero_reg, &unaligned); __ subu(a3, zero_reg, a0); // In delay slot. __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1. __ beq(a3, zero_reg, &aligned); // Already aligned. __ subu(a2, a2, a3); // In delay slot. a2 is the remining bytes count. if (kArchEndian == kLittle) { __ lwr(t8, MemOperand(a1)); __ addu(a1, a1, a3); __ swr(t8, MemOperand(a0)); __ addu(a0, a0, a3); } else { __ lwl(t8, MemOperand(a1)); __ addu(a1, a1, a3); __ swl(t8, MemOperand(a0)); __ addu(a0, a0, a3); } // Now dst/src are both aligned to (word) aligned addresses. Set a2 to // count how many bytes we have to copy after all the 64 byte chunks are // copied and a3 to the dst pointer after all the 64 byte chunks have been // copied. We will loop, incrementing a0 and a1 until a0 equals a3. __ bind(&aligned); __ andi(t8, a2, 0x3F); __ beq(a2, t8, &chkw); // Less than 64? __ subu(a3, a2, t8); // In delay slot. __ addu(a3, a0, a3); // Now a3 is the final dst after loop. // When in the loop we prefetch with kPrefHintPrepareForStore hint, // in this case the a0+x should be past the "t0-32" address. This means: // for x=128 the last "safe" a0 address is "t0-160". Alternatively, for // x=64 the last "safe" a0 address is "t0-96". In the current version we // will use "pref hint, 128(a0)", so "t0-160" is the limit. if (pref_hint_store == kPrefHintPrepareForStore) { __ addu(t0, a0, a2); // t0 is the "past the end" address. __ Subu(t9, t0, pref_limit); // t9 is the "last safe pref" address. } __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk)); if (pref_hint_store != kPrefHintPrepareForStore) { __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk)); } __ bind(&loop16w); __ lw(t0, MemOperand(a1)); if (pref_hint_store == kPrefHintPrepareForStore) { __ sltu(v1, t9, a0); // If a0 > t9, don't use next prefetch. __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg)); } __ lw(t1, MemOperand(a1, 1, loadstore_chunk)); // Maybe in delay slot. __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk)); __ bind(&skip_pref); __ lw(t2, MemOperand(a1, 2, loadstore_chunk)); __ lw(t3, MemOperand(a1, 3, loadstore_chunk)); __ lw(t4, MemOperand(a1, 4, loadstore_chunk)); __ lw(t5, MemOperand(a1, 5, loadstore_chunk)); __ lw(t6, MemOperand(a1, 6, loadstore_chunk)); __ lw(t7, MemOperand(a1, 7, loadstore_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk)); __ sw(t0, MemOperand(a0)); __ sw(t1, MemOperand(a0, 1, loadstore_chunk)); __ sw(t2, MemOperand(a0, 2, loadstore_chunk)); __ sw(t3, MemOperand(a0, 3, loadstore_chunk)); __ sw(t4, MemOperand(a0, 4, loadstore_chunk)); __ sw(t5, MemOperand(a0, 5, loadstore_chunk)); __ sw(t6, MemOperand(a0, 6, loadstore_chunk)); __ sw(t7, MemOperand(a0, 7, loadstore_chunk)); __ lw(t0, MemOperand(a1, 8, loadstore_chunk)); __ lw(t1, MemOperand(a1, 9, loadstore_chunk)); __ lw(t2, MemOperand(a1, 10, loadstore_chunk)); __ lw(t3, MemOperand(a1, 11, loadstore_chunk)); __ lw(t4, MemOperand(a1, 12, loadstore_chunk)); __ lw(t5, MemOperand(a1, 13, loadstore_chunk)); __ lw(t6, MemOperand(a1, 14, loadstore_chunk)); __ lw(t7, MemOperand(a1, 15, loadstore_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk)); __ sw(t0, MemOperand(a0, 8, loadstore_chunk)); __ sw(t1, MemOperand(a0, 9, loadstore_chunk)); __ sw(t2, MemOperand(a0, 10, loadstore_chunk)); __ sw(t3, MemOperand(a0, 11, loadstore_chunk)); __ sw(t4, MemOperand(a0, 12, loadstore_chunk)); __ sw(t5, MemOperand(a0, 13, loadstore_chunk)); __ sw(t6, MemOperand(a0, 14, loadstore_chunk)); __ sw(t7, MemOperand(a0, 15, loadstore_chunk)); __ addiu(a0, a0, 16 * loadstore_chunk); __ bne(a0, a3, &loop16w); __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot. __ mov(a2, t8); // Here we have src and dest word-aligned but less than 64-bytes to go. // Check for a 32 bytes chunk and copy if there is one. Otherwise jump // down to chk1w to handle the tail end of the copy. __ bind(&chkw); __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk)); __ andi(t8, a2, 0x1F); __ beq(a2, t8, &chk1w); // Less than 32? __ nop(); // In delay slot. __ lw(t0, MemOperand(a1)); __ lw(t1, MemOperand(a1, 1, loadstore_chunk)); __ lw(t2, MemOperand(a1, 2, loadstore_chunk)); __ lw(t3, MemOperand(a1, 3, loadstore_chunk)); __ lw(t4, MemOperand(a1, 4, loadstore_chunk)); __ lw(t5, MemOperand(a1, 5, loadstore_chunk)); __ lw(t6, MemOperand(a1, 6, loadstore_chunk)); __ lw(t7, MemOperand(a1, 7, loadstore_chunk)); __ addiu(a1, a1, 8 * loadstore_chunk); __ sw(t0, MemOperand(a0)); __ sw(t1, MemOperand(a0, 1, loadstore_chunk)); __ sw(t2, MemOperand(a0, 2, loadstore_chunk)); __ sw(t3, MemOperand(a0, 3, loadstore_chunk)); __ sw(t4, MemOperand(a0, 4, loadstore_chunk)); __ sw(t5, MemOperand(a0, 5, loadstore_chunk)); __ sw(t6, MemOperand(a0, 6, loadstore_chunk)); __ sw(t7, MemOperand(a0, 7, loadstore_chunk)); __ addiu(a0, a0, 8 * loadstore_chunk); // Here we have less than 32 bytes to copy. Set up for a loop to copy // one word at a time. Set a2 to count how many bytes we have to copy // after all the word chunks are copied and a3 to the dst pointer after // all the word chunks have been copied. We will loop, incrementing a0 // and a1 until a0 equals a3. __ bind(&chk1w); __ andi(a2, t8, loadstore_chunk - 1); __ beq(a2, t8, &lastb); __ subu(a3, t8, a2); // In delay slot. __ addu(a3, a0, a3); __ bind(&wordCopy_loop); __ lw(t3, MemOperand(a1)); __ addiu(a0, a0, loadstore_chunk); __ addiu(a1, a1, loadstore_chunk); __ bne(a0, a3, &wordCopy_loop); __ sw(t3, MemOperand(a0, -1, loadstore_chunk)); // In delay slot. __ bind(&lastb); __ Branch(&leave, le, a2, Operand(zero_reg)); __ addu(a3, a0, a2); __ bind(&lastbloop); __ lb(v1, MemOperand(a1)); __ addiu(a0, a0, 1); __ addiu(a1, a1, 1); __ bne(a0, a3, &lastbloop); __ sb(v1, MemOperand(a0, -1)); // In delay slot. __ bind(&leave); __ jr(ra); __ nop(); // Unaligned case. Only the dst gets aligned so we need to do partial // loads of the source followed by normal stores to the dst (once we // have aligned the destination). __ bind(&unaligned); __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1. __ beq(a3, zero_reg, &ua_chk16w); __ subu(a2, a2, a3); // In delay slot. if (kArchEndian == kLittle) { __ lwr(v1, MemOperand(a1)); __ lwl(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ addu(a1, a1, a3); __ swr(v1, MemOperand(a0)); __ addu(a0, a0, a3); } else { __ lwl(v1, MemOperand(a1)); __ lwr(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ addu(a1, a1, a3); __ swl(v1, MemOperand(a0)); __ addu(a0, a0, a3); } // Now the dst (but not the source) is aligned. Set a2 to count how many // bytes we have to copy after all the 64 byte chunks are copied and a3 to // the dst pointer after all the 64 byte chunks have been copied. We will // loop, incrementing a0 and a1 until a0 equals a3. __ bind(&ua_chk16w); __ andi(t8, a2, 0x3F); __ beq(a2, t8, &ua_chkw); __ subu(a3, a2, t8); // In delay slot. __ addu(a3, a0, a3); if (pref_hint_store == kPrefHintPrepareForStore) { __ addu(t0, a0, a2); __ Subu(t9, t0, pref_limit); } __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk)); if (pref_hint_store != kPrefHintPrepareForStore) { __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk)); } __ bind(&ua_loop16w); __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk)); if (kArchEndian == kLittle) { __ lwr(t0, MemOperand(a1)); __ lwr(t1, MemOperand(a1, 1, loadstore_chunk)); __ lwr(t2, MemOperand(a1, 2, loadstore_chunk)); if (pref_hint_store == kPrefHintPrepareForStore) { __ sltu(v1, t9, a0); __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg)); } __ lwr(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot. __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk)); __ bind(&ua_skip_pref); __ lwr(t4, MemOperand(a1, 4, loadstore_chunk)); __ lwr(t5, MemOperand(a1, 