// Copyright 2013 the V8 project authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #if V8_TARGET_ARCH_ARM64 #include "src/arm64/assembler-arm64.h" #include "src/arm64/assembler-arm64-inl.h" #include "src/base/bits.h" #include "src/base/cpu.h" #include "src/code-stubs.h" #include "src/frame-constants.h" #include "src/register-configuration.h" #include "src/string-constants.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // CpuFeatures implementation. void CpuFeatures::ProbeImpl(bool cross_compile) { // AArch64 has no configuration options, no further probing is required. supported_ = 0; // Only use statically determined features for cross compile (snapshot). if (cross_compile) return; // We used to probe for coherent cache support, but on older CPUs it // causes crashes (crbug.com/524337), and newer CPUs don't even have // the feature any more. } void CpuFeatures::PrintTarget() { } void CpuFeatures::PrintFeatures() {} // ----------------------------------------------------------------------------- // CPURegList utilities. CPURegister CPURegList::PopLowestIndex() { DCHECK(IsValid()); if (IsEmpty()) { return NoCPUReg; } int index = CountTrailingZeros(list_, kRegListSizeInBits); DCHECK((1 << index) & list_); Remove(index); return CPURegister::Create(index, size_, type_); } CPURegister CPURegList::PopHighestIndex() { DCHECK(IsValid()); if (IsEmpty()) { return NoCPUReg; } int index = CountLeadingZeros(list_, kRegListSizeInBits); index = kRegListSizeInBits - 1 - index; DCHECK((1 << index) & list_); Remove(index); return CPURegister::Create(index, size_, type_); } void CPURegList::RemoveCalleeSaved() { if (type() == CPURegister::kRegister) { Remove(GetCalleeSaved(RegisterSizeInBits())); } else if (type() == CPURegister::kVRegister) { Remove(GetCalleeSavedV(RegisterSizeInBits())); } else { DCHECK_EQ(type(), CPURegister::kNoRegister); DCHECK(IsEmpty()); // The list must already be empty, so do nothing. } } CPURegList CPURegList::GetCalleeSaved(int size) { return CPURegList(CPURegister::kRegister, size, 19, 29); } CPURegList CPURegList::GetCalleeSavedV(int size) { return CPURegList(CPURegister::kVRegister, size, 8, 15); } CPURegList CPURegList::GetCallerSaved(int size) { // Registers x0-x18 and lr (x30) are caller-saved. CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18); list.Combine(lr); return list; } CPURegList CPURegList::GetCallerSavedV(int size) { // Registers d0-d7 and d16-d31 are caller-saved. CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7); list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31)); return list; } // This function defines the list of registers which are associated with a // safepoint slot. Safepoint register slots are saved contiguously on the stack. // MacroAssembler::SafepointRegisterStackIndex handles mapping from register // code to index in the safepoint register slots. Any change here can affect // this mapping. CPURegList CPURegList::GetSafepointSavedRegisters() { CPURegList list = CPURegList::GetCalleeSaved(); list.Combine( CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved)); // Note that unfortunately we can't use symbolic names for registers and have // to directly use register codes. This is because this function is used to // initialize some static variables and we can't rely on register variables // to be initialized due to static initialization order issues in C++. // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be // preserved outside of the macro assembler. list.Remove(16); list.Remove(17); // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it // is a caller-saved register according to the procedure call standard. list.Combine(18); // Add the link register (x30) to the safepoint list. list.Combine(30); return list; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo const int RelocInfo::kApplyMask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE); bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on ARM64 means that it is an immediate branch. Instruction* instr = reinterpret_cast(pc_); if (instr->IsLdrLiteralX()) { return false; } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); return true; } } bool RelocInfo::IsInConstantPool() { Instruction* instr = reinterpret_cast(pc_); return instr->IsLdrLiteralX(); } int RelocInfo::GetDeoptimizationId(Isolate* isolate, DeoptimizeKind kind) { DCHECK(IsRuntimeEntry(rmode_)); Instruction* movz_instr = reinterpret_cast(pc_)->preceding(); DCHECK(movz_instr->IsMovz()); uint64_t imm = static_cast(movz_instr->ImmMoveWide()) << (16 * movz_instr->ShiftMoveWide()); DCHECK_LE(imm, INT_MAX); return static_cast(imm); } void RelocInfo::set_js_to_wasm_address(Address address, ICacheFlushMode icache_flush_mode) { DCHECK_EQ(rmode_, JS_TO_WASM_CALL); Assembler::set_target_address_at(pc_, constant_pool_, address, icache_flush_mode); } Address RelocInfo::js_to_wasm_address() const { DCHECK_EQ(rmode_, JS_TO_WASM_CALL); return Assembler::target_address_at(pc_, constant_pool_); } uint32_t RelocInfo::wasm_call_tag() const { DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); Instruction* instr = reinterpret_cast(pc_); if (instr->IsLdrLiteralX()) { return static_cast( Memory
(Assembler::target_pointer_address_at(pc_))); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); return static_cast(instr->ImmPCOffset() / kInstrSize); } } bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { int number_of_valid_regs = 0; int number_of_valid_fpregs = 0; RegList unique_regs = 0; RegList unique_fpregs = 0; const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; for (unsigned i = 0; i < arraysize(regs); i++) { if (regs[i].IsRegister()) { number_of_valid_regs++; unique_regs |= regs[i].bit(); } else if (regs[i].IsVRegister()) { number_of_valid_fpregs++; unique_fpregs |= regs[i].bit(); } else { DCHECK(!regs[i].IsValid()); } } int number_of_unique_regs = CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte); int number_of_unique_fpregs = CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte); DCHECK(number_of_valid_regs >= number_of_unique_regs); DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs); return (number_of_valid_regs != number_of_unique_regs) || (number_of_valid_fpregs != number_of_unique_fpregs); } bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { DCHECK(reg1.IsValid()); bool match = true; match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1); match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1); match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1); match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1); match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1); match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1); match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1); return match; } bool AreSameFormat(const VRegister& reg1, const VRegister& reg2, const VRegister& reg3, const VRegister& reg4) { DCHECK(reg1.IsValid()); return (!reg2.IsValid() || reg2.IsSameFormat(reg1)) && (!reg3.IsValid() || reg3.IsSameFormat(reg1)) && (!reg4.IsValid() || reg4.IsSameFormat(reg1)); } bool AreConsecutive(const VRegister& reg1, const VRegister& reg2, const VRegister& reg3, const VRegister& reg4) { DCHECK(reg1.IsValid()); if (!reg2.IsValid()) { DCHECK(!reg3.IsValid() && !reg4.IsValid()); return true; } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfVRegisters)) { return false; } if (!reg3.IsValid()) { DCHECK(!reg4.IsValid()); return true; } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfVRegisters)) { return false; } if (!reg4.IsValid()) { return true; } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfVRegisters)) { return