// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/api/api-arguments.h" #include "src/base/adapters.h" #include "src/codegen/code-factory.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/logging/counters.h" // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. #include "src/codegen/macro-assembler-inl.h" #include "src/codegen/register-configuration.h" #include "src/heap/heap-inl.h" #include "src/objects/cell.h" #include "src/objects/foreign.h" #include "src/objects/heap-number.h" #include "src/objects/js-generator.h" #include "src/objects/objects-inl.h" #include "src/objects/smi.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { __ Move(kJavaScriptCallExtraArg1Register, Immediate(ExternalReference::Create(address))); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. __ push(edi); __ push(edx); // Function is also the parameter to the runtime call. __ push(edi); __ CallRuntime(function_id, 1); __ mov(ecx, eax); // Restore target function and new target. __ pop(edx); __ pop(edi); } static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ JumpCodeObject(ecx); } namespace { void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow, bool include_receiver = false) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. ExternalReference real_stack_limit = ExternalReference::address_of_real_jslimit(masm->isolate()); // Compute the space that is left as a negative number in scratch. If // we already overflowed, this will be a positive number. __ mov(scratch, __ ExternalReferenceAsOperand(real_stack_limit, scratch)); __ sub(scratch, esp); // Add the size of the arguments. static_assert(kSystemPointerSize == 4, "The next instruction assumes kSystemPointerSize == 4"); __ lea(scratch, Operand(scratch, num_args, times_system_pointer_size, 0)); if (include_receiver) { __ add(scratch, Immediate(kSystemPointerSize)); } // See if we overflowed, i.e. scratch is positive. __ cmp(scratch, Immediate(0)); __ j(greater, stack_overflow); // Signed comparison. } void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // -- edx: new target // -- esi: context // ----------------------------------- Label stack_overflow; Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(eax); __ push(esi); __ push(eax); __ SmiUntag(eax); // The receiver for the builtin/api call. __ PushRoot(RootIndex::kTheHoleValue); // Set up pointer to last argument. We are using esi as scratch register. __ lea(esi, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); // ----------- S t a t e ------------- // -- eax: number of arguments (untagged) // -- edi: constructor function // -- edx: new target // -- esi: pointer to last argument // -- ecx: counter // -- sp[0*kSystemPointerSize]: the hole (receiver) // -- sp[1*kSystemPointerSize]: number of arguments (tagged) // -- sp[2*kSystemPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ push(Operand(esi, ecx, times_system_pointer_size, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. // eax: number of arguments (untagged) // edi: constructor function // edx: new target ParameterCount actual(eax); // Reload context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); __ InvokeFunction(edi, edx, actual, CALL_FUNCTION); // Restore context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, edx, times_half_system_pointer_size, 1 * kSystemPointerSize)); // 1 ~ receiver __ PushReturnAddressFrom(ecx); __ ret(0); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // This should be unreachable. } } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments (untagged) // -- edi: constructor function // -- edx: new target // -- esi: context // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ mov(ecx, eax); __ SmiTag(ecx); __ Push(esi); __ Push(ecx); __ Push(edi); __ PushRoot(RootIndex::kTheHoleValue); __ Push(edx); // ----------- S t a t e ------------- // -- sp[0*kSystemPointerSize]: new target // -- sp[1*kSystemPointerSize]: padding // -- edi and sp[2*kSystemPointerSize]: constructor function // -- sp[3*kSystemPointerSize]: argument count // -- sp[4*kSystemPointerSize]: context // ----------------------------------- __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFlagsOffset)); __ DecodeField(eax); __ JumpIfIsInRange(eax, kDefaultDerivedConstructor, kDerivedConstructor, ecx, ¬_create_implicit_receiver, Label::kNear); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, eax); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ jmp(&post_instantiation_deopt_entry, Label::kNear); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(eax, RootIndex::kTheHoleValue); // ----------- S t a t e ------------- // -- eax: implicit receiver // -- Slot 4 / sp[0*kSystemPointerSize]: new target // -- Slot 3 / sp[1*kSystemPointerSize]: padding // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kSystemPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(edx); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(eax); __ Push(eax); // ----------- S t a t e ------------- // -- edx: new target // -- sp[0*kSystemPointerSize]: implicit receiver // -- sp[1*kSystemPointerSize]: implicit receiver // -- sp[2*kSystemPointerSize]: padding // -- sp[3*kSystemPointerSize]: constructor function // -- sp[4*kSystemPointerSize]: number of arguments (tagged) // -- sp[5*kSystemPointerSize]: context // ----------------------------------- // Restore argument count. __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(eax); // Set up pointer to last argument. __ lea(edi, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Check if we have enough stack space to push all arguments. // Argument count in eax. Clobbers ecx. Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow); __ jmp(&enough_stack_space); __ bind(&stack_overflow); // Restore context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); __ bind(&enough_stack_space); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); // ----------- S t a t e ------------- // -- eax: number of arguments (untagged) // -- edx: new target // -- edi: pointer to last argument // -- ecx: counter (tagged) // -- sp[0*kSystemPointerSize]: implicit receiver // -- sp[1*kSystemPointerSize]: implicit receiver // -- sp[2*kSystemPointerSize]: padding // -- sp[3*kSystemPointerSize]: constructor function // -- sp[4*kSystemPointerSize]: number of arguments (tagged) // -- sp[5*kSystemPointerSize]: context // ----------------------------------- __ jmp(&entry, Label::kNear); __ bind(&loop); __ Push(Operand(edi, ecx, times_system_pointer_size, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Restore and and call the constructor function. __ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset)); ParameterCount actual(eax); __ InvokeFunction(edi, edx, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- eax: constructor result // -- sp[0*kSystemPointerSize]: implicit receiver // -- sp[1*kSystemPointerSize]: padding // -- sp[2*kSystemPointerSize]: constructor function // -- sp[3*kSystemPointerSize]: number of arguments // -- sp[4*kSystemPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(eax, RootIndex::kUndefinedValue, &use_receiver, Label::kNear); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(eax, &use_receiver, Label::kNear); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); __ j(above_equal, &leave_frame, Label::kNear); __ jmp(&use_receiver, Label::kNear); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0 * kSystemPointerSize)); __ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, edx, times_half_system_pointer_size, 1 * kSystemPointerSize)); // 1 ~ receiver __ push(ecx); __ ret(0); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ push(edi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } namespace { // Called with the native C calling convention. The corresponding function // signature is either: // // using JSEntryFunction = GeneratedCode; // or // using JSEntryFunction = GeneratedCode; void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, Builtins::Name entry_trampoline) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; { // NOLINT. Scope block confuses linter. NoRootArrayScope uninitialized_root_register(masm); // Set up frame. __ push(ebp); __ mov(ebp, esp); // Push marker in two places. __ push(Immediate(StackFrame::TypeToMarker(type))); // Reserve a slot for the context. It is filled after the root register has // been set up. __ AllocateStackSpace(kSystemPointerSize); // Save callee-saved registers (C calling conventions). __ push(edi); __ push(esi); __ push(ebx); // Initialize the root register based on the given Isolate* argument. // C calling convention. The first argument is passed on the stack. __ mov(kRootRegister, Operand(ebp, EntryFrameConstants::kRootRegisterValueOffset)); } // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp = ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, masm->isolate()); __ push(__ ExternalReferenceAsOperand(c_entry_fp, edi)); // Store the context address in the previously-reserved slot. ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ mov(edi, __ ExternalReferenceAsOperand(context_address, edi)); static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize; __ mov(Operand(ebp, kOffsetToContextSlot), edi); // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp = ExternalReference::Create( IsolateAddressId::kJSEntrySPAddress, masm->isolate()); __ cmp(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0)); __ j(not_equal, ¬_outermost_js, Label::kNear); __ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), ebp); __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ jmp(&invoke, Label::kNear); __ bind(¬_outermost_js); __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); // Store the current pc as the handler offset. It's used later to create the // handler table. masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ mov(__ ExternalReferenceAsOperand(pending_exception, edi), eax); __ Move(eax, masm->isolate()->factory()->exception()); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushStackHandler(edi); // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Handle trampoline_code = masm->isolate()->builtins()->builtin_handle(entry_trampoline); __ Call(trampoline_code, RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(edi); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ pop(edi); __ cmp(edi, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ j(not_equal, ¬_outermost_js_2); __ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. __ pop(__ ExternalReferenceAsOperand(c_entry_fp, edi)); // Restore callee-saved registers (C calling conventions). __ pop(ebx); __ pop(esi); __ pop(edi); __ add(esp, Immediate(2 * kSystemPointerSize)); // remove markers // Restore frame pointer and return. __ pop(ebp); __ ret(0); } } // namespace void Builtins::Generate_JSEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kJSEntryTrampoline); } void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, Builtins::kJSConstructEntryTrampoline); } void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kRunMicrotasksTrampoline); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { { FrameScope scope(masm, StackFrame::INTERNAL); const Register scratch1 = edx; const Register scratch2 = edi; // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ mov(esi, __ ExternalReferenceAsOperand(context_address, scratch1)); // Load the previous frame pointer (edx) to access C arguments __ mov(scratch1, Operand(ebp, 0)); // Push the function and the receiver onto the stack. __ push(Operand(scratch1, EntryFrameConstants::kFunctionArgOffset)); __ push(Operand(scratch1, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(scratch1, EntryFrameConstants::kArgcOffset)); __ mov(scratch1, Operand(scratch1, EntryFrameConstants::kArgvOffset)); // Check if we have enough stack space to push all arguments. // Argument count in eax. Clobbers ecx. Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow); __ jmp(&enough_stack_space); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); __ bind(&enough_stack_space); // Copy arguments to the stack in a loop. Label loop, entry; __ Move(ecx, Immediate(0)); __ jmp(&entry, Label::kNear); __ bind(&loop); // Push the parameter from argv. __ mov(scratch2, Operand(scratch1, ecx, times_system_pointer_size, 0)); __ push(Operand(scratch2, 0)); // dereference handle __ inc(ecx); __ bind(&entry); __ cmp(ecx, eax); __ j(not_equal, &loop); // Load the previous frame pointer (ebx) to access C arguments __ mov(scratch2, Operand(ebp, 0)); // Get the new.target and function from the frame. __ mov(edx, Operand(scratch2, EntryFrameConstants::kNewTargetArgOffset)); __ mov(edi, Operand(scratch2, EntryFrameConstants::kFunctionArgOffset)); // Invoke the code. Handle builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty. // context and the function left on the stack by the code // invocation. } __ ret(0); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { // This expects two C++ function parameters passed by Invoke() in // execution.cc. // r1: microtask_queue __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), Operand(ebp, EntryFrameConstants::kMicrotaskQueueArgOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1); __ j(not_equal, &done, Label::kNear); __ mov(sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the value to pass to the generator // -- edx : the JSGeneratorObject to resume // -- esp[0] : return address // ----------------------------------- __ AssertGeneratorObject(edx); // Store input value into generator object. __ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax); __ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx, kDontSaveFPRegs); // Load suspended function and context. __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ cmpb(__ ExternalReferenceAsOperand(debug_hook, ecx), Immediate(0)); __ j(not_equal, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ cmp(edx, __ ExternalReferenceAsOperand(debug_suspended_generator, ecx)); __ j(equal, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ CompareRealStackLimit(esp); __ j(below, &stack_overflow); // Pop return address. __ PopReturnAddressTo(eax); // Push receiver. __ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset)); // ----------- S t a t e ------------- // -- eax : return address // -- edx : the JSGeneratorObject to resume // -- edi : generator function // -- esi : generator context // -- esp[0] : generator receiver // ----------------------------------- { __ movd(xmm0, ebx); // Copy the function arguments from the generator object's register file. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ movzx_w(ecx, FieldOperand( ecx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(ebx, FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ Set(edi, 0); __ bind(&loop); __ cmp(edi, ecx); __ j(greater_equal, &done_loop); __ Push(FieldOperand(ebx, edi, times_system_pointer_size, FixedArray::kHeaderSize)); __ add(edi, Immediate(1)); __ jmp(&loop); __ bind(&done_loop); } // Restore registers. __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); __ movd(ebx, xmm0); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset)); __ Push(eax); GetSharedFunctionInfoBytecode(masm, ecx, eax); __ Pop(eax); __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx); __ Assert(equal, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ PushReturnAddressFrom(eax); __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ movzx_w(eax, FieldOperand( eax, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ JumpCodeObject(ecx); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edx); __ Push(edi); // Push hole as receiver since we do not use it for stepping. __ PushRoot(RootIndex::kTheHoleValue); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(edx); __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edx); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(edx); __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // This should be unreachable. } } static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2) { // Store the optimized code in the closure. __ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code); __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { Register args_count = scratch1; Register return_pc = scratch2; // Get the arguments + receiver count. __ mov(args_count, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(args_count, FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments. __ pop(return_pc); __ add(esp, args_count); __ push(return_pc); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ cmp(smi_entry, Immediate(Smi::FromEnum(marker))); __ j(not_equal, &no_match, Label::kNear); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- edx : new target (preserved for callee if needed, and caller) // -- edi : target function (preserved for callee if needed, and caller) // -- ecx : feedback vector (also used as scratch, value is not preserved) // ----------------------------------- DCHECK(!AreAliased(edx, edi, scratch)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = edi; // Scratch contains feedback_vector. Register feedback_vector = scratch; // Load the optimized code from the feedback vector and re-use the register. Register optimized_code_entry = scratch; __ mov(optimized_code_entry, FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeWeakOrSmiOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is an optimization marker. // Fall through if no optimization trigger. __ cmp(optimized_code_entry, Immediate(Smi::FromEnum(OptimizationMarker::kNone))); __ j(equal, &fallthrough); // TODO(v8:8394): The logging of first execution will break if // feedback vectors are not allocated. We need to find a different way of // logging these events if required. TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ cmp( optimized_code_entry, Immediate(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); __ Assert(equal, AbortReason::kExpectedOptimizationSentinel); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, &fallthrough); __ push(edx); // Check if the optimized code is marked for deopt. If it is, bailout to a // given label. Label found_deoptimized_code; __ mov(eax, FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset), Immediate(1 << Code::kMarkedForDeoptimizationBit)); __ j(not_zero, &found_deoptimized_code); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, edx, eax); static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ LoadCodeObjectEntry(ecx, optimized_code_entry); __ pop(edx); __ jmp(ecx); // Optimized code slot contains deoptimized code, evict it and re-enter the // closure's code. __ bind(&found_deoptimized_code); __ pop(edx); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register scratch1, Register scratch2, Label* if_return) { Register bytecode_size_table = scratch1; Register bytecode = scratch2; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ Move(bytecode_size_table, Immediate(ExternalReference::bytecode_size_table_address())); // Load the current bytecode. __ movzx_b(bytecode, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmp(bytecode, Immediate(0x3)); __ j(above, &process_bytecode, Label::kNear); __ test(bytecode, Immediate(0x1)); __ j(not_equal, &extra_wide, Label::kNear); // Load the next bytecode and update table to the wide scaled table. __ inc(bytecode_offset); __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ add(bytecode_size_table, Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode, Label::kNear); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ inc(bytecode_offset); __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ add(bytecode_size_table, Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmp(bytecode, \ Immediate(static_cast(interpreter::Bytecode::k##NAME))); \ __ j(equal, if_return); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ add(bytecode_offset, Operand(bytecode_size_table, bytecode, times_int_size, 0)); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o edi: the JS function object being called // o edx: the incoming new target or generator object // o esi: our context // o ebp: the caller's frame pointer // o esp: stack pointer (pointing to return address) // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { Register closure = edi; // The bytecode array could have been flushed from the shared function info, // if so, call into CompileLazy. Label compile_lazy; __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, ecx, eax); __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, eax); __ j(not_equal, &compile_lazy); Register feedback_vector = ecx; Label push_stack_frame; // Load feedback vector and check if it is valid. If valid, check for // optimized code and update invocation count. Otherwise, setup the stack // frame. __ mov(feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); __ mov(eax, FieldOperand(feedback_vector, HeapObject::kMapOffset)); __ CmpInstanceType(eax, FEEDBACK_VECTOR_TYPE); __ j(not_equal, &push_stack_frame); // Read off the optimized code slot in the closure's feedback vector, and if // there is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, ecx); // Load the feedback vector and increment the invocation count. __ mov(feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); __ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set // up the frame (that is done below). __ bind(&push_stack_frame); FrameScope frame_scope(masm, StackFrame::MANUAL); __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS function. // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(kInterpreterBytecodeArrayRegister, FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, eax); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are // 8-bit fields next to each other, so we could just optimize by writing a // 16-bit. These static asserts guard our assumption is valid. STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == BytecodeArray::kOsrNestingLevelOffset + kCharSize); STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); __ mov_w(FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kOsrNestingLevelOffset), Immediate(0)); // Push bytecode array. __ push(kInterpreterBytecodeArrayRegister); // Push Smi tagged initial bytecode array offset. __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag))); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. Register frame_size = ecx; __ mov(frame_size, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ mov(eax, esp); __ sub(eax, frame_size); __ CompareRealStackLimit(eax); __ j(above_equal, &ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ Move(eax, masm->isolate()->factory()->undefined_value()); __ jmp(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(eax); // Continue loop if not done. __ bind(&loop_check); __ sub(frame_size, Immediate(kSystemPointerSize)); __ j(greater_equal, &loop_header); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in edx. Label no_incoming_new_target_or_generator_register; __ mov(eax, FieldOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ test(eax, eax); __ j(zero, &no_incoming_new_target_or_generator_register); __ mov(Operand(ebp, eax, times_system_pointer_size, 0), edx); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator and bytecode offset into registers. __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ mov(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ Move(kInterpreterDispatchTableRegister, Immediate(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); __ movzx_b(ecx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov(kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, ecx, times_system_pointer_size, 0)); __ call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, ecx, kInterpreterDispatchTableRegister, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in eax. LeaveInterpreterFrame(masm, edx, ecx); __ ret(0); __ bind(&compile_lazy); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); __ int3(); // Should not return. } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register array_limit, Register start_address) { // ----------- S t a t e ------------- // -- start_address : Pointer to the last argument in the args array. // -- array_limit : Pointer to one before the first argument in the // args array. // ----------------------------------- Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ Push(Operand(start_address, 0)); __ sub(start_address, Immediate(kSystemPointerSize)); __ bind(&loop_check); __ cmp(start_address, array_limit); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- ecx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- edi : the target to call (can be any Object). // ----------------------------------- const Register scratch = edx; const Register argv = ecx; Label stack_overflow; // Add a stack check before pushing the arguments. Generate_StackOverflowCheck(masm, eax, scratch, &stack_overflow, true); __ movd(xmm0, eax); // Spill number of arguments. // Compute the expected number of arguments. __ mov(scratch, eax); __ add(scratch, Immediate(1)); // Add one for receiver. // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(eax); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(RootIndex::kUndefinedValue); __ sub(scratch, Immediate(1)); // Subtract one for receiver. } // Find the address of the last argument. __ shl(scratch, kSystemPointerSizeLog2); __ neg(scratch); __ add(scratch, argv); Generate_InterpreterPushArgs(masm, scratch, argv); // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(ecx); // Pass the spread in a register __ PushReturnAddressFrom(eax); __ movd(eax, xmm0); // Restore number of arguments. __ sub(eax, Immediate(1)); // Subtract one for spread __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ PushReturnAddressFrom(eax); __ movd(eax, xmm0); // Restore number of arguments. __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } namespace { // This function modifies start_addr, and only reads the contents of num_args // register. scratch1 and scratch2 are used as temporary registers. void Generate_InterpreterPushZeroAndArgsAndReturnAddress( MacroAssembler* masm, Register num_args, Register start_addr, Register scratch1, Register scratch2, int num_slots_to_move, Label* stack_overflow) { // We have to move return address and the temporary registers above it // before we can copy arguments onto the stack. To achieve this: // Step 1: Increment the stack pointer by num_args + 1 (for receiver). // Step 2: Move the return address and values around it to the top of stack. // Step 3: Copy the arguments into the correct locations. // current stack =====> required stack layout // | | | return addr | (2) <-- esp (1) // | | | addtl. slot | // | | | arg N | (3) // | | | .... | // | | | arg 1 | // | return addr | <-- esp | arg 0 | // | addtl. slot | | receiver slot | // Check for stack overflow before we increment the stack pointer. Generate_StackOverflowCheck(masm, num_args, scratch1, stack_overflow, true); // Step 1 - Update the stack pointer. __ lea(scratch1, Operand(num_args, times_system_pointer_size, kSystemPointerSize)); __ AllocateStackSpace(scratch1); // Step 2 move return_address and slots around it to the correct locations. // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1, // basically when the source and destination overlap. We at least need one // extra slot for receiver, so no extra checks are required to avoid copy. for (int i = 0; i < num_slots_to_move + 1; i++) { __ mov(scratch1, Operand(esp, num_args, times_system_pointer_size, (i + 1) * kSystemPointerSize)); __ mov(Operand(esp, i * kSystemPointerSize), scratch1); } // Step 3 copy arguments to correct locations. // Slot meant for receiver contains return address. Reset it so that // we will not incorrectly interpret return address as an object. __ mov(Operand(esp, num_args, times_system_pointer_size, (num_slots_to_move + 1) * kSystemPointerSize), Immediate(0)); __ mov(scratch1, num_args); Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ mov(scratch2, Operand(start_addr, 0)); __ mov(Operand(esp, scratch1, times_system_pointer_size, num_slots_to_move * kSystemPointerSize), scratch2); __ sub(start_addr, Immediate(kSystemPointerSize)); __ sub(scratch1, Immediate(1)); __ bind(&loop_check); __ cmp(scratch1, Immediate(0)); __ j(greater, &loop_header, Label::kNear); } } // end anonymous namespace // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- ecx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order // as they are to be pushed onto the stack. // -- esp[0] : return address // -- esp[4] : allocation site feedback (if available or undefined) // -- esp[8] : the new target // -- esp[12] : the constructor // ----------------------------------- Label stack_overflow; // Push arguments and move return address and stack spill slots to the top of // stack. The eax register is readonly. The ecx register will be modified. edx // and edi are used as scratch registers. Generate_InterpreterPushZeroAndArgsAndReturnAddress( masm, eax, ecx, edx, edi, InterpreterPushArgsThenConstructDescriptor::kStackArgumentsCount, &stack_overflow); // Call the appropriate constructor. eax and ecx already contain intended // values, remaining registers still need to be initialized from the stack. if (mode == InterpreterPushArgsMode::kArrayFunction) { // Tail call to the array construct stub (still in the caller context at // this point). __ movd(xmm0, eax); // Spill number of arguments. __ PopReturnAddressTo(eax); __ Pop(kJavaScriptCallExtraArg1Register); __ Pop(kJavaScriptCallNewTargetRegister); __ Pop(kJavaScriptCallTargetRegister); __ PushReturnAddressFrom(eax); __ AssertFunction(kJavaScriptCallTargetRegister); __ AssertUndefinedOrAllocationSite(kJavaScriptCallExtraArg1Register, eax); __ movd(eax, xmm0); // Reload number of arguments. __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ movd(xmm0, eax); // Spill number of arguments. __ PopReturnAddressTo(eax); __ Drop(1); // The allocation site is unused. __ Pop(kJavaScriptCallNewTargetRegister); __ Pop(kJavaScriptCallTargetRegister); __ Pop(ecx); // Pop the spread (i.e. the first argument), overwriting ecx. __ PushReturnAddressFrom(eax); __ movd(eax, xmm0); // Reload number of arguments. __ sub(eax, Immediate(1)); // The actual argc thus decrements by one. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); __ PopReturnAddressTo(ecx); __ Drop(1); // The allocation site is unused. __ Pop(kJavaScriptCallNewTargetRegister); __ Pop(kJavaScriptCallTargetRegister); __ PushReturnAddressFrom(ecx); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ int3(); } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); static constexpr Register scratch = ecx; // If the SFI function_data is an InterpreterData, the function will have a // custom copy of the interpreter entry trampoline for profiling. If so, // get the custom trampoline, otherwise grab the entry address of the global // trampoline. __ mov(scratch, Operand(ebp, StandardFrameConstants::kFunctionOffset)); __ mov(scratch, FieldOperand(scratch, JSFunction::kSharedFunctionInfoOffset)); __ mov(scratch, FieldOperand(scratch, SharedFunctionInfo::kFunctionDataOffset)); __ Push(eax); __ CmpObjectType(scratch, INTERPRETER_DATA_TYPE, eax); __ j(not_equal, &builtin_trampoline, Label::kNear); __ mov(scratch, FieldOperand(scratch, InterpreterData::kInterpreterTrampolineOffset)); __ add(scratch, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(&trampoline_loaded, Label::kNear); __ bind(&builtin_trampoline); __ mov(scratch, __ ExternalReferenceAsOperand( ExternalReference:: address_of_interpreter_entry_trampoline_instruction_start( masm->isolate()), scratch)); __ bind(&trampoline_loaded); __ Pop(eax); __ add(scratch, Immediate(interpreter_entry_return_pc_offset.value())); __ push(scratch); // Initialize the dispatch table register. __ Move(kInterpreterDispatchTableRegister, Immediate(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Get the bytecode array pointer from the frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, scratch); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ movzx_b(scratch, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov(kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, scratch, times_system_pointer_size, 0)); __ jmp(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, ecx, esi, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ mov(ecx, kInterpreterBytecodeOffsetRegister); __ SmiTag(ecx); __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ecx); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee) // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ mov(ecx, eax); // Push the number of arguments to the callee. __ SmiTag(eax); __ push(eax); // Push a copy of the target function and the new target. __ push(edi); __ push(edx); // The function. __ push(edi); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmp(ecx, Immediate(j)); __ j(not_equal, &over, Label::kNear); } for (int i = j - 1; i >= 0; --i) { __ Push(Operand(ebp, StandardFrameConstants::kCallerSPOffset + i * kSystemPointerSize)); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(RootIndex::kUndefinedValue); } if (j < 3) { __ jmp(&args_done, Label::kNear); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(eax, &failed, Label::kNear); __ Drop(2); __ Pop(ecx); __ SmiUntag(ecx); scope.GenerateLeaveFrame(); __ PopReturnAddressTo(edx); __ inc(ecx); __ lea(esp, Operand(esp, ecx, times_system_pointer_size, 0)); __ PushReturnAddressFrom(edx); __ ret(0); __ bind(&failed); // Restore target function and new target. __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ JumpCodeObject(ecx); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ mov(Operand(esp, config->num_allocatable_general_registers() * kSystemPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize), eax); } // Replace the builtin index Smi on the stack with the start address of the // builtin loaded from the builtins table. The ret below will return to this // address. int offset_to_builtin_index = allocatable_register_count * kSystemPointerSize; __ mov(eax, Operand(esp, offset_to_builtin_index)); __ LoadEntryFromBuiltinIndex(eax); __ mov(Operand(esp, offset_to_builtin_index), eax); for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ mov( ebp, Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); const int offsetToPC = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kSystemPointerSize; __ pop(Operand(esp, offsetToPC)); __ Drop(offsetToPC / kSystemPointerSize); __ ret(0); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code()); __ mov(eax, Operand(esp, 1 * kSystemPointerSize)); __ ret(1 * kSystemPointerSize); // Remove eax. } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : argArray // -- esp[8] : thisArg // -- esp[12] : receiver // ----------------------------------- // 1. Load receiver into xmm0, argArray into edx (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; // Spill receiver to allow the usage of edi as a scratch register. __ movd(xmm0, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); __ LoadRoot(edx, RootIndex::kUndefinedValue); __ mov(edi, edx); __ test(eax, eax); __ j(zero, &no_this_arg, Label::kNear); { __ mov(edi, Operand(esp, eax, times_system_pointer_size, 0)); __ cmp(eax, Immediate(1)); __ j(equal, &no_arg_array, Label::kNear); __ mov(edx, Operand(esp, eax, times_system_pointer_size, -kSystemPointerSize)); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); __ Push(edi); __ PushReturnAddressFrom(ecx); // Restore receiver to edi. __ movd(edi, xmm0); } // ----------- S t a t e ------------- // -- edx : argArray // -- edi : receiver // -- esp[0] : return address // -- esp[4] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(edx, RootIndex::kNullValue, &no_arguments, Label::kNear); __ JumpIfRoot(edx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ Set(eax, 0); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // esp[0] : Return address // esp[8] : Argument n // esp[16] : Argument n-1 // ... // esp[8 * n] : Argument 1 // esp[8 * (n + 1)] : Receiver (callable to call) // // eax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ test(eax, eax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(edx); __ PushRoot(RootIndex::kUndefinedValue); __ PushReturnAddressFrom(edx); __ inc(eax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. __ mov(edi, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ mov(ecx, eax); __ bind(&loop); __ mov(edx, Operand(esp, ecx, times_system_pointer_size, 0)); __ mov(Operand(esp, ecx, times_system_pointer_size, kSystemPointerSize), edx); __ dec(ecx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(edx); // Discard copy of return address. __ dec(eax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : argumentsList // -- esp[8] : thisArgument // -- esp[12] : target // -- esp[16] : receiver // ----------------------------------- // 1. Load target into edi (if present), argumentsList into edx (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; __ LoadRoot(edi, RootIndex::kUndefinedValue); __ mov(edx, edi); __ mov(ecx, edi); __ cmp(eax, Immediate(1)); __ j(below, &done, Label::kNear); __ mov(edi, Operand(esp, eax, times_system_pointer_size, -0 * kSystemPointerSize)); __ j(equal, &done, Label::kNear); __ mov(ecx, Operand(esp, eax, times_system_pointer_size, -1 * kSystemPointerSize)); __ cmp(eax, Immediate(3)); __ j(below, &done, Label::kNear); __ mov(edx, Operand(esp, eax, times_system_pointer_size, -2 * kSystemPointerSize)); __ bind(&done); // Spill argumentsList to use edx as a scratch register. __ movd(xmm0, edx); __ PopReturnAddressTo(edx); __ lea(esp, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); __ Push(ecx); __ PushReturnAddressFrom(edx); // Restore argumentsList. __ movd(edx, xmm0); } // ----------- S t a t e ------------- // -- edx : argumentsList // -- edi : target // -- esp[0] : return address // -- esp[4] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : new.target (optional) // -- esp[8] : argumentsList // -- esp[12] : target // -- esp[16] : receiver // ----------------------------------- // 1. Load target into edi (if present), argumentsList into ecx (if present), // new.target into edx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; __ LoadRoot(edi, RootIndex::kUndefinedValue); __ mov(edx, edi); __ mov(ecx, edi); __ cmp(eax, Immediate(1)); __ j(below, &done, Label::kNear); __ mov(edi, Operand(esp, eax, times_system_pointer_size, -0 * kSystemPointerSize)); __ mov(edx, edi); __ j(equal, &done, Label::kNear); __ mov(ecx, Operand(esp, eax, times_system_pointer_size, -1 * kSystemPointerSize)); __ cmp(eax, Immediate(3)); __ j(below, &done, Label::kNear); __ mov(edx, Operand(esp, eax, times_system_pointer_size, -2 * kSystemPointerSize)); __ bind(&done); // Spill argumentsList to use ecx as a scratch register. __ movd(xmm0, ecx); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); __ PushRoot(RootIndex::kUndefinedValue); __ PushReturnAddressFrom(ecx); // Restore argumentsList. __ movd(ecx, xmm0); } // ----------- S t a t e ------------- // -- ecx : argumentsList // -- edx : new.target // -- edi : target // -- esp[0] : return address // -- esp[4] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // Initial map for the builtin InternalArray function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, esp); // Store the arguments adaptor context sentinel. __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve eax, // ebx and ecx because these registers are used when copying the // arguments and the receiver. STATIC_ASSERT(kSmiTagSize == 1); __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); __ push(edi); __ Push(Immediate(0)); // Padding. } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, edi, times_half_system_pointer_size, 1 * kSystemPointerSize)); // 1 ~ receiver __ PushReturnAddressFrom(ecx); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle code) { // ----------- S t a t e ------------- // -- edi : target // -- esi : context for the Call / Construct builtin // -- eax : number of parameters on the stack (not including the receiver) // -- ecx : len (number of elements to from args) // -- ecx : new.target (checked to be constructor or undefined) // -- esp[4] : arguments list (a FixedArray) // -- esp[0] : return address. // ----------------------------------- // We need to preserve eax, edi, esi and ebx. __ movd(xmm0, edx); __ movd(xmm1, edi); __ movd(xmm2, eax); __ movd(xmm3, esi); // Spill the context. const Register kArgumentsList = esi; const Register kArgumentsLength = ecx; __ PopReturnAddressTo(edx); __ pop(kArgumentsList); __ PushReturnAddressFrom(edx); if (masm->emit_debug_code()) { // Allow kArgumentsList to be a FixedArray, or a FixedDoubleArray if // kArgumentsLength == 0. Label ok, fail; __ AssertNotSmi(kArgumentsList); __ mov(edx, FieldOperand(kArgumentsList, HeapObject::kMapOffset)); __ CmpInstanceType(edx, FIXED_ARRAY_TYPE); __ j(equal, &ok); __ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE); __ j(not_equal, &fail); __ cmp(kArgumentsLength, 0); __ j(equal, &ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; Generate_StackOverflowCheck(masm, kArgumentsLength, edx, &stack_overflow); // Push additional arguments onto the stack. { __ PopReturnAddressTo(edx); __ Move(eax, Immediate(0)); Label done, push, loop; __ bind(&loop); __ cmp(eax, kArgumentsLength); __ j(equal, &done, Label::kNear); // Turn the hole into undefined as we go. __ mov(edi, FieldOperand(kArgumentsList, eax, times_system_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(edi, RootIndex::kTheHoleValue); __ j(not_equal, &push, Label::kNear); __ LoadRoot(edi, RootIndex::kUndefinedValue); __ bind(&push); __ Push(edi); __ inc(eax); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(edx); } // Restore eax, edi and edx. __ movd(esi, xmm3); // Restore the context. __ movd(eax, xmm2); __ movd(edi, xmm1); __ movd(edx, xmm0); // Compute the actual parameter count. __ add(eax, kArgumentsLength); // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); __ bind(&stack_overflow); __ movd(esi, xmm3); // Restore the context. __ TailCallRuntime(Runtime::kThrowStackOverflow); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle code) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object) // -- esi : context for the Call / Construct builtin // -- edx : the new target (for [[Construct]] calls) // -- ecx : start index (to support rest parameters) // ----------------------------------- __ movd(xmm0, esi); // Spill the