5, loadstore_chunk)); __ lwr(t6, MemOperand(a1, 6, loadstore_chunk)); __ lwr(t7, MemOperand(a1, 7, loadstore_chunk)); __ lwl(t0, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t1, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t2, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t3, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t4, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t5, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t6, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t7, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(t0, MemOperand(a1)); __ lwl(t1, MemOperand(a1, 1, loadstore_chunk)); __ lwl(t2, MemOperand(a1, 2, loadstore_chunk)); if (pref_hint_store == kPrefHintPrepareForStore) { __ sltu(v1, t9, a0); __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg)); } __ lwl(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot. __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk)); __ bind(&ua_skip_pref); __ lwl(t4, MemOperand(a1, 4, loadstore_chunk)); __ lwl(t5, MemOperand(a1, 5, loadstore_chunk)); __ lwl(t6, MemOperand(a1, 6, loadstore_chunk)); __ lwl(t7, MemOperand(a1, 7, loadstore_chunk)); __ lwr(t0, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t1, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t2, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t3, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t4, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t5, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t6, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t7, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk)); __ sw(t0, MemOperand(a0)); __ sw(t1, MemOperand(a0, 1, loadstore_chunk)); __ sw(t2, MemOperand(a0, 2, loadstore_chunk)); __ sw(t3, MemOperand(a0, 3, loadstore_chunk)); __ sw(t4, MemOperand(a0, 4, loadstore_chunk)); __ sw(t5, MemOperand(a0, 5, loadstore_chunk)); __ sw(t6, MemOperand(a0, 6, loadstore_chunk)); __ sw(t7, MemOperand(a0, 7, loadstore_chunk)); if (kArchEndian == kLittle) { __ lwr(t0, MemOperand(a1, 8, loadstore_chunk)); __ lwr(t1, MemOperand(a1, 9, loadstore_chunk)); __ lwr(t2, MemOperand(a1, 10, loadstore_chunk)); __ lwr(t3, MemOperand(a1, 11, loadstore_chunk)); __ lwr(t4, MemOperand(a1, 12, loadstore_chunk)); __ lwr(t5, MemOperand(a1, 13, loadstore_chunk)); __ lwr(t6, MemOperand(a1, 14, loadstore_chunk)); __ lwr(t7, MemOperand(a1, 15, loadstore_chunk)); __ lwl(t0, MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t1, MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t2, MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t3, MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t4, MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t5, MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t6, MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t7, MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(t0, MemOperand(a1, 8, loadstore_chunk)); __ lwl(t1, MemOperand(a1, 9, loadstore_chunk)); __ lwl(t2, MemOperand(a1, 10, loadstore_chunk)); __ lwl(t3, MemOperand(a1, 11, loadstore_chunk)); __ lwl(t4, MemOperand(a1, 12, loadstore_chunk)); __ lwl(t5, MemOperand(a1, 13, loadstore_chunk)); __ lwl(t6, MemOperand(a1, 14, loadstore_chunk)); __ lwl(t7, MemOperand(a1, 15, loadstore_chunk)); __ lwr(t0, MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t1, MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t2, MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t3, MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t4, MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t5, MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t6, MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t7, MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one)); } __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk)); __ sw(t0, MemOperand(a0, 8, loadstore_chunk)); __ sw(t1, MemOperand(a0, 