false; } return true; } void Immediate::InitializeHandle(Handle handle) { value_ = static_cast(handle.address()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } bool Operand::NeedsRelocation(const Assembler* assembler) const { RelocInfo::Mode rmode = immediate_.rmode(); if (RelocInfo::IsOnlyForSerializer(rmode)) { return assembler->options().record_reloc_info_for_serialization; } return !RelocInfo::IsNone(rmode); } bool ConstPool::AddSharedEntry(SharedEntryMap& entry_map, uint64_t data, int offset) { auto existing = entry_map.find(data); if (existing == entry_map.end()) { entry_map[data] = static_cast(entries_.size()); entries_.push_back(std::make_pair(data, std::vector(1, offset))); return true; } int index = existing->second; entries_[index].second.push_back(offset); return false; } // Constant Pool. bool ConstPool::RecordEntry(intptr_t data, RelocInfo::Mode mode) { DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL && mode != RelocInfo::VENEER_POOL && mode != RelocInfo::DEOPT_SCRIPT_OFFSET && mode != RelocInfo::DEOPT_INLINING_ID && mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID); bool write_reloc_info = true; uint64_t raw_data = static_cast(data); int offset = assm_->pc_offset(); if (IsEmpty()) { first_use_ = offset; } if (RelocInfo::IsShareableRelocMode(mode)) { write_reloc_info = AddSharedEntry(shared_entries_, raw_data, offset); } else if (mode == RelocInfo::CODE_TARGET && raw_data != 0) { // A zero data value is a placeholder and must not be shared. write_reloc_info = AddSharedEntry(handle_to_index_map_, raw_data, offset); } else { entries_.push_back(std::make_pair(raw_data, std::vector(1, offset))); } if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) { // Request constant pool emission after the next instruction. assm_->SetNextConstPoolCheckIn(1); } return write_reloc_info; } int ConstPool::DistanceToFirstUse() { DCHECK_GE(first_use_, 0); return assm_->pc_offset() - first_use_; } int ConstPool::MaxPcOffset() { // There are no pending entries in the pool so we can never get out of // range. if (IsEmpty()) return kMaxInt; // Entries are not necessarily emitted in the order they are added so in the // worst case the first constant pool use will be accessing the last entry. return first_use_ + kMaxLoadLiteralRange - WorstCaseSize(); } int ConstPool::WorstCaseSize() { if (IsEmpty()) return 0; // Max size prologue: // b over // ldr xzr, #pool_size // blr xzr // nop // All entries are 64-bit for now. return 4 * kInstrSize + EntryCount() * kPointerSize; } int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) { if (IsEmpty()) return 0; // Prologue is: // b over ;; if require_jump // ldr xzr, #pool_size // blr xzr // nop ;; if not 64-bit aligned int prologue_size = require_jump ? kInstrSize : 0; prologue_size += 2 * kInstrSize; prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ? 0 : kInstrSize; // All entries are 64-bit for now. return prologue_size + EntryCount() * kPointerSize; } void ConstPool::Emit(bool require_jump) { DCHECK(!assm_->is_const_pool_blocked()); // Prevent recursive pool emission and protect from veneer pools. Assembler::BlockPoolsScope block_pools(assm_); int size = SizeIfEmittedAtCurrentPc(require_jump); Label size_check; assm_->bind(&size_check); assm_->RecordConstPool(size); // Emit the constant pool. It is preceded by an optional branch if // require_jump and a header which will: // 1) Encode the size of the constant pool, for use by the disassembler. // 2) Terminate the program, to try to prevent execution from accidentally // flowing into the constant pool. // 3) align the pool entries to 64-bit. // The header is therefore made of up to three arm64 instructions: // ldr xzr, # // blr xzr // nop // // If executed, the header will likely segfault and lr will point to the // instruction following the offending blr. // TODO(all): Make the alignment part less fragile. Currently code is // allocated as a byte array so there are no guarantees the alignment will // be preserved on compaction. Currently it works as allocation seems to be // 64-bit aligned. // Emit branch if required Label after_pool; if (require_jump) { assm_->b(&after_pool); } // Emit the header. assm_->RecordComment("[ Constant Pool"); EmitMarker(); EmitGuard(); assm_->Align(8); // Emit constant pool entries. // TODO(all): currently each relocated constant is 64 bits, consider adding // support for 32-bit entries. EmitEntries(); assm_->RecordComment("]"); if (after_pool.is_linked()) { assm_->bind(&after_pool); } DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) == static_cast(size)); } void ConstPool::Clear() { shared_entries_.clear(); handle_to_index_map_.clear(); entries_.clear(); first_use_ = -1; } void ConstPool::EmitMarker() { // A constant pool size is expressed in number of 32-bits words. // Currently all entries are 64-bit. // + 1 is for the crash guard. // + 0/1 for alignment. int word_count = EntryCount() * 2 + 1 + (IsAligned(assm_->pc_offset(), 8) ? 0 : 1); assm_->Emit(LDR_x_lit | Assembler::ImmLLiteral(word_count) | Assembler::Rt(xzr)); } MemOperand::PairResult MemOperand::AreConsistentForPair( const MemOperand& operandA, const MemOperand& operandB, int access_size_log2) { DCHECK_GE(access_size_log2, 0); DCHECK_LE(access_size_log2, 3); // Step one: check that they share the same base, that the mode is Offset // and that the offset is a multiple of access size. if (!operandA.base().Is(operandB.base()) || (operandA.addrmode() != Offset) || (operandB.addrmode() != Offset) || ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) { return kNotPair; } // Step two: check that the offsets are contiguous and that the range // is OK for ldp/stp. if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) && is_int7(operandA.offset() >> access_size_log2)) { return kPairAB; } if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) && is_int7(operandB.offset() >> access_size_log2)) { return kPairBA; } return kNotPair; } void ConstPool::EmitGuard() { #ifdef DEBUG Instruction* instr = reinterpret_cast(assm_->pc()); DCHECK(instr->preceding()->IsLdrLiteralX() && instr->preceding()->Rt() == xzr.code()); #endif assm_->EmitPoolGuard(); } void ConstPool::EmitEntries() { DCHECK(IsAligned(assm_->pc_offset(), 8)); // Emit entries. for (const auto& entry : entries_) { for (const auto& pc : entry.second) { Instruction* instr = assm_->InstructionAt(pc); // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0. DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0); instr->SetImmPCOffsetTarget(assm_->options(), assm_->pc()); } assm_->dc64(entry.first); } Clear(); } // Assembler Assembler::Assembler(const AssemblerOptions& options, void* buffer, int buffer_size) : AssemblerBase(options, buffer, buffer_size), constpool_(this), unresolved_branches_() { const_pool_blocked_nesting_ = 0; veneer_pool_blocked_nesting_ = 0; Reset(); } Assembler::~Assembler() { DCHECK(constpool_.IsEmpty()); DCHECK_EQ(const_pool_blocked_nesting_, 0); DCHECK_EQ(veneer_pool_blocked_nesting_, 0); } void Assembler::Reset() { #ifdef DEBUG DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_)); DCHECK_EQ(const_pool_blocked_nesting_, 0); DCHECK_EQ(veneer_pool_blocked_nesting_, 0); DCHECK(unresolved_branches_.empty()); memset(buffer_, 0, pc_ - buffer_); #endif pc_ = buffer_; ReserveCodeTargetSpace(64); reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); constpool_.Clear(); next_constant_pool_check_ = 0; next_veneer_pool_check_ = kMaxInt; no_const_pool_before_ = 0; } void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); for (auto& request : heap_object_requests_) { Address pc = reinterpret_cast