context. Register scratch = esi; // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear); __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); __ test_b(FieldOperand(scratch, Map::kBitFieldOffset), Immediate(Map::IsConstructorBit::kMask)); __ j(not_zero, &new_target_constructor, Label::kNear); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(edx); __ movd(esi, xmm0); // Restore the context. __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } __ movd(xmm1, edx); // Preserve new.target (in case of [[Construct]]). // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ mov(scratch, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ cmp(Operand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &arguments_adaptor, Label::kNear); { __ mov(edx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset)); __ movzx_w(edx, FieldOperand( edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(scratch, ebp); } __ jmp(&arguments_done, Label::kNear); __ bind(&arguments_adaptor); { // Just load the length from the ArgumentsAdaptorFrame. __ mov(edx, Operand(scratch, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(edx); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ sub(edx, ecx); __ j(less_equal, &stack_done); { Generate_StackOverflowCheck(masm, edx, ecx, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ add(eax, edx); __ PopReturnAddressTo(ecx); __ bind(&loop); { __ Push(Operand(scratch, edx, times_system_pointer_size, 1 * kSystemPointerSize)); __ dec(edx); __ j(not_zero, &loop); } __ PushReturnAddressFrom(ecx); } } __ bind(&stack_done); __ movd(edx, xmm1); // Restore new.target (in case of [[Construct]]). __ movd(esi, xmm0); // Restore the context. // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); __ bind(&stack_overflow); __ movd(esi, xmm0); // Restore the context. __ TailCallRuntime(Runtime::kThrowStackOverflow); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(edi); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ j(not_zero, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } else { Label convert_to_object, convert_receiver; __ mov(ecx, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); __ JumpIfSmi(ecx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); // Clobbers ecx. __ j(above_equal, &done_convert); // Reload the receiver (it was clobbered by CmpObjectType). __ mov(ecx, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(ecx, RootIndex::kUndefinedValue, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(ecx, RootIndex::kNullValue, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(eax); __ Push(eax); __ Push(edi); __ mov(eax, ecx); __ Push(esi); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(esi); __ mov(ecx, eax); __ Pop(edi); __ Pop(eax); __ SmiUntag(eax); } __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), ecx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- __ movzx_w( ecx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(eax); ParameterCount expected(ecx); __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ push(edi); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : new.target (only in case of [[Construct]]) // -- edi : target (checked to be a JSBoundFunction) // ----------------------------------- __ movd(xmm0, edx); // Spill edx. // Load [[BoundArguments]] into ecx and length of that into edx. Label no_bound_arguments; __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); __ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ SmiUntag(edx); __ test(edx, edx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- xmm0 : new.target (only in case of [[Construct]]) // -- edi : target (checked to be a JSBoundFunction) // -- ecx : the [[BoundArguments]] (implemented as FixedArray) // -- edx : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ lea(ecx, Operand(edx, times_system_pointer_size, 0)); __ sub(esp, ecx); // Not Windows-friendly, but corrected below. // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRealStackLimit(esp); __ j(above_equal, &done, Label::kNear); // Restore the stack pointer. __ lea(esp, Operand(esp, edx, times_system_pointer_size, 0)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } #if V8_OS_WIN // Correctly allocate the stack space that was checked above. { Label win_done; __ cmp(ecx, TurboAssemblerBase::kStackPageSize); __ j(less_equal, &win_done, Label::kNear); // Reset esp and walk through the range touching every page. __ lea(esp, Operand(esp, edx, times_system_pointer_size, 0)); __ AllocateStackSpace(ecx); __ bind(&win_done); } #endif // Adjust effective number of arguments to include return address. __ inc(eax); // Relocate arguments and return address down the stack. { Label loop; __ Set(ecx, 0); __ lea(edx, Operand(esp, edx, times_system_pointer_size, 0)); __ bind(&loop); __ movd(xmm1, Operand(edx, ecx, times_system_pointer_size, 0)); __ movd(Operand(esp, ecx, times_system_pointer_size, 0), xmm1); __ inc(ecx); __ cmp(ecx, eax); __ j(less, &loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); __ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ SmiUntag(edx); __ bind(&loop); __ dec(edx); __ movd(xmm1, FieldOperand(ecx, edx, times_tagged_size, FixedArray::kHeaderSize)); __ movd(Operand(esp, eax, times_system_pointer_size, 0), xmm1); __ lea(eax, Operand(eax, 1)); __ j(greater, &loop); } // Adjust effective number of arguments (eax contains the number of // arguments from the call plus return address plus the number of // [[BoundArguments]]), so we need to subtract one for the return address. __ dec(eax); } __ bind(&no_bound_arguments); __ movd(edx, xmm0); // Reload edx. } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(edi); // Patch the receiver to [[BoundThis]]. __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset)); __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), ecx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi, non_jsfunction, non_jsboundfunction; __ JumpIfSmi(edi, &non_callable); __ bind(&non_smi); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &non_jsfunction); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET); __ bind(&non_jsfunction); __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); __ j(not_equal, &non_jsboundfunction); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET); // Check if target is a proxy and call CallProxy external builtin __ bind(&non_jsboundfunction); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(Map::IsCallableBit::kMask)); __ j(zero, &non_callable); // Call CallProxy external builtin __ CmpInstanceType(ecx, JS_PROXY_TYPE); __ j(not_equal, &non_function); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), edi); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edi); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (checked to be a constructor) // -- edi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertConstructor(edi); __ AssertFunction(edi); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ j(zero, &call_generic_stub, Label::kNear); // Calling convention for function specific ConstructStubs require // ecx to contain either an AllocationSite or undefined. __ LoadRoot(ecx, RootIndex::kUndefinedValue); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); // Calling convention for function specific ConstructStubs require // ecx to contain either an AllocationSite or undefined. __ LoadRoot(ecx, RootIndex::kUndefinedValue); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (checked to be a constructor) // -- edi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertConstructor(edi); __ AssertBoundFunction(edi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmp(edi, edx); __ j(not_equal, &done, Label::kNear); __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- edi : the constructor to call (can be any Object) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy, non_jsfunction, non_jsboundfunction; __ JumpIfSmi(edi, &non_constructor); // Check if target has a [[Construct]] internal method. __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(Map::IsConstructorBit::kMask)); __ j(zero, &non_constructor); // Dispatch based on instance type. __ CmpInstanceType(ecx, JS_FUNCTION_TYPE); __ j(not_equal, &non_jsfunction); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET); // Only dispatch to bound functions after checking whether they are // constructors. __ bind(&non_jsfunction); __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); __ j(not_equal, &non_jsboundfunction); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET); // Only dispatch to proxies after checking whether they are constructors. __ bind(&non_jsboundfunction); __ CmpInstanceType(ecx, JS_PROXY_TYPE); __ j(not_equal, &non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), edi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ecx : expected number of arguments // -- edx : new target (passed through to callee) // -- edi : function (passed through to callee) // ----------------------------------- const Register kExpectedNumberOfArgumentsRegister = ecx; Label invoke, dont_adapt_arguments, stack_overflow, enough, too_few; __ cmp(kExpectedNumberOfArgumentsRegister, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); __ cmp(eax, kExpectedNumberOfArgumentsRegister); __ j(less, &too_few); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // edi is used as a scratch register. It should be restored from the frame // when needed. Generate_StackOverflowCheck(masm, kExpectedNumberOfArgumentsRegister, edi, &stack_overflow); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_system_pointer_size, offset)); __ mov(eax, -1); // account for receiver Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kSystemPointerSize)); __ cmp(eax, kExpectedNumberOfArgumentsRegister); __ j(less, ©); // eax now contains the expected number of arguments. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // edi is used as a scratch register. It should be restored from the frame // when needed. Generate_StackOverflowCheck(masm, kExpectedNumberOfArgumentsRegister, edi, &stack_overflow); // Remember expected arguments in xmm0. __ movd(xmm0, kExpectedNumberOfArgumentsRegister); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_system_pointer_size, offset)); // ecx = expected - actual. __ sub(kExpectedNumberOfArgumentsRegister, eax); // eax = -actual - 1 __ neg(eax); __ sub(eax, Immediate(1)); Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kSystemPointerSize)); __ test(eax, eax); __ j(not_zero, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(eax); __ Push(Immediate(masm->isolate()->factory()->undefined_value())); __ cmp(eax, kExpectedNumberOfArgumentsRegister); __ j(less, &fill); // Restore expected arguments. __ movd(eax, xmm0); } // Call the entry point. __ bind(&invoke); // Restore function pointer. __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); // eax : expected number of arguments // edx : new target (passed through to callee) // edi : function (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ CallCodeObject(ecx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ JumpCodeObject(ecx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); } } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(eax); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } Label skip; // If the code object is null, just return to the caller. __ cmp(eax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Drop the handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. __ leave(); // Load deoptimization data from the code object. __ mov(ecx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ mov(ecx, Operand(ecx, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(ecx); // Compute the target address = code_obj + header_size + osr_offset __ lea(eax, Operand(eax, ecx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ mov(Operand(esp, 0), eax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in edi by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(kWasmCompileLazyFuncIndexRegister); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs == arraysize(wasm::kGpParamRegisters), "frame size mismatch"); for (Register reg : wasm::kGpParamRegisters) { __ Push(reg); } static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs == arraysize(wasm::kFpParamRegisters), "frame size mismatch"); __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters)); int offset = 0; for (DoubleRegister reg : wasm::kFpParamRegisters) { __ movdqu(Operand(esp, offset), reg); offset += kSimd128Size; } // Push the WASM instance as an explicit argument to WasmCompileLazy. __ Push(kWasmInstanceRegister); // Push the function index as second argument. __ Push(kWasmCompileLazyFuncIndexRegister); // Load the correct CEntry builtin from the instance object. __ mov(ecx, FieldOperand(kWasmInstanceRegister, WasmInstanceObject::kIsolateRootOffset)); auto centry_id = Builtins::kCEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit; __ mov(ecx, MemOperand(ecx, IsolateData::builtin_slot_offset(centry_id))); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::zero()); { // At this point, ebx has been spilled to the stack but is not yet // overwritten with another value. We can still use it as kRootRegister. __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, ecx); } // The entrypoint address is the return value. __ mov(edi, kReturnRegister0); // Restore registers. for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { offset -= kSimd128Size; __ movdqu(reg, Operand(esp, offset)); } DCHECK_EQ(0, offset); __ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { __ Pop(reg); } } // Finally, jump to the entrypoint. __ jmp(edi); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // eax: number of arguments including receiver // edx: pointer to C function // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) // // If argv_mode == kArgvInRegister: // ecx: pointer to the first argument STATIC_ASSERT(eax == kRuntimeCallArgCountRegister); STATIC_ASSERT(ecx == kRuntimeCallArgvRegister); STATIC_ASSERT(edx == kRuntimeCallFunctionRegister); STATIC_ASSERT(esi == kContextRegister); STATIC_ASSERT(edi == kJSFunctionRegister); DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister, kRuntimeCallFunctionRegister, kContextRegister, kJSFunctionRegister, kRootRegister)); // Reserve space on the stack for the three arguments passed to the call. If // result size is greater than can be returned in registers, also reserve // space for the hidden argument for the result location, and space for the // result itself. int arg_stack_space = 3; // Enter the exit frame that transitions from JavaScript to C++. if (argv_mode == kArgvInRegister) { DCHECK(save_doubles == kDontSaveFPRegs); DCHECK(!builtin_exit_frame); __ EnterApiExitFrame(arg_stack_space, edi); // Move argc and argv into the correct registers. __ mov(esi, ecx); __ mov(edi, eax); } else { __ EnterExitFrame( arg_stack_space, save_doubles == kSaveFPRegs, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); } // edx: pointer to C function // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) // Result returned in eax, or eax+edx if result size is 2. // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } // Call C function. __ mov(Operand(esp, 0 * kSystemPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kSystemPointerSize), esi); // argv. __ Move(ecx, Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 2 * kSystemPointerSize), ecx); __ call(kRuntimeCallFunctionRegister); // Result is in eax or edx:eax - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ CompareRoot(eax, RootIndex::kException); __ j(equal, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { __ push(edx); __ LoadRoot(edx, RootIndex::kTheHoleValue); Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ cmp(edx, __ ExternalReferenceAsOperand(pending_exception_address, ecx)); // Cannot use check here as it attempts to generate call into runtime. __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); __ pop(edx); } // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack); __ ret(0); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set eax to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, eax); __ mov(Operand(esp, 0 * kSystemPointerSize), Immediate(0)); // argc. __ mov(Operand(esp, 1 * kSystemPointerSize), Immediate(0)); // argv. __ Move(esi, Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 2 * kSystemPointerSize), esi); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ mov(esp, __ ExternalReferenceAsOperand(pending_handler_sp_address, esi)); __ mov(ebp, __ ExternalReferenceAsOperand(pending_handler_fp_address, esi)); __ mov(esi, __ ExternalReferenceAsOperand(pending_handler_context_address, esi)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (esi == 0) for non-JS frames. Label skip; __ test(esi, esi); __ j(zero, &skip, Label::kNear); __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); __ bind(&skip); // Compute the handler entry address and jump to it. __ mov(edi, __ ExternalReferenceAsOperand(pending_handler_entrypoint_address, edi)); __ jmp(edi); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label check_negative, process_64_bits, done; // Account for return address and saved regs. const int kArgumentOffset = 4 * kSystemPointerSize; MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset)); MemOperand exponent_operand( MemOperand(esp, kArgumentOffset + kDoubleSize / 2)); // The result is returned on the stack. MemOperand return_operand = mantissa_operand; Register scratch1 = ebx; // Since we must use ecx for shifts below, use some other register (eax) // to calculate the result. Register result_reg = eax; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead for // the result. Register save_reg = eax; __ push(ecx); __ push(scratch1); __ push(save_reg); __ mov(scratch1, mantissa_operand); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); // Load x87 register with heap number. __ fld_d(mantissa_operand); } __ mov(ecx, exponent_operand); __ and_(ecx, HeapNumber::kExponentMask); __ shr(ecx, HeapNumber::kExponentShift); __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias)); __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; if (CpuFeatures::IsSupported(SSE3)) { __ fstp(0); } __ sub(ecx, Immediate(delta)); __ xor_(result_reg, result_reg); __ cmp(ecx, Immediate(31)); __ j(above, &done); __ shl_cl(scratch1); __ jmp(&check_negative); __ bind(&process_64_bits); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); // Reserve space for 64 bit answer. __ AllocateStackSpace(kDoubleSize); // Nolint. // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result __ add(esp, Immediate(kDoubleSize)); __ jmp(&done); } else { // Result must be extracted from shifted 32-bit mantissa __ sub(ecx, Immediate(delta)); __ neg(ecx); __ mov(result_reg, exponent_operand); __ and_(result_reg, Immediate(static_cast(Double::kSignificandMask >> 32))); __ add(result_reg, Immediate(static_cast(Double::kHiddenBit >> 32))); __ shrd_cl(scratch1, result_reg); __ shr_cl(result_reg); __ test(ecx, Immediate(32)); __ cmov(not_equal, scratch1, result_reg); } // If the double was negative, negate the integer result. __ bind(&check_negative); __ mov(result_reg, scratch1); __ neg(result_reg); __ cmp(exponent_operand, Immediate(0)); __ cmov(greater, result_reg, scratch1); // Restore registers __ bind(&done); __ mov(return_operand, result_reg); __ pop(save_reg); __ pop(scratch1); __ pop(ecx); __ ret(0); } void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); // Figure out the right elements kind __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(ecx); // Initial elements kind should be packed elements. __ cmp(ecx, Immediate(PACKED_ELEMENTS)); __ Assert(equal, AbortReason::kInvalidElementsKindForInternalPackedArray); // No arguments should be passed. __ test(eax, eax); __ Assert(zero, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray); } __ Jump( BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed), RelocInfo::CODE_TARGET); } namespace { // Generates an Operand for saving parameters after PrepareCallApiFunction. Operand ApiParameterOperand(int index) { return Operand(esp, index * kSystemPointerSize); } // Prepares stack to put arguments (aligns and so on). Reserves // space for return value if needed (assumes the return value is a handle). // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1) // etc. Saves context (esi). If space was reserved for return value then // stores the pointer to the reserved slot into esi. void PrepareCallApiFunction(MacroAssembler* masm, int argc, Register scratch) { __ EnterApiExitFrame(argc, scratch); if (__ emit_debug_code()) { __ mov(esi, Immediate(bit_cast(kZapValue))); } } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Clobbers esi, edi and // caller-save registers. Restores context. On return removes // stack_space * kSystemPointerSize (GCed). void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, Operand thunk_last_arg, int stack_space, Operand* stack_space_operand, Operand return_value_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); ExternalReference limit_address = ExternalReference::handle_scope_limit_address(isolate); ExternalReference level_address = ExternalReference::handle_scope_level_address(isolate); DCHECK(edx == function_address); // Allocate HandleScope in callee-save registers. __ add(__ ExternalReferenceAsOperand(level_address, esi), Immediate(1)); __ mov(esi, __ ExternalReferenceAsOperand(next_address, esi)); __ mov(edi, __ ExternalReferenceAsOperand(limit_address, edi)); Label profiler_enabled, end_profiler_check; __ Move(eax, Immediate(ExternalReference::is_profiling_address(isolate))); __ cmpb(Operand(eax, 0), Immediate(0)); __ j(not_zero, &profiler_enabled); __ Move(eax, Immediate(ExternalReference::address_of_runtime_stats_flag())); __ cmp(Operand(eax, 0), Immediate(0)); __ j(not_zero, &profiler_enabled); { // Call the api function directly. __ mov(eax, function_address); __ jmp(&end_profiler_check); } __ bind(&profiler_enabled); { // Additional parameter is the address of the actual getter function. __ mov(thunk_last_arg, function_address); __ Move(eax, Immediate(thunk_ref)); } __ bind(&end_profiler_check); // Call the api function. __ call(eax); Label prologue; // Load the value from ReturnValue __ mov(eax, return_value_operand); Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; __ bind(&prologue); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ mov(__ ExternalReferenceAsOperand(next_address, ecx), esi); __ sub(__ ExternalReferenceAsOperand(level_address, ecx), Immediate(1)); __ Assert(above_equal, AbortReason::kInvalidHandleScopeLevel); __ cmp(edi, __ ExternalReferenceAsOperand(limit_address, ecx)); __ j(not_equal, &delete_allocated_handles); // Leave the API exit frame. __ bind(&leave_exit_frame); if (stack_space_operand != nullptr) { DCHECK_EQ(stack_space, 0); __ mov(edx, *stack_space_operand); } __ LeaveApiExitFrame(); // Check if the function scheduled an exception. ExternalReference scheduled_exception_address = ExternalReference::scheduled_exception_address(isolate); __ mov(ecx, __ ExternalReferenceAsOperand(scheduled_exception_address, ecx)); __ CompareRoot(ecx, RootIndex::kTheHoleValue); __ j(not_equal, &promote_scheduled_exception); #if DEBUG // Check if the function returned a valid JavaScript value. Label ok; Register return_value = eax; Register map = ecx; __ JumpIfSmi(return_value, &ok, Label::kNear); __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset)); __ CmpInstanceType(map, LAST_NAME_TYPE); __ j(below_equal, &ok, Label::kNear); __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); __ j(above_equal, &ok, Label::kNear); __ CompareRoot(map, RootIndex::kHeapNumberMap); __ j(equal, &ok, Label::kNear); __ CompareRoot(map, RootIndex::kBigIntMap); __ j(equal, &ok, Label::kNear); __ CompareRoot(return_value, RootIndex::kUndefinedValue); __ j(equal, &ok, Label::kNear); __ CompareRoot(return_value, RootIndex::kTrueValue); __ j(equal, &ok, Label::kNear); __ CompareRoot(return_value, RootIndex::kFalseValue); __ j(equal, &ok, Label::kNear); __ CompareRoot(return_value, RootIndex::kNullValue); __ j(equal, &ok, Label::kNear); __ Abort(AbortReason::kAPICallReturnedInvalidObject); __ bind(&ok); #endif if (stack_space_operand == nullptr) { DCHECK_NE(stack_space, 0); __ ret(stack_space * kSystemPointerSize); } else { DCHECK_EQ(0, stack_space); __ pop(ecx); __ add(esp, edx); __ jmp(ecx); } // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. ExternalReference delete_extensions = ExternalReference::delete_handle_scope_extensions(); __ bind(&delete_allocated_handles); __ mov(__ ExternalReferenceAsOperand(limit_address, ecx), edi); __ mov(edi, eax); __ Move(eax, Immediate(ExternalReference::isolate_address(isolate))); __ mov(Operand(esp, 0), eax); __ Move(eax, Immediate(delete_extensions)); __ call(eax); __ mov(eax, edi); __ jmp(&leave_exit_frame); } } // namespace void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- esi : context // -- edx : api function address // -- ecx : arguments count (not including the receiver) // -- eax : call data // -- edi : holder // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[argc * 4] : first argument // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Register api_function_address = edx; Register argc = ecx; Register call_data = eax; Register holder = edi; // Park argc in xmm0. __ movd(xmm0, argc); DCHECK(!AreAliased(api_function_address, argc, holder)); using FCA = FunctionCallbackArguments; STATIC_ASSERT(FCA::kArgsLength == 6); STATIC_ASSERT(FCA::kNewTargetIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); // Set up FunctionCallbackInfo's implicit_args on the stack as follows: // // Current state: // esp[0]: return address // // Target state: // esp[0 * kSystemPointerSize]: return address // esp[1 * kSystemPointerSize]: kHolder // esp[2 * kSystemPointerSize]: kIsolate // esp[3 * kSystemPointerSize]: undefined (kReturnValueDefaultValue) // esp[4 * kSystemPointerSize]: undefined (kReturnValue) // esp[5 * kSystemPointerSize]: kData // esp[6 * kSystemPointerSize]: undefined (kNewTarget) __ PopReturnAddressTo(ecx); __ PushRoot(RootIndex::kUndefinedValue); __ Push(call_data); __ PushRoot(RootIndex::kUndefinedValue); __ PushRoot(RootIndex::kUndefinedValue); __ Push(Immediate(ExternalReference::isolate_address(masm->isolate()))); __ Push(holder); __ PushReturnAddressFrom(ecx); // Reload argc from xmm0. __ movd(argc, xmm0); // Keep a pointer to kHolder (= implicit_args) in a scratch register. // We use it below to set up the FunctionCallbackInfo object. Register scratch = eax; __ lea(scratch, Operand(esp, 1 * kSystemPointerSize)); // The API function takes a reference to v8::Arguments. If the CPU profiler // is enabled, a wrapper function will be called and we need to pass // the address of the callback as an additional parameter. Always allocate // space for it. static constexpr int kApiArgc = 1 + 1; // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. static constexpr int kApiStackSpace = 4; PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace, edi); // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). __ mov(ApiParameterOperand(kApiArgc + 0), scratch); // FunctionCallbackInfo::values_ (points at the first varargs argument passed // on the stack). __ lea(scratch, Operand(scratch, argc, times_system_pointer_size, (FCA::kArgsLength - 1) * kSystemPointerSize)); __ mov(ApiParameterOperand(kApiArgc + 1), scratch); // FunctionCallbackInfo::length_. __ mov(ApiParameterOperand(kApiArgc + 2), argc); // We also store the number of bytes to drop from the stack after returning // from the API function here. __ lea(scratch, Operand(argc, times_system_pointer_size, (FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize)); __ mov(ApiParameterOperand(kApiArgc + 3), scratch); // v8::InvocationCallback's argument. __ lea(scratch, ApiParameterOperand(kApiArgc + 0)); __ mov(ApiParameterOperand(0), scratch); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); // There are two stack slots above the arguments we constructed on the stack: // the stored ebp (pushed by EnterApiExitFrame), and the return address. static constexpr int kStackSlotsAboveFCA = 2; Operand return_value_operand( ebp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize); static constexpr int kUseStackSpaceOperand = 0; Operand stack_space_operand = ApiParameterOperand(kApiArgc + 3); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, ApiParameterOperand(1), kUseStackSpaceOperand, &stack_space_operand, return_value_operand); } void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = edi; DCHECK(!AreAliased(receiver, holder, callback, scratch)); __ pop(scratch); // Pop return address to extend the frame. __ push(receiver); __ push(FieldOperand(callback, AccessorInfo::kDataOffset)); __ PushRoot(RootIndex::kUndefinedValue); // ReturnValue // ReturnValue default value __ PushRoot(RootIndex::kUndefinedValue); __ Push(Immediate(ExternalReference::isolate_address(masm->isolate()))); __ push(holder); __ push(Immediate(Smi::zero())); // should_throw_on_error -> false __ push(FieldOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // Restore return address. // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Allocate v8::PropertyCallbackInfo object, arguments for callback and // space for optional callback address parameter (in case CPU profiler is // active) in non-GCed stack space. const int kApiArgc = 3 + 1; PrepareCallApiFunction(masm, kApiArgc, scratch); // Load address of v8::PropertyAccessorInfo::args_ array. The value in ebp // here corresponds to esp + kSystemPointerSize before PrepareCallApiFunction. __ lea(scratch, Operand(ebp, kSystemPointerSize + 2 * kSystemPointerSize)); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. Operand info_object = ApiParameterOperand(3); __ mov(info_object, scratch); // Name as handle. __ sub(scratch, Immediate(kSystemPointerSize)); __ mov(ApiParameterOperand(0), scratch); // Arguments pointer. __ lea(scratch, info_object); __ mov(ApiParameterOperand(1), scratch); // Reserve space for optional callback address parameter. Operand thunk_last_arg = ApiParameterOperand(2); ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); Register function_address = edx; __ mov(function_address, FieldOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. Operand return_value_operand( ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize); Operand* const kUseStackSpaceConstant = nullptr; CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg, kStackUnwindSpace, kUseStackSpaceConstant, return_value_operand); } void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { __ int3(); // Unused on this architecture. } namespace { enum Direction { FORWARD, BACKWARD }; enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED }; // Expects registers: // esi - source, aligned if alignment == ALIGNED // edi - destination, always aligned // ecx - count (copy size in bytes) // edx - loop count (number of 64 byte chunks) void MemMoveEmitMainLoop(MacroAssembler* masm, Label* move_last_15, Direction direction, Alignment alignment) { Register src = esi; Register dst = edi; Register count = ecx; Register loop_count = edx; Label loop, move_last_31, move_last_63; __ cmp(loop_count, 0); __ j(equal, &move_last_63); __ bind(&loop); // Main loop. Copy in 64 byte chunks. if (direction == BACKWARD) __ sub(src, Immediate(0x40)); __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00)); __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10)); __ movdq(alignment == MOVE_ALIGNED, xmm2, Operand(src, 0x20)); __ movdq(alignment == MOVE_ALIGNED, xmm3, Operand(src, 0x30)); if (direction == FORWARD) __ add(src, Immediate(0x40)); if (direction == BACKWARD) __ sub(dst, Immediate(0x40)); __ movdqa(Operand(dst, 0x00), xmm0); __ movdqa(Operand(dst, 0x10), xmm1); __ movdqa(Operand(dst, 0x20), xmm2); __ movdqa(Operand(dst, 0x30), xmm3); if (direction == FORWARD) __ add(dst, Immediate(0x40)); __ dec(loop_count); __ j(not_zero, &loop); // At most 63 bytes left to copy. __ bind(&move_last_63); __ test(count, Immediate(0x20)); __ j(zero, &move_last_31); if (direction == BACKWARD) __ sub(src, Immediate(0x20)); __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00)); __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10)); if (direction == FORWARD) __ add(src, Immediate(0x20)); if (direction == BACKWARD) __ sub(dst, Immediate(0x20)); __ movdqa(Operand(dst, 0x00), xmm0); __ movdqa(Operand(dst, 0x10), xmm1); if (direction == FORWARD) __ add(dst, Immediate(0x20)); // At most 31 bytes left to copy. __ bind(&move_last_31); __ test(count, Immediate(0x10)); __ j(zero, move_last_15); if (direction == BACKWARD) __ sub(src, Immediate(0x10)); __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0)); if (direction == FORWARD) __ add(src, Immediate(0x10)); if (direction == BACKWARD) __ sub(dst, Immediate(0x10)); __ movdqa(Operand(dst, 0), xmm0); if (direction == FORWARD) __ add(dst, Immediate(0x10)); } void MemMoveEmitPopAndReturn(MacroAssembler* masm) { __ pop(esi); __ pop(edi); __ ret(0); } } // namespace void Builtins::Generate_MemMove(MacroAssembler* masm) { // Generated code is put into a fixed, unmovable buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses // (e.g. the JavaScript nan-object). // 32-bit C declaration function calls pass arguments on stack. // Stack layout: // esp[12]: Third argument, size. // esp[8]: Second argument, source pointer. // esp[4]: First argument, destination pointer. // esp[0]: return address const int kDestinationOffset = 1 * kSystemPointerSize; const int kSourceOffset = 2 * kSystemPointerSize; const int kSizeOffset = 3 * kSystemPointerSize; // When copying up to this many bytes, use special "small" handlers. const size_t kSmallCopySize = 8; // When copying up to this many bytes, use special "medium" handlers. const size_t kMediumCopySize = 63; // When non-overlapping region of src and dst is less than this, // use a more careful implementation (slightly slower). const size_t kMinMoveDistance = 16; // Note that these values are dictated by the implementation below, // do not just change them and hope things will work! int stack_offset = 0; // Update if we change the stack height. Label backward, backward_much_overlap; Label forward_much_overlap, small_size, medium_size, pop_and_return; __ push(edi); __ push(esi); stack_offset += 2 * kSystemPointerSize; Register dst = edi; Register src = esi; Register count = ecx; Register loop_count = edx; __ mov(dst, Operand(esp, stack_offset + kDestinationOffset)); __ mov(src, Operand(esp, stack_offset + kSourceOffset)); __ mov(count, Operand(esp, stack_offset + kSizeOffset)); __ cmp(dst, src); __ j(equal, &pop_and_return); __ prefetch(Operand(src, 0), 1); __ cmp(count, kSmallCopySize); __ j(below_equal, &small_size); __ cmp(count, kMediumCopySize); __ j(below_equal, &medium_size); __ cmp(dst, src); __ j(above, &backward); { // |dst| is a lower address than |src|. Copy front-to-back. Label unaligned_source, move_last_15, skip_last_move; __ mov(eax, src); __ sub(eax, dst); __ cmp(eax, kMinMoveDistance); __ j(below, &forward_much_overlap); // Copy first 16 bytes. __ movdqu(xmm0, Operand(src, 0)); __ movdqu(Operand(dst, 0), xmm0); // Determine distance to alignment: 16 - (dst & 0xF). __ mov(edx, dst); __ and_(edx, 0xF); __ neg(edx); __ add(edx, Immediate(16)); __ add(dst, edx); __ add(src, edx); __ sub(count, edx); // dst is now aligned. Main copy loop. __ mov(loop_count, count); __ shr(loop_count, 6); // Check if src is also aligned. __ test(src, Immediate(0xF)); __ j(not_zero, &unaligned_source); // Copy loop for aligned source and destination. MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_ALIGNED); // At most 15 bytes to copy. Copy 16 bytes at end of string. __ bind(&move_last_15); __ and_(count, 0xF); __ j(zero, &skip_last_move, Label::kNear); __ movdqu(xmm0, Operand(src, count, times_1, -0x10)); __ movdqu(Operand(dst, count, times_1, -0x10), xmm0); __ bind(&skip_last_move); MemMoveEmitPopAndReturn(masm); // Copy loop for unaligned source and aligned destination. __ bind(&unaligned_source); MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_UNALIGNED); __ jmp(&move_last_15); // Less than kMinMoveDistance offset between dst and src. Label loop_until_aligned, last_15_much_overlap; __ bind(&loop_until_aligned); __ mov_b(eax, Operand(src, 0)); __ inc(src); __ mov_b(Operand(dst, 0), eax); __ inc(dst); __ dec(count); __ bind(&forward_much_overlap); // Entry point into this block. __ test(dst, Immediate(0xF)); __ j(not_zero, &loop_until_aligned); // dst is now aligned, src can't be. Main copy loop. __ mov(loop_count, count); __ shr(loop_count, 6); MemMoveEmitMainLoop(masm, &last_15_much_overlap, FORWARD, MOVE_UNALIGNED); __ bind(&last_15_much_overlap); __ and_(count, 0xF); __ j(zero, &pop_and_return); __ cmp(count, kSmallCopySize); __ j(below_equal, &small_size); __ jmp(&medium_size); } { // |dst| is a higher address than |src|. Copy backwards. Label unaligned_source, move_first_15, skip_last_move; __ bind(&backward); // |dst| and |src| always point to the end of what's left to copy. __ add(dst, count); __ add(src, count); __ mov(eax, dst); __ sub(eax, src); __ cmp(eax, kMinMoveDistance); __ j(below, &backward_much_overlap); // Copy last 16 bytes. __ movdqu(xmm0, Operand(src, -0x10)); __ movdqu(Operand(dst, -0x10), xmm0); // Find distance to alignment: dst & 0xF __ mov(edx, dst); __ and_(edx, 0xF); __ sub(dst, edx); __ sub(src, edx); __ sub(count, edx); // dst is now aligned. Main copy loop. __ mov(loop_count, count); __ shr(loop_count, 6); // Check if src is also aligned. __ test(src, Immediate(0xF)); __ j(not_zero, &unaligned_source); // Copy loop for aligned source and destination. MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_ALIGNED); // At most 15 bytes to copy. Copy 16 bytes at beginning of string. __ bind(&move_first_15); __ and_(count, 0xF); __ j(zero, &skip_last_move, Label::kNear); __ sub(src, count); __ sub(dst, count); __ movdqu(xmm0, Operand(src, 0)); __ movdqu(Operand(dst, 0), xmm0); __ bind(&skip_last_move); MemMoveEmitPopAndReturn(masm); // Copy loop for unaligned source and aligned destination. __ bind(&unaligned_source); MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_UNALIGNED); __ jmp(&move_first_15); // Less than kMinMoveDistance offset between dst and src. Label loop_until_aligned, first_15_much_overlap; __ bind(&loop_until_aligned); __ dec(src); __ dec(dst); __ mov_b(eax, Operand(src, 0)); __ mov_b(Operand(dst, 0), eax); __ dec(count); __ bind(&backward_much_overlap); // Entry point into this block. __ test(dst, Immediate(0xF)); __ j(not_zero, &loop_until_aligned); // dst is now aligned, src can't be. Main copy loop. __ mov(loop_count, count); __ shr(loop_count, 6); MemMoveEmitMainLoop(masm, &first_15_much_overlap, BACKWARD, MOVE_UNALIGNED); __ bind(&first_15_much_overlap); __ and_(count, 0xF); __ j(zero, &pop_and_return); // Small/medium handlers expect dst/src to point to the beginning. __ sub(dst, count); __ sub(src, count); __ cmp(count, kSmallCopySize); __ j(below_equal, &small_size); __ jmp(&medium_size); } { // Special handlers for 9 <= copy_size < 64. No assumptions about // alignment or move distance, so all reads must be unaligned and // must happen before any writes. Label f9_16, f17_32, f33_48, f49_63; __ bind(&f9_16); __ movsd(xmm0, Operand(src, 0)); __ movsd(xmm1, Operand(src, count, times_1, -8)); __ movsd(Operand(dst, 0), xmm0); __ movsd(Operand(dst, count, times_1, -8), xmm1); MemMoveEmitPopAndReturn(masm); __ bind(&f17_32); __ movdqu(xmm0, Operand(src, 0)); __ movdqu(xmm1, Operand(src, count, times_1, -0x10)); __ movdqu(Operand(dst, 0x00), xmm0); __ movdqu(Operand(dst, count, times_1, -0x10), xmm1); MemMoveEmitPopAndReturn(masm); __ bind(&f33_48); __ movdqu(xmm0, Operand(src, 0x00)); __ movdqu(xmm1, Operand(src, 0x10)); __ movdqu(xmm2, Operand(src, count, times_1, -0x10)); __ movdqu(Operand(dst, 0x00), xmm0); __ movdqu(Operand(dst, 0x10), xmm1); __ movdqu(Operand(dst, count, times_1, -0x10), xmm2); MemMoveEmitPopAndReturn(masm); __ bind(&f49_63); __ movdqu(xmm0, Operand(src, 0x00)); __ movdqu(xmm1, Operand(src, 0x10)); __ movdqu(xmm2, Operand(src, 0x20)); __ movdqu(xmm3, Operand(src, count, times_1, -0x10)); __ movdqu(Operand(dst, 0x00), xmm0); __ movdqu(Operand(dst, 0x10), xmm1); __ movdqu(Operand(dst, 0x20), xmm2); __ movdqu(Operand(dst, count, times_1, -0x10), xmm3); MemMoveEmitPopAndReturn(masm); __ bind(&medium_size); // Entry point into this block. __ mov(eax, count); __ dec(eax); __ shr(eax, 4); if (FLAG_debug_code) { Label ok; __ cmp(eax, 3); __ j(below_equal, &ok); __ int3(); __ bind(&ok); } // Dispatch to handlers. Label eax_is_2_or_3; __ cmp(eax, 1); __ j(greater, &eax_is_2_or_3); __ j(less, &f9_16); // eax == 0. __ jmp(&f17_32); // eax == 1. __ bind(&eax_is_2_or_3); __ cmp(eax, 3); __ j(less, &f33_48); // eax == 2. __ jmp(&f49_63); // eax == 3. } { // Specialized copiers for copy_size <= 8 bytes. Label f0, f1, f2, f3, f4, f5_8; __ bind(&f0); MemMoveEmitPopAndReturn(masm); __ bind(&f1); __ mov_b(eax, Operand(src, 0)); __ mov_b(Operand(dst, 0), eax); MemMoveEmitPopAndReturn(masm); __ bind(&f2); __ mov_w(eax, Operand(src, 0)); __ mov_w(Operand(dst, 0), eax); MemMoveEmitPopAndReturn(masm); __ bind(&f3); __ mov_w(eax, Operand(src, 0)); __ mov_b(edx, Operand(src, 2)); __ mov_w(Operand(dst, 0), eax); __ mov_b(Operand(dst, 2), edx); MemMoveEmitPopAndReturn(masm); __ bind(&f4); __ mov(eax, Operand(src, 0)); __ mov(Operand(dst, 0), eax); MemMoveEmitPopAndReturn(masm); __ bind(&f5_8); __ mov(eax, Operand(src, 0)); __ mov(edx, Operand(src, count, times_1, -4)); __ mov(Operand(dst, 0), eax); __ mov(Operand(dst, count, times_1, -4), edx); MemMoveEmitPopAndReturn(masm); __ bind(&small_size); // Entry point into this block. if (FLAG_debug_code) { Label ok; __ cmp(count, 8); __ j(below_equal, &ok); __ int3(); __ bind(&ok); } // Dispatch to handlers. Label count_is_above_3, count_is_2_or_3; __ cmp(count, 3); __ j(greater, &count_is_above_3); __ cmp(count, 1); __ j(greater, &count_is_2_or_3); __ j(less, &f0); // count == 0. __ jmp(&f1); // count == 1. __ bind(&count_is_2_or_3); __ cmp(count, 3); __ j(less, &f2); // count == 2. __ jmp(&f3); // count == 3. __ bind(&count_is_above_3); __ cmp(count, 5); __ j(less, &f4); // count == 4. __ jmp(&f5_8); // count in [5, 8[. } __ bind(&pop_and_return); MemMoveEmitPopAndReturn(masm); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32