// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/arm64/utils-arm64.h" namespace v8 { namespace internal { #define __ assm-> uint32_t float_sign(float val) { uint32_t bits = bit_cast(val); return unsigned_bitextract_32(31, 31, bits); } uint32_t float_exp(float val) { uint32_t bits = bit_cast(val); return unsigned_bitextract_32(30, 23, bits); } uint32_t float_mantissa(float val) { uint32_t bits = bit_cast(val); return unsigned_bitextract_32(22, 0, bits); } uint32_t double_sign(double val) { uint64_t bits = bit_cast(val); return static_cast(unsigned_bitextract_64(63, 63, bits)); } uint32_t double_exp(double val) { uint64_t bits = bit_cast(val); return static_cast(unsigned_bitextract_64(62, 52, bits)); } uint64_t double_mantissa(double val) { uint64_t bits = bit_cast(val); return unsigned_bitextract_64(51, 0, bits); } float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa) { uint32_t bits = sign << kFloatExponentBits | exp; return bit_cast((bits << kFloatMantissaBits) | mantissa); } double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa) { uint64_t bits = sign << kDoubleExponentBits | exp; return bit_cast((bits << kDoubleMantissaBits) | mantissa); } int float16classify(float16 value) { const uint16_t exponent_max = (1 << kFloat16ExponentBits) - 1; const uint16_t exponent_mask = exponent_max << kFloat16MantissaBits; const uint16_t mantissa_mask = (1 << kFloat16MantissaBits) - 1; const uint16_t exponent = (value & exponent_mask) >> kFloat16MantissaBits; const uint16_t mantissa = value & mantissa_mask; if (exponent == 0) { if (mantissa == 0) { return FP_ZERO; } return FP_SUBNORMAL; } else if (exponent == exponent_max) { if (mantissa == 0) { return FP_INFINITE; } return FP_NAN; } return FP_NORMAL; } int CountLeadingZeros(uint64_t value, int width) { DCHECK(base::bits::IsPowerOfTwo(width) && (width <= 64)); if (value == 0) { return width; } return base::bits::CountLeadingZeros64(value << (64 - width)); } int CountLeadingSignBits(int64_t value, int width) { DCHECK(base::bits::IsPowerOfTwo(width) && (width <= 64)); if (value >= 0) { return CountLeadingZeros(value, width) - 1; } else { return CountLeadingZeros(~value, width) - 1; } } int CountTrailingZeros(uint64_t value, int width) { DCHECK((width == 32) || (width == 64)); if (width == 64) { return static_cast(base::bits::CountTrailingZeros64(value)); } return static_cast(base::bits::CountTrailingZeros32( static_cast(value & 0xFFFFFFFFF))); } int CountSetBits(uint64_t value, int width) { DCHECK((width == 32) || (width == 64)); if (width == 64) { return static_cast(base::bits::CountPopulation(value)); } return static_cast( base::bits::CountPopulation(static_cast(value & 0xFFFFFFFFF))); } int LowestSetBitPosition(uint64_t value) { DCHECK_NE(value, 0U); return CountTrailingZeros(value, 64) + 1; } int HighestSetBitPosition(uint64_t value) { DCHECK_NE(value, 0U); return 63 - CountLeadingZeros(value, 64); } uint64_t LargestPowerOf2Divisor(uint64_t value) { return value & -value; } int MaskToBit(uint64_t mask) { DCHECK_EQ(CountSetBits(mask, 64), 1); return CountTrailingZeros(mask, 64); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64