(buffer_) + request.offset(); switch (request.kind()) { case HeapObjectRequest::kHeapNumber: { Handle object = isolate->factory()->NewHeapNumber(request.heap_number(), TENURED); set_target_address_at(pc, 0 /* unused */, object.address()); break; } case HeapObjectRequest::kCodeStub: { request.code_stub()->set_isolate(isolate); Instruction* instr = reinterpret_cast(pc); DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); DCHECK_EQ(instr->ImmPCOffset() % kInstrSize, 0); UpdateCodeTarget(instr->ImmPCOffset() >> kInstrSizeLog2, request.code_stub()->GetCode()); break; } case HeapObjectRequest::kStringConstant: { const StringConstantBase* str = request.string(); CHECK_NOT_NULL(str); set_target_address_at(pc, 0 /* unused */, str->AllocateStringConstant(isolate).address()); break; } } } } void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) { // Emit constant pool if necessary. CheckConstPool(true, false); DCHECK(constpool_.IsEmpty()); AllocateAndInstallRequestedHeapObjects(isolate); // Set up code descriptor. if (desc) { desc->buffer = reinterpret_cast(buffer_); desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = static_cast((reinterpret_cast(buffer_) + buffer_size_) - reloc_info_writer.pos()); desc->origin = this; desc->constant_pool_size = 0; desc->unwinding_info_size = 0; desc->unwinding_info = nullptr; } } void Assembler::Align(int m) { DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CheckLabelLinkChain(Label const * label) { #ifdef DEBUG if (label->is_linked()) { static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour. int links_checked = 0; int64_t linkoffset = label->pos(); bool end_of_chain = false; while (!end_of_chain) { if (++links_checked > kMaxLinksToCheck) break; Instruction * link = InstructionAt(linkoffset); int64_t linkpcoffset = link->ImmPCOffset(); int64_t prevlinkoffset = linkoffset + linkpcoffset; end_of_chain = (linkoffset == prevlinkoffset); linkoffset = linkoffset + linkpcoffset; } } #endif } void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch, Label* label, Instruction* label_veneer) { DCHECK(label->is_linked()); CheckLabelLinkChain(label); Instruction* link = InstructionAt(label->pos()); Instruction* prev_link = link; Instruction* next_link; bool end_of_chain = false; while (link != branch && !end_of_chain) { next_link = link->ImmPCOffsetTarget(); end_of_chain = (link == next_link); prev_link = link; link = next_link; } DCHECK(branch == link); next_link = branch->ImmPCOffsetTarget(); if (branch == prev_link) { // The branch is the first instruction in the chain. if (branch == next_link) { // It is also the last instruction in the chain, so it is the only branch // currently referring to this label. label->Unuse(); } else { label->link_to( static_cast(reinterpret_cast(next_link) - buffer_)); } } else if (branch == next_link) { // The branch is the last (but not also the first) instruction in the chain. prev_link->SetImmPCOffsetTarget(options(), prev_link); } else { // The branch is in the middle of the chain. if (prev_link->IsTargetInImmPCOffsetRange(next_link)) { prev_link->SetImmPCOffsetTarget(options(), next_link); } else if (label_veneer != nullptr) { // Use the veneer for all previous links in the chain. prev_link->SetImmPCOffsetTarget(options(), prev_link); end_of_chain = false; link = next_link; while (!end_of_chain) { next_link = link->ImmPCOffsetTarget(); end_of_chain = (link == next_link); link->SetImmPCOffsetTarget(options(), label_veneer); link = next_link; } } else { // The assert below will fire. // Some other work could be attempted to fix up the chain, but it would be // rather complicated. If we crash here, we may want to consider using an // other mechanism than a chain of branches. // // Note that this situation currently should not happen, as we always call // this function with a veneer to the target label. // However this could happen with a MacroAssembler in the following state: // [previous code] // B(label); // [20KB code] // Tbz(label); // First tbz. Pointing to unconditional branch. // [20KB code] // Tbz(label); // Second tbz. Pointing to the first tbz. // [more code] // and this function is called to remove the first tbz from the label link // chain. Since tbz has a range of +-32KB, the second tbz cannot point to // the unconditional branch. CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link)); UNREACHABLE(); } } CheckLabelLinkChain(label); } void Assembler::bind(Label* label) { // Bind label to the address at pc_. All instructions (most likely branches) // that are linked to this label will be updated to point to the newly-bound // label. DCHECK(!label->is_near_linked()); DCHECK(!label->is_bound()); DeleteUnresolvedBranchInfoForLabel(label); // If the label is linked, the link chain looks something like this: // // |--I----I-------I-------L // |---------------------->| pc_offset // |-------------->| linkoffset = label->pos() // |<------| link->ImmPCOffset() // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset() // // On each iteration, the last link is updated and then removed from the // chain until only one remains. At that point, the label is bound. // // If the label is not linked, no preparation is required before binding. while (label->is_linked()) { int linkoffset = label->pos(); Instruction* link = InstructionAt(linkoffset); int prevlinkoffset = linkoffset + static_cast(link->ImmPCOffset()); CheckLabelLinkChain(label); DCHECK_GE(linkoffset, 0); DCHECK(linkoffset < pc_offset()); DCHECK((linkoffset > prevlinkoffset) || (linkoffset - prevlinkoffset == kStartOfLabelLinkChain)); DCHECK_GE(prevlinkoffset, 0); // Update the link to point to the label. if (link->IsUnresolvedInternalReference()) { // Internal references do not get patched to an instruction but directly // to an address. internal_reference_positions_.push_back(linkoffset); PatchingAssembler patcher(options(), reinterpret_cast(link), 2); patcher.dc64(reinterpret_cast(pc_)); } else { link->SetImmPCOffsetTarget(options(), reinterpret_cast(pc_)); } // Link the label to the previous link in the chain. if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) { // We hit kStartOfLabelLinkChain, so the chain is fully processed. label->Unuse(); } else { // Update the label for the next iteration. label->link_to(prevlinkoffset); } } label->bind_to(pc_offset()); DCHECK(label->is_bound()); DCHECK(!label->is_linked()); } int Assembler::LinkAndGetByteOffsetTo(Label* label) { DCHECK_EQ(sizeof(*pc_), 1); CheckLabelLinkChain(label); int offset; if (label->is_bound()) { // The label is bound, so it does not need to be updated. Referring // instructions must link directly to the label as they will not be // updated. // // In this case, label->pos() returns the offset of the label from the // start of the buffer. // // Note that offset can be zero for self-referential instructions. (This // could be useful for ADR, for example.) offset = label->pos() - pc_offset(); DCHECK_LE(offset, 0); } else { if (label->is_linked()) { // The label is linked, so the referring instruction should be added onto // the end of the label's link chain. // // In this case, label->pos() returns the offset of the last linked // instruction from the start of the buffer. offset = label->pos() - pc_offset(); DCHECK_NE(offset, kStartOfLabelLinkChain); // Note that the offset here needs to be PC-relative only so that the // first instruction in a buffer can link to an unbound label. Otherwise, // the offset would be 0 for this case, and 0 is reserved for // kStartOfLabelLinkChain. } else { // The label is unused, so it now becomes linked and the referring // instruction is at the start of the new link chain. offset = kStartOfLabelLinkChain; } // The instruction at pc is now the last link in the label's chain. label->link_to(pc_offset()); } return offset; } void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) { DCHECK(label->is_linked()); CheckLabelLinkChain(label); int link_offset = label->pos(); int link_pcoffset; bool end_of_chain = false; while (!end_of_chain) { Instruction * link = InstructionAt(link_offset); link_pcoffset = static_cast(link->ImmPCOffset()); // ADR instructions are not handled by veneers. if (link->IsImmBranch()) { int max_reachable_pc = static_cast(InstructionOffset(link) + Instruction::ImmBranchRange(link->BranchType())); typedef std::multimap::iterator unresolved_info_it; std::pair range; range = unresolved_branches_.equal_range(max_reachable_pc); unresolved_info_it it; for (it = range.first; it != range.second; ++it) { if (it->second.pc_offset_ == link_offset) { unresolved_branches_.erase(it); break; } } } end_of_chain = (link_pcoffset == 0); link_offset = link_offset + link_pcoffset; } } void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) { if (unresolved_branches_.empty()) { DCHECK_EQ(next_veneer_pool_check_, kMaxInt); return; } if (label->is_linked()) { // Branches to this label will be resolved when the label is bound, normally // just after all the associated info has been deleted. DeleteUnresolvedBranchInfoForLabelTraverse(label); } if (unresolved_branches_.empty()) { next_veneer_pool_check_ = kMaxInt; } else { next_veneer_pool_check_ = unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; } } void Assembler::StartBlockConstPool() { if (const_pool_blocked_nesting_++ == 0) { // Prevent constant pool checks happening by setting the next check to // the biggest possible offset. next_constant_pool_check_ = kMaxInt; } } void Assembler::EndBlockConstPool() { if (--const_pool_blocked_nesting_ == 0) { // Check the constant pool hasn't been blocked for too long. DCHECK(pc_offset() < constpool_.MaxPcOffset()); // Two cases: // * no_const_pool_before_ >= next_constant_pool_check_ and the emission is // still blocked // * no_const_pool_before_ < next_constant_pool_check_ and the next emit // will trigger a check. next_constant_pool_check_ = no_const_pool_before_; } } bool Assembler::is_const_pool_blocked() const { return (const_pool_blocked_nesting_ > 0) || (pc_offset() < no_const_pool_before_); } bool Assembler::IsConstantPoolAt(Instruction* instr) { // The constant pool marker is made of two instructions. These instructions // will never be emitted by the JIT, so checking for the first one is enough: // 0: ldr xzr, # bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode); // It is still worth asserting the marker is complete. // 4: blr xzr DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() && instr->following()->Rn() == kZeroRegCode)); return result; } int Assembler::ConstantPoolSizeAt(Instruction* instr) { #ifdef USE_SIMULATOR // Assembler::debug() embeds constants directly into the instruction stream. // Although this is not a genuine constant pool, treat it like one to avoid // disassembling the constants. if ((instr->Mask(ExceptionMask) == HLT) && (instr->ImmException() == kImmExceptionIsDebug)) { const char* message = reinterpret_cast( instr->InstructionAtOffset(kDebugMessageOffset)); int size = static_cast(kDebugMessageOffset + strlen(message) + 1); return RoundUp(size, kInstrSize) / kInstrSize; } // Same for printf support, see MacroAssembler::CallPrintf(). if ((instr->Mask(ExceptionMask) == HLT) && (instr->ImmException() == kImmExceptionIsPrintf)) { return kPrintfLength / kInstrSize; } #endif if (IsConstantPoolAt(instr)) { return instr->ImmLLiteral(); } else { return -1; } } void Assembler::EmitPoolGuard() { // We must generate only one instruction as this is used in scopes that // control the size of the code generated. Emit(BLR | Rn(xzr)); } void Assembler::StartBlockVeneerPool() { ++veneer_pool_blocked_nesting_; } void Assembler::EndBlockVeneerPool() { if (--veneer_pool_blocked_nesting_ == 0) { // Check the veneer pool hasn't been blocked for too long. DCHECK(unresolved_branches_.empty() || (pc_offset() < unresolved_branches_first_limit())); } } void Assembler::br(const Register& xn) { DCHECK(xn.Is64Bits()); Emit(BR | Rn(xn)); } void Assembler::blr(const Register& xn) { DCHECK(xn.Is64Bits()); // The pattern 'blr xzr' is used as a guard to detect when execution falls // through the constant pool. It should not be emitted. DCHECK(!xn.Is(xzr)); Emit(BLR | Rn(xn)); } void Assembler::ret(const Register& xn) { DCHECK(xn.Is64Bits()); Emit(RET | Rn(xn)); } void Assembler::b(int imm26) { Emit(B | ImmUncondBranch(imm26)); } void Assembler::b(Label* label) { b(LinkAndGetInstructionOffsetTo(label)); } void Assembler::b(int imm19, Condition cond) { Emit(B_cond | ImmCondBranch(imm19) | cond); } void Assembler::b(Label* label, Condition cond) { b(LinkAndGetInstructionOffsetTo(label), cond); } void Assembler::bl(int imm26) { Emit(BL | ImmUncondBranch(imm26)); } void Assembler::bl(Label* label) { bl(LinkAndGetInstructionOffsetTo(label)); } void Assembler::cbz(const Register& rt, int imm19) { Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); } void Assembler::cbz(const Register& rt, Label* label) { cbz(rt, LinkAndGetInstructionOffsetTo(label)); } void Assembler::cbnz(const Register& rt, int imm19) { Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); } void Assembler::cbnz(const Register& rt, Label* label) { cbnz(rt, LinkAndGetInstructionOffsetTo(label)); } void Assembler::tbz(const Register& rt, unsigned bit_pos, int imm14) { DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits))); Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); } void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) { tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); } void Assembler::tbnz(const Register& rt, unsigned bit_pos, int imm14) { DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits))); Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); } void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) { tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); } void Assembler::adr(const Register& rd, int imm21) { DCHECK(rd.Is64Bits()); Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd)); } void Assembler::adr(const Register& rd, Label* label) { adr(rd, LinkAndGetByteOffsetTo(label)); } void Assembler::add(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, LeaveFlags, ADD); } void Assembler::adds(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, SetFlags, ADD); } void Assembler::cmn(const Register& rn, const Operand& operand) { Register zr = AppropriateZeroRegFor(rn); adds(zr, rn, operand); } void Assembler::sub(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, LeaveFlags, SUB); } void Assembler::subs(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, SetFlags, SUB); } void Assembler::cmp(const Register& rn, const Operand& operand) { Register zr = AppropriateZeroRegFor(rn); subs(zr, rn, operand); } void Assembler::neg(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); sub(rd, zr, operand); } void Assembler::negs(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); subs(rd, zr, operand); } void Assembler::adc(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC); } void Assembler::adcs(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, SetFlags, ADC); } void Assembler::sbc(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC); } void Assembler::sbcs(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, SetFlags, SBC); } void Assembler::ngc(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); sbc(rd, zr, operand); } void Assembler::ngcs(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); sbcs(rd, zr, operand); } // Logical instructions. void Assembler::and_(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, AND); } void Assembler::ands(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ANDS); } void Assembler::tst(const Register& rn, const Operand& operand) { ands(AppropriateZeroRegFor(rn), rn, operand); } void Assembler::bic(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, BIC); } void Assembler::bics(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, BICS); } void Assembler::orr(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ORR); } void Assembler::orn(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ORN); } void Assembler::eor(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, EOR); } void Assembler::eon(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, EON); } void Assembler::lslv(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::lsrv(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::asrv(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::rorv(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); } // Bitfield operations. void Assembler::bfm(const Register& rd, const Register& rn, int immr, int imms) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | BFM | N | ImmR(immr, rd.SizeInBits()) | ImmS(imms, rn.SizeInBits()) | Rn(rn) | Rd(rd)); } void Assembler::sbfm(const Register& rd, const Register& rn, int immr, int imms) { DCHECK(rd.Is64Bits() || rn.Is32Bits()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | SBFM | N | ImmR(immr, rd.SizeInBits()) | ImmS(imms, rn.SizeInBits()) | Rn(rn) | Rd(rd)); } void Assembler::ubfm(const Register& rd, const Register& rn, int immr, int imms) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | UBFM | N | ImmR(immr, rd.SizeInBits()) | ImmS(imms, rn.SizeInBits()) | Rn(rn) | Rd(rd)); } void Assembler::extr(const Register& rd, const Register& rn, const Register& rm, int lsb) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd)); } void Assembler::csel(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSEL); } void Assembler::csinc(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSINC); } void Assembler::csinv(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSINV); } void Assembler::csneg(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSNEG); } void Assembler::cset(const Register &rd, Condition cond) { DCHECK((cond != al) && (cond != nv)); Register zr = AppropriateZeroRegFor(rd); csinc(rd, zr, zr, NegateCondition(cond)); } void Assembler::csetm(const Register &rd, Condition cond) { DCHECK((cond != al) && (cond != nv)); Register zr = AppropriateZeroRegFor(rd); csinv(rd, zr, zr, NegateCondition(cond)); } void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) { DCHECK((cond != al) && (cond != nv)); csinc(rd, rn, rn, NegateCondition(cond)); } void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) { DCHECK((cond != al) && (cond != nv)); csinv(rd, rn, rn, NegateCondition(cond)); } void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) { DCHECK((cond != al) && (cond != nv)); csneg(rd, rn, rn, NegateCondition(cond)); } void Assembler::ConditionalSelect(const Register& rd, const Register& rn, const Register& rm, Condition cond, ConditionalSelectOp op) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); } void Assembler::ccmn(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond) { ConditionalCompare(rn, operand, nzcv, cond, CCMN); } void Assembler::ccmp(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond) { ConditionalCompare(rn, operand, nzcv, cond, CCMP); } void Assembler::DataProcessing3Source(const Register& rd, const Register& rn, const Register& rm, const Register& ra, DataProcessing3SourceOp op) { Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); } void Assembler::mul(const Register& rd, const Register& rn, const Register& rm) { DCHECK(AreSameSizeAndType(rd, rn, rm)); Register zr = AppropriateZeroRegFor(rn); DataProcessing3Source(rd, rn, rm, zr, MADD); } void Assembler::madd(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DCHECK(AreSameSizeAndType(rd, rn, rm, ra)); DataProcessing3Source(rd, rn, rm, ra, MADD); } void Assembler::mneg(const Register& rd, const Register& rn, const Register& rm) { DCHECK(AreSameSizeAndType(rd, rn, rm)); Register zr = AppropriateZeroRegFor(rn); DataProcessing3Source(rd, rn, rm, zr, MSUB); } void Assembler::msub(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DCHECK(AreSameSizeAndType(rd, rn, rm, ra)); DataProcessing3Source(rd, rn, rm, ra, MSUB); } void Assembler::smaddl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DCHECK(rd.Is64Bits() && ra.Is64Bits()); DCHECK(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); } void Assembler::smsubl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DCHECK(rd.Is64Bits() && ra.Is64Bits()); DCHECK(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); } void Assembler::umaddl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DCHECK(rd.Is64Bits() && ra.Is64Bits()); DCHECK(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); } void Assembler::umsubl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DCHECK(rd.Is64Bits() && ra.Is64Bits()); DCHECK(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); } void Assembler::smull(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.Is64Bits()); DCHECK(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); } void Assembler::smulh(const Register& rd, const Register& rn, const Register& rm) { DCHECK(AreSameSizeAndType(rd, rn, rm)); DataProcessing3Source(rd, rn, rm, xzr, SMULH_x); } void Assembler::sdiv(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::udiv(const Register& rd, const Register& rn, const Register& rm) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(rd.SizeInBits() == rm.SizeInBits()); Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::rbit(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, RBIT); } void Assembler::rev16(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, REV16); } void Assembler::rev32(const Register& rd, const Register& rn) { DCHECK(rd.Is64Bits()); DataProcessing1Source(rd, rn, REV); } void Assembler::rev(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); } void Assembler::clz(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, CLZ); } void Assembler::cls(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, CLS); } void Assembler::ldp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& src) { LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); } void Assembler::stp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& dst) { LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); } void Assembler::ldpsw(const Register& rt, const Register& rt2, const MemOperand& src) { DCHECK(rt.Is64Bits()); LoadStorePair(rt, rt2, src, LDPSW_x); } void Assembler::LoadStorePair(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairOp op) { // 'rt' and 'rt2' can only be aliased for stores. DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2)); DCHECK(AreSameSizeAndType(rt, rt2)); DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op))); int offset = static_cast(addr.offset()); Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(offset, CalcLSPairDataSize(op)); Instr addrmodeop; if (addr.IsImmediateOffset()) { addrmodeop = LoadStorePairOffsetFixed; } else { // Pre-index and post-index modes. DCHECK(!rt.Is(addr.base())); DCHECK(!rt2.Is(addr.base())); DCHECK_NE(addr.offset(), 0); if (addr.IsPreIndex()) { addrmodeop = LoadStorePairPreIndexFixed; } else { DCHECK(addr.IsPostIndex()); addrmodeop = LoadStorePairPostIndexFixed; } } Emit(addrmodeop | memop); } // Memory instructions. void Assembler::ldrb(const Register& rt, const MemOperand& src) { LoadStore(rt, src, LDRB_w); } void Assembler::strb(const Register& rt, const MemOperand& dst) { LoadStore(rt, dst, STRB_w); } void Assembler::ldrsb(const Register& rt, const MemOperand& src) { LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w); } void Assembler::ldrh(const Register& rt, const MemOperand& src) { LoadStore(rt, src, LDRH_w); } void Assembler::strh(const Register& rt, const MemOperand& dst) { LoadStore(rt, dst, STRH_w); } void Assembler::ldrsh(const Register& rt, const MemOperand& src) { LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w); } void Assembler::ldr(const CPURegister& rt, const MemOperand& src) { LoadStore(rt, src, LoadOpFor(rt)); } void Assembler::str(const CPURegister& rt, const MemOperand& src) { LoadStore(rt, src, StoreOpFor(rt)); } void Assembler::ldrsw(const Register& rt, const MemOperand& src) { DCHECK(rt.Is64Bits()); LoadStore(rt, src, LDRSW_x); } void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) { // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a // constant pool. It should not be emitted. DCHECK(!rt.IsZero()); Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt)); } Operand Operand::EmbeddedNumber(double number) { int32_t smi; if (DoubleToSmiInteger(number, &smi)) { return Operand(Immediate(Smi::FromInt(smi))); } Operand result(0, RelocInfo::EMBEDDED_OBJECT); result.heap_object_request_.emplace(number); DCHECK(result.IsHeapObjectRequest()); return result; } Operand Operand::EmbeddedCode(CodeStub* stub) { Operand result(0, RelocInfo::CODE_TARGET); result.heap_object_request_.emplace(stub); DCHECK(result.IsHeapObjectRequest()); return result; } Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { Operand result(0, RelocInfo::EMBEDDED_OBJECT); result.heap_object_request_.emplace(str); DCHECK(result.IsHeapObjectRequest()); return result; } void Assembler::ldr(const CPURegister& rt, const Operand& operand) { if (operand.IsHeapObjectRequest()) { RequestHeapObject(operand.heap_object_request()); ldr(rt, operand.immediate_for_heap_object_request()); } else { ldr(rt, operand.immediate()); } } void Assembler::ldr(const CPURegister& rt, const Immediate& imm) { // Currently we only support 64-bit literals. DCHECK(rt.Is64Bits()); RecordRelocInfo(imm.rmode(), imm.value()); BlockConstPoolFor(1); // The load will be patched when the constpool is emitted, patching code // expect a load literal with offset 0. ldr_pcrel(rt, 0); } void Assembler::ldar(const Register& rt, const Register& rn) { DCHECK(rn.Is64Bits()); LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x; Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::ldaxr(const Register& rt, const Register& rn) { DCHECK(rn.Is64Bits()); LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x; Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::stlr(const Register& rt, const Register& rn) { DCHECK(rn.Is64Bits()); LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x; Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::stlxr(const Register& rs, const Register& rt, const Register& rn) { DCHECK(rn.Is64Bits()); DCHECK(!rs.Is(rt) && !rs.Is(rn)); LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x; Emit(op | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::ldarb(const Register& rt, const Register& rn) { DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); Emit(LDAR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::ldaxrb(const Register& rt, const Register& rn) { DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); Emit(LDAXR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::stlrb(const Register& rt, const Register& rn) { DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); Emit(STLR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::stlxrb(const Register& rs, const Register& rt, const Register& rn) { DCHECK(rs.Is32Bits()); DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); DCHECK(!rs.Is(rt) && !rs.Is(rn)); Emit(STLXR_b | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::ldarh(const Register& rt, const Register& rn) { DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); Emit(LDAR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::ldaxrh(const Register& rt, const Register& rn) { DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); Emit(LDAXR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::stlrh(const Register& rt, const Register& rn) { DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); Emit(STLR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::stlxrh(const Register& rs, const Register& rt, const Register& rn) { DCHECK(rs.Is32Bits()); DCHECK(rt.Is32Bits()); DCHECK(rn.Is64Bits()); DCHECK(!rs.Is(rt) && !rs.Is(rn)); Emit(STLXR_h | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt)); } void Assembler::NEON3DifferentL(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3DifferentOp vop) { DCHECK(AreSameFormat(vn, vm)); DCHECK((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) || (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) || (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); Instr format, op = vop; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; format = SFormat(vn); } else { format = VFormat(vn); } Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEON3DifferentW(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3DifferentOp vop) { DCHECK(AreSameFormat(vd, vn)); DCHECK((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) || (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) || (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D())); Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEON3DifferentHN(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3DifferentOp vop) { DCHECK(AreSameFormat(vm, vn)); DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd)); } #define NEON_3DIFF_LONG_LIST(V) \ V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \ V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \ V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \ V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \ V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \ V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \ V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \ V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \ V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \ V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \ V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \ V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \ V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \ V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \ V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \ V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \ V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \ V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \ V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \ V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \ V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \ V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \ V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \ V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \ V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \ V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \ V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \ V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \ V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \ V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \ V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm) { \ DCHECK(AS); \ NEON3DifferentL(vd, vn, vm, OP); \ } NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_3DIFF_HN_LIST(V) \ V(addhn, NEON_ADDHN, vd.IsD()) \ V(addhn2, NEON_ADDHN2, vd.IsQ()) \ V(raddhn, NEON_RADDHN, vd.IsD()) \ V(raddhn2, NEON_RADDHN2, vd.IsQ()) \ V(subhn, NEON_SUBHN, vd.IsD()) \ V(subhn2, NEON_SUBHN2, vd.IsQ()) \ V(rsubhn, NEON_RSUBHN, vd.IsD()) \ V(rsubhn2, NEON_RSUBHN2, vd.IsQ()) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm) { \ DCHECK(AS); \ NEON3DifferentHN(vd, vn, vm, OP); \ } NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::NEONPerm(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEONPermOp op) { DCHECK(AreSameFormat(vd, vn, vm)); DCHECK(!vd.Is1D()); Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::trn1(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_TRN1); } void Assembler::trn2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_TRN2); } void Assembler::uzp1(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_UZP1); } void Assembler::uzp2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_UZP2); } void Assembler::zip1(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_ZIP1); } void Assembler::zip2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_ZIP2); } void Assembler::NEONShiftImmediate(const VRegister& vd, const VRegister& vn, NEONShiftImmediateOp op, int immh_immb) { DCHECK(AreSameFormat(vd, vn)); Instr q, scalar; if (vn.IsScalar()) { q = NEON_Q; scalar = NEONScalar; } else { q = vd.IsD() ? 0 : NEON_Q; scalar = 0; } Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); } void Assembler::NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { int laneSizeInBits = vn.LaneSizeInBits(); DCHECK((shift >= 0) && (shift < laneSizeInBits)); NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16); } void Assembler::NEONShiftRightImmediate(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { int laneSizeInBits = vn.LaneSizeInBits(); DCHECK((shift >= 1) && (shift <= laneSizeInBits)); NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16); } void Assembler::NEONShiftImmediateL(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { int laneSizeInBits = vn.LaneSizeInBits(); DCHECK((shift >= 0) && (shift < laneSizeInBits)); int immh_immb = (laneSizeInBits + shift) << 16; DCHECK((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) || (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); Instr q; q = vn.IsD() ? 0 : NEON_Q; Emit(q | op | immh_immb | Rn(vn) | Rd(vd)); } void Assembler::NEONShiftImmediateN(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { Instr q, scalar; int laneSizeInBits = vd.LaneSizeInBits(); DCHECK((shift >= 1) && (shift <= laneSizeInBits)); int immh_immb = (2 * laneSizeInBits - shift) << 16; if (vn.IsScalar()) { DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || (vd.Is1S() && vn.Is1D())); q = NEON_Q; scalar = NEONScalar; } else { DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); scalar = 0; q = vd.IsD() ? 0 : NEON_Q; } Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); } void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL); } void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI); } void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) { NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm); } void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) { NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU); } void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) { NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm); } void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsD()); NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); } void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsQ()); NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); } void Assembler::sxtl(const VRegister& vd, const VRegister& vn) { sshll(vd, vn, 0); } void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) { sshll2(vd, vn, 0); } void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsD()); NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); } void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsQ()); NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); } void Assembler::uxtl(const VRegister& vd, const VRegister& vn) { ushll(vd, vn, 0); } void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) { ushll2(vd, vn, 0); } void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SRI); } void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR); } void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_USHR); } void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR); } void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR); } void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA); } void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_USRA); } void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA); } void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA); } void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsD()); NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); } void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); } void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsD()); NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); } void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); } void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); } void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); } void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); } void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); } void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); } void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); } void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); } void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); } void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); } void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); } void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); } void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { DCHECK(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); } void Assembler::uaddw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_UADDW); } void Assembler::uaddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_UADDW2); } void Assembler::saddw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_SADDW); } void Assembler::saddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_SADDW2); } void Assembler::usubw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_USUBW); } void Assembler::usubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_USUBW2); } void Assembler::ssubw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_SSUBW); } void Assembler::ssubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_SSUBW2); } void Assembler::mov(const Register& rd, const Register& rm) { // Moves involving the stack pointer are encoded as add immediate with // second operand of zero. Otherwise, orr with first operand zr is // used. if (rd.IsSP() || rm.IsSP()) { add(rd, rm, 0); } else { orr(rd, AppropriateZeroRegFor(rd), rm); } } void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) { // We support vd arguments of the form vd.VxT() or vd.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vd.LaneSizeInBytes(); NEONFormatField format; switch (lane_size) { case 1: format = NEON_16B; DCHECK(rn.IsW()); break; case 2: format = NEON_8H; DCHECK(rn.IsW()); break; case 4: format = NEON_4S; DCHECK(rn.IsW()); break; default: DCHECK_EQ(lane_size, 8); DCHECK(rn.IsX()); format = NEON_2D; break; } DCHECK((0 <= vd_index) && (vd_index < LaneCountFromFormat(static_cast(format)))); Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd)); } void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) { DCHECK_GE(vn.SizeInBytes(), 4); umov(rd, vn, vn_index); } void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) { // We support vn arguments of the form vn.VxT() or vn.T(), where x is the // number of lanes, and T is b, h, s. int lane_size = vn.LaneSizeInBytes(); NEONFormatField format; Instr q = 0; switch (lane_size) { case 1: format = NEON_16B; break; case 2: format = NEON_8H; break; default: DCHECK_EQ(lane_size, 4); DCHECK(rd.IsX()); format = NEON_4S; break; } q = rd.IsW() ? 0 : NEON_Q; DCHECK((0 <= vn_index) && (vn_index < LaneCountFromFormat(static_cast(format)))); Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); } void Assembler::cls(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(!vd.Is1D() && !vd.Is2D()); Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd)); } void Assembler::clz(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(!vd.Is1D() && !vd.Is2D()); Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd)); } void Assembler::cnt(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is8B() || vd.Is16B()); Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd)); } void Assembler::rev16(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is8B() || vd.Is16B()); Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd)); } void Assembler::rev32(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H()); Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd)); } void Assembler::rev64(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(!vd.Is1D() && !vd.Is2D()); Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd)); } void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is2S() || vd.Is4S()); Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd)); } void Assembler::urecpe(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is2S() || vd.Is4S()); Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd)); } void Assembler::NEONAddlp(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp op) { DCHECK((op == NEON_SADDLP) || (op == NEON_UADDLP) || (op == NEON_SADALP) || (op == NEON_UADALP)); DCHECK((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) || (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) || (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::saddlp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_SADDLP); } void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_UADDLP); } void Assembler::sadalp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_SADALP); } void Assembler::uadalp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_UADALP); } void Assembler::NEONAcrossLanesL(const VRegister& vd, const VRegister& vn, NEONAcrossLanesOp op) { DCHECK((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) || (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) || (vn.Is4S() && vd.Is1D())); Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::saddlv(const VRegister& vd, const VRegister& vn) { NEONAcrossLanesL(vd, vn, NEON_SADDLV); } void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) { NEONAcrossLanesL(vd, vn, NEON_UADDLV); } void Assembler::NEONAcrossLanes(const VRegister& vd, const VRegister& vn, NEONAcrossLanesOp op) { DCHECK((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) || (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) || (vn.Is4S() && vd.Is1S())); if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) { Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); } else { Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); } } #define NEON_ACROSSLANES_LIST(V) \ V(fmaxv, NEON_FMAXV, vd.Is1S()) \ V(fminv, NEON_FMINV, vd.Is1S()) \ V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \ V(fminnmv, NEON_FMINNMV, vd.Is1S()) \ V(addv, NEON_ADDV, true) \ V(smaxv, NEON_SMAXV, true) \ V(sminv, NEON_SMINV, true) \ V(umaxv, NEON_UMAXV, true) \ V(uminv, NEON_UMINV, true) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ DCHECK(AS); \ NEONAcrossLanes(vd, vn, OP); \ } NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) { ins(vd, vd_index, rn); } void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) { // We support vn arguments of the form vn.VxT() or vn.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vn.LaneSizeInBytes(); NEONFormatField format; Instr q = 0; switch (lane_size) { case 1: format = NEON_16B; DCHECK(rd.IsW()); break; case 2: format = NEON_8H; DCHECK(rd.IsW()); break; case 4: format = NEON_4S; DCHECK(rd.IsW()); break; default: DCHECK_EQ(lane_size, 8); DCHECK(rd.IsX()); format = NEON_2D; q = NEON_Q; break; } DCHECK((0 <= vn_index) && (vn_index < LaneCountFromFormat(static_cast(format)))); Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); } void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) { DCHECK(vd.IsScalar()); dup(vd, vn, vn_index); } void Assembler::dup(const VRegister& vd, const Register& rn) { DCHECK(!vd.Is1D()); DCHECK_EQ(vd.Is2D(), rn.IsX()); Instr q = vd.IsD() ? 0 : NEON_Q; Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd)); } void Assembler::ins(const VRegister& vd, int vd_index, const VRegister& vn, int vn_index) { DCHECK(AreSameFormat(vd, vn)); // We support vd arguments of the form vd.VxT() or vd.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vd.LaneSizeInBytes(); NEONFormatField format; switch (lane_size) { case 1: format = NEON_16B; break; case 2: format = NEON_8H; break; case 4: format = NEON_4S; break; default: DCHECK_EQ(lane_size, 8); format = NEON_2D; break; } DCHECK((0 <= vd_index) && (vd_index < LaneCountFromFormat(static_cast(format)))); DCHECK((0 <= vn_index) && (vn_index < LaneCountFromFormat(static_cast(format)))); Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) | ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd)); } void Assembler::NEONTable(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEONTableOp op) { DCHECK(vd.Is16B() || vd.Is8B()); DCHECK(vn.Is16B()); DCHECK(AreSameFormat(vd, vm)); Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONTable(vd, vn, vm, NEON_TBL_1v); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vm) { USE(vn2); DCHECK(AreSameFormat(vn, vn2)); DCHECK(AreConsecutive(vn, vn2)); NEONTable(vd, vn, vm, NEON_TBL_2v); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vm) { USE(vn2); USE(vn3); DCHECK(AreSameFormat(vn, vn2, vn3)); DCHECK(AreConsecutive(vn, vn2, vn3)); NEONTable(vd, vn, vm, NEON_TBL_3v); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vn4, const VRegister& vm) { USE(vn2); USE(vn3); USE(vn4); DCHECK(AreSameFormat(vn, vn2, vn3, vn4)); DCHECK(AreConsecutive(vn, vn2, vn3, vn4)); NEONTable(vd, vn, vm, NEON_TBL_4v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONTable(vd, vn, vm, NEON_TBX_1v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vm) { USE(vn2); DCHECK(AreSameFormat(vn, vn2)); DCHECK(AreConsecutive(vn, vn2)); NEONTable(vd, vn, vm, NEON_TBX_2v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vm) { USE(vn2); USE(vn3); DCHECK(AreSameFormat(vn, vn2, vn3)); DCHECK(AreConsecutive(vn, vn2, vn3)); NEONTable(vd, vn, vm, NEON_TBX_3v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vn4, const VRegister& vm) { USE(vn2); USE(vn3); USE(vn4); DCHECK(AreSameFormat(vn, vn2, vn3, vn4)); DCHECK(AreConsecutive(vn, vn2, vn3, vn4)); NEONTable(vd, vn, vm, NEON_TBX_4v); } void Assembler::mov(const VRegister& vd, int vd_index, const VRegister& vn, int vn_index) { ins(vd, vd_index, vn, vn_index); } void Assembler::mvn(const Register& rd, const Operand& operand) { orn(rd, AppropriateