// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/api-arguments.h" #include "src/arm64/assembler-arm64-inl.h" #include "src/arm64/macro-assembler-arm64-inl.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/counters.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/heap/heap-inl.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/objects/api-callbacks.h" #include "src/objects/regexp-match-info.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" #include "src/arm64/code-stubs-arm64.h" // Cannot be the first include. namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) // This is the entry point from C++. 5 arguments are provided in x0-x4. // See use of the JSEntryFunction for example in src/execution.cc. // Input: // x0: code entry. // x1: function. // x2: receiver. // x3: argc. // x4: argv. // Output: // x0: result. void JSEntryStub::Generate(MacroAssembler* masm) { Label invoke, handler_entry, exit; Register code_entry = x0; { NoRootArrayScope no_root_array(masm); // Enable instruction instrumentation. This only works on the simulator, and // will have no effect on the model or real hardware. __ EnableInstrumentation(); __ PushCalleeSavedRegisters(); ProfileEntryHookStub::MaybeCallEntryHook(masm); // Set up the reserved register for 0.0. __ Fmov(fp_zero, 0.0); // Initialize the root array register __ InitializeRootRegister(); } // Build an entry frame (see layout below). StackFrame::Type marker = type(); int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. __ Mov(x13, bad_frame_pointer); __ Mov(x12, StackFrame::TypeToMarker(marker)); __ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); __ Ldr(x10, MemOperand(x11)); __ Push(x13, x12, xzr, x10); // Set up fp. __ Sub(fp, sp, EntryFrameConstants::kCallerFPOffset); // Push the JS entry frame marker. Also set js_entry_sp if this is the // outermost JS call. Label non_outermost_js, done; ExternalReference js_entry_sp = ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, isolate()); __ Mov(x10, js_entry_sp); __ Ldr(x11, MemOperand(x10)); // Select between the inner and outermost frame marker, based on the JS entry // sp. We assert that the inner marker is zero, so we can use xzr to save a // move instruction. DCHECK_EQ(StackFrame::INNER_JSENTRY_FRAME, 0); __ Cmp(x11, 0); // If x11 is zero, this is the outermost frame. __ Csel(x12, xzr, StackFrame::OUTERMOST_JSENTRY_FRAME, ne); __ B(ne, &done); __ Str(fp, MemOperand(x10)); __ Bind(&done); __ Push(x12, padreg); // The frame set up looks like this: // sp[0] : padding. // sp[1] : JS entry frame marker. // sp[2] : C entry FP. // sp[3] : stack frame marker. // sp[4] : stack frame marker. // sp[5] : bad frame pointer 0xFFF...FF <- fp points here. // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ B(&invoke); // Prevent the constant pool from being emitted between the record of the // handler_entry position and the first instruction of the sequence here. // There is no risk because Assembler::Emit() emits the instruction before // checking for constant pool emission, but we do not want to depend on // that. { Assembler::BlockPoolsScope block_pools(masm); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushTryHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ Mov(x10, Operand(ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, isolate()))); } __ Str(code_entry, MemOperand(x10)); __ LoadRoot(x0, RootIndex::kException); __ B(&exit); // Invoke: Link this frame into the handler chain. __ Bind(&invoke); // Push new stack handler. static_assert(StackHandlerConstants::kSize == 2 * kPointerSize, "Unexpected offset for StackHandlerConstants::kSize"); static_assert(StackHandlerConstants::kNextOffset == 0 * kPointerSize, "Unexpected offset for StackHandlerConstants::kNextOffset"); // Link the current handler as the next handler. __ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); __ Ldr(x10, MemOperand(x11)); __ Push(padreg, x10); // Set this new handler as the current one. { UseScratchRegisterScope temps(masm); Register scratch = temps.AcquireX(); __ Mov(scratch, sp); __ Str(scratch, MemOperand(x11)); } // If an exception not caught by another handler occurs, this handler // returns control to the code after the B(&invoke) above, which // restores all callee-saved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through the JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // x0: code entry. // x1: function. // x2: receiver. // x3: argc. // x4: argv. __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); // Pop the stack handler and unlink this frame from the handler chain. static_assert(StackHandlerConstants::kNextOffset == 0 * kPointerSize, "Unexpected offset for StackHandlerConstants::kNextOffset"); __ Pop(x10, padreg); __ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); __ Drop(StackHandlerConstants::kSlotCount - 2); __ Str(x10, MemOperand(x11)); __ Bind(&exit); // x0 holds the result. // The stack pointer points to the top of the entry frame pushed on entry from // C++ (at the beginning of this stub): // sp[0] : padding. // sp[1] : JS entry frame marker. // sp[2] : C entry FP. // sp[3] : stack frame marker. // sp[4] : stack frame marker. // sp[5] : bad frame pointer 0xFFF...FF <- fp points here. // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; { Register c_entry_fp = x11; __ PeekPair(x10, c_entry_fp, 1 * kPointerSize); __ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME); __ B(ne, &non_outermost_js_2); __ Mov(x12, js_entry_sp); __ Str(xzr, MemOperand(x12)); __ Bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ Mov(x12, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); __ Str(c_entry_fp, MemOperand(x12)); } // Reset the stack to the callee saved registers. static_assert(EntryFrameConstants::kFixedFrameSize % (2 * kPointerSize) == 0, "Size of entry frame is not a multiple of 16 bytes"); __ Drop(EntryFrameConstants::kFixedFrameSize / kPointerSize); // Restore the callee-saved registers and return. __ PopCalleeSavedRegisters(); __ Ret(); } // The entry hook is a Push (stp) instruction, followed by a near call. static const unsigned int kProfileEntryHookCallSize = (1 * kInstrSize) + Assembler::kNearCallSize; void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, Zone* zone) { if (tasm->isolate()->function_entry_hook() != nullptr) { Assembler::BlockConstPoolScope no_const_pools(tasm); DontEmitDebugCodeScope no_debug_code(tasm); Label entry_hook_call_start; tasm->Bind(&entry_hook_call_start); tasm->Push(padreg, lr); tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); DCHECK_EQ(tasm->SizeOfCodeGeneratedSince(&entry_hook_call_start), kProfileEntryHookCallSize); tasm->Pop(lr, padreg); } } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != nullptr) { ProfileEntryHookStub stub(masm->isolate()); Assembler::BlockConstPoolScope no_const_pools(masm); DontEmitDebugCodeScope no_debug_code(masm); Label entry_hook_call_start; __ Bind(&entry_hook_call_start); __ Push(padreg, lr); __ CallStub(&stub); DCHECK_EQ(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start), kProfileEntryHookCallSize); __ Pop(lr, padreg); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { HardAbortScope hard_aborts(masm); // Save all kCallerSaved registers (including lr), since this can be called // from anywhere. // TODO(jbramley): What about FP registers? __ PushCPURegList(kCallerSaved); DCHECK(kCallerSaved.IncludesAliasOf(lr)); const int kNumSavedRegs = kCallerSaved.Count(); DCHECK_EQ(kNumSavedRegs % 2, 0); // Compute the function's address as the first argument. __ Sub(x0, lr, kProfileEntryHookCallSize); #if V8_HOST_ARCH_ARM64 uintptr_t entry_hook = reinterpret_cast(isolate()->function_entry_hook()); __ Mov(x10, entry_hook); #else // Under the simulator we need to indirect the entry hook through a trampoline // function at a known address. ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ Mov(x10, Operand(ExternalReference::Create( &dispatcher, ExternalReference::BUILTIN_CALL))); // It additionally takes an isolate as a third parameter __ Mov(x2, ExternalReference::isolate_address(isolate())); #endif // The caller's return address is above the saved temporaries. // Grab its location for the second argument to the hook. __ SlotAddress(x1, kNumSavedRegs); { // Create a dummy frame, as CallCFunction requires this. FrameScope frame(masm, StackFrame::MANUAL); __ CallCFunction(x10, 2, 0); } __ PopCPURegList(kCallerSaved); __ Ret(); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // Put return address on the stack (accessible to GC through exit frame pc). __ Poke(lr, 0); // Call the C++ function. __ Blr(x10); // Return to calling code. __ Peek(lr, 0); __ AssertFPCRState(); __ Ret(); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { // Branch to the stub. __ Mov(x10, target); __ Call(GetCode(), RelocInfo::CODE_TARGET); } // The number of register that CallApiFunctionAndReturn will need to save on // the stack. The space for these registers need to be allocated in the // ExitFrame before calling CallApiFunctionAndReturn. static const int kCallApiFunctionSpillSpace = 4; static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return static_cast(ref0.address() - ref1.address()); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. // 'stack_space' is the space to be unwound on exit (includes the call JS // arguments space and the additional space allocated for the fast call). // 'spill_offset' is the offset from the stack pointer where // CallApiFunctionAndReturn can spill registers. static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, int spill_offset, MemOperand return_value_operand) { ASM_LOCATION("CallApiFunctionAndReturn"); Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); DCHECK(function_address.is(x1) || function_address.is(x2)); Label profiler_disabled; Label end_profiler_check; __ Mov(x10, ExternalReference::is_profiling_address(isolate)); __ Ldrb(w10, MemOperand(x10)); __ Cbz(w10, &profiler_disabled); __ Mov(x3, thunk_ref); __ B(&end_profiler_check); __ Bind(&profiler_disabled); __ Mov(x3, function_address); __ Bind(&end_profiler_check); // Save the callee-save registers we are going to use. // TODO(all): Is this necessary? ARM doesn't do it. STATIC_ASSERT(kCallApiFunctionSpillSpace == 4); __ Poke(x19, (spill_offset + 0) * kXRegSize); __ Poke(x20, (spill_offset + 1) * kXRegSize); __ Poke(x21, (spill_offset + 2) * kXRegSize); __ Poke(x22, (spill_offset + 3) * kXRegSize); // Allocate HandleScope in callee-save registers. // We will need to restore the HandleScope after the call to the API function, // by allocating it in callee-save registers they will be preserved by C code. Register handle_scope_base = x22; Register next_address_reg = x19; Register limit_reg = x20; Register level_reg = w21; __ Mov(handle_scope_base, next_address); __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset)); __ Add(level_reg, level_reg, 1); __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ Mov(x0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::log_enter_external_function(), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, x3); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ Mov(x0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::log_leave_external_function(), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // Load value from ReturnValue. __ Ldr(x0, return_value_operand); __ Bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); if (__ emit_debug_code()) { __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset)); __ Cmp(w1, level_reg); __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); } __ Sub(level_reg, level_reg, 1); __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset)); __ Cmp(limit_reg, x1); __ B(ne, &delete_allocated_handles); // Leave the API exit frame. __ Bind(&leave_exit_frame); // Restore callee-saved registers. __ Peek(x19, (spill_offset + 0) * kXRegSize); __ Peek(x20, (spill_offset + 1) * kXRegSize); __ Peek(x21, (spill_offset + 2) * kXRegSize); __ Peek(x22, (spill_offset + 3) * kXRegSize); __ LeaveExitFrame(false, x1, x5); // Check if the function scheduled an exception. __ Mov(x5, ExternalReference::scheduled_exception_address(isolate)); __ Ldr(x5, MemOperand(x5)); __ JumpIfNotRoot(x5, RootIndex::kTheHoleValue, &promote_scheduled_exception); __ DropSlots(stack_space); __ Ret(); // Re-throw by promoting a scheduled exception. __ Bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ Bind(&delete_allocated_handles); __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); // Save the return value in a callee-save register. Register saved_result = x19; __ Mov(saved_result, x0); __ Mov(x0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); __ Mov(x0, saved_result); __ B(&leave_exit_frame); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x4 : call_data // -- x2 : holder // -- x1 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1) * 8] : first argument // -- sp[argc * 8] : receiver // ----------------------------------- Register call_data = x4; Register holder = x2; Register api_function_address = x1; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kArgsLength == 6); STATIC_ASSERT(FCA::kNewTargetIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); Register undef = x7; __ LoadRoot(undef, RootIndex::kUndefinedValue); // Push new target, call data. __ Push(undef, call_data); Register isolate_reg = x5; __ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate())); // FunctionCallbackArguments: // return value, return value default, isolate, holder. __ Push(undef, undef, isolate_reg, holder); // Prepare arguments. Register args = x6; __ Mov(args, sp); // Allocate the v8::Arguments structure in the arguments' space, since it's // not controlled by GC. const int kApiStackSpace = 3; // Allocate space so that CallApiFunctionAndReturn can store some scratch // registers on the stack. const int kCallApiFunctionSpillSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); DCHECK(!AreAliased(x0, api_function_address)); // x0 = FunctionCallbackInfo& // Arguments is after the return address. __ SlotAddress(x0, 1); // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_ __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ Mov(x10, argc()); __ Str(x10, MemOperand(x0, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); AllowExternalCallThatCantCauseGC scope(masm); // Stores return the first js argument int return_value_offset = 2 + FCA::kReturnValueOffset; MemOperand return_value_operand(fp, return_value_offset * kPointerSize); // The number of arguments might be odd, but will be padded when calling the // stub. We do not round up stack_space to account for odd argc here, this // will be done in CallApiFunctionAndReturn. const int stack_space = (argc() + 1) + FCA::kArgsLength; // The current frame needs to be aligned. DCHECK_EQ((stack_space - (argc() + 1)) % 2, 0); const int spill_offset = 1 + kApiStackSpace; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, spill_offset, return_value_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register data = x4; Register undef = x5; Register isolate_address = x6; Register name = x7; DCHECK(!AreAliased(receiver, holder, callback, data, undef, isolate_address, name)); __ Ldr(data, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ LoadRoot(undef, RootIndex::kUndefinedValue); __ Mov(isolate_address, ExternalReference::isolate_address(isolate())); __ Ldr(name, FieldMemOperand(callback, AccessorInfo::kNameOffset)); // PropertyCallbackArguments: // receiver, data, return value, return value default, isolate, holder, // should_throw_on_error // These are followed by the property name, which is also pushed below the // exit frame to make the GC aware of it. __ Push(receiver, data, undef, undef, isolate_address, holder, xzr, name); // v8::PropertyCallbackInfo::args_ array and name handle. static const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; static_assert(kStackUnwindSpace % 2 == 0, "slots must be a multiple of 2 for stack pointer alignment"); // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ Mov(x0, sp); // x0 = Handle __ Add(x1, x0, 1 * kPointerSize); // x1 = v8::PCI::args_ const int kApiStackSpace = 1; // Allocate space so that CallApiFunctionAndReturn can store some scratch // registers on the stack. const int kCallApiFunctionSpillSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ Poke(x1, 1 * kPointerSize); __ SlotAddress(x1, 1); // x1 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); Register api_function_address = x2; Register js_getter = x4; __ Ldr(js_getter, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ Ldr(api_function_address, FieldMemOperand(js_getter, Foreign::kForeignAddressOffset)); const int spill_offset = 1 + kApiStackSpace; // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, spill_offset, return_value_operand); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64