9, loadstore_chunk)); __ sw(t2, MemOperand(a0, 10, loadstore_chunk)); __ sw(t3, MemOperand(a0, 11, loadstore_chunk)); __ sw(t4, MemOperand(a0, 12, loadstore_chunk)); __ sw(t5, MemOperand(a0, 13, loadstore_chunk)); __ sw(t6, MemOperand(a0, 14, loadstore_chunk)); __ sw(t7, MemOperand(a0, 15, loadstore_chunk)); __ addiu(a0, a0, 16 * loadstore_chunk); __ bne(a0, a3, &ua_loop16w); __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot. __ mov(a2, t8); // Here less than 64-bytes. Check for // a 32 byte chunk and copy if there is one. Otherwise jump down to // ua_chk1w to handle the tail end of the copy. __ bind(&ua_chkw); __ Pref(pref_hint_load, MemOperand(a1)); __ andi(t8, a2, 0x1F); __ beq(a2, t8, &ua_chk1w); __ nop(); // In delay slot. if (kArchEndian == kLittle) { __ lwr(t0, MemOperand(a1)); __ lwr(t1, MemOperand(a1, 1, loadstore_chunk)); __ lwr(t2, MemOperand(a1, 2, loadstore_chunk)); __ lwr(t3, MemOperand(a1, 3, loadstore_chunk)); __ lwr(t4, MemOperand(a1, 4, loadstore_chunk)); __ lwr(t5, MemOperand(a1, 5, loadstore_chunk)); __ lwr(t6, MemOperand(a1, 6, loadstore_chunk)); __ lwr(t7, MemOperand(a1, 7, loadstore_chunk)); __ lwl(t0, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t1, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t2, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t3, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t4, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t5, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t6, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t7, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(t0, MemOperand(a1)); __ lwl(t1, MemOperand(a1, 1, loadstore_chunk)); __ lwl(t2, MemOperand(a1, 2, loadstore_chunk)); __ lwl(t3, MemOperand(a1, 3, loadstore_chunk)); __ lwl(t4, MemOperand(a1, 4, loadstore_chunk)); __ lwl(t5, MemOperand(a1, 5, loadstore_chunk)); __ lwl(t6, MemOperand(a1, 6, loadstore_chunk)); __ lwl(t7, MemOperand(a1, 7, loadstore_chunk)); __ lwr(t0, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t1, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t2, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t3, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t4, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t5, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t6, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t7, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } __ addiu(a1, a1, 8 * loadstore_chunk); __ sw(t0, MemOperand(a0)); __ sw(t1, MemOperand(a0, 1, loadstore_chunk)); __ sw(t2, MemOperand(a0, 2, loadstore_chunk)); __ sw(t3, MemOperand(a0, 3, loadstore_chunk)); __ sw(t4, MemOperand(a0, 4, loadstore_chunk)); __ sw(t5, MemOperand(a0, 5, loadstore_chunk)); __ sw(t6, MemOperand(a0, 6, loadstore_chunk)); __ sw(t7, MemOperand(a0, 7, loadstore_chunk)); __ addiu(a0, a0, 8 * loadstore_chunk); // Less than 32 bytes to copy. Set up for a loop to // copy one word at a time. __ bind(&ua_chk1w); __ andi(a2, t8, loadstore_chunk - 1); __ beq(a2, t8, &ua_smallCopy); __ subu(a3, t8, a2); // In delay slot. __ addu(a3, a0, a3); __ bind(&ua_wordCopy_loop); if (kArchEndian == kLittle) { __ lwr(v1, MemOperand(a1)); __ lwl(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(v1, MemOperand(a1)); __ lwr(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); } __ addiu(a0, a0, loadstore_chunk); __ addiu(a1, a1, loadstore_chunk); __ bne(a0, a3, &ua_wordCopy_loop); __ sw(v1, MemOperand(a0, -1, loadstore_chunk)); // In delay slot. // Copy the last 8 bytes. __ bind(&ua_smallCopy); __ beq(a2, zero_reg, &leave); __ addu(a3, a0, a2); // In delay slot. __ bind(&ua_smallCopy_loop); __ lb(v1, MemOperand(a1)); __ addiu(a0, a0, 1); __ addiu(a1, a1, 1); __ bne(a0, a3, &ua_smallCopy_loop); __ sb(v1, MemOperand(a0, -1)); // In delay slot. __ jr(ra); __ nop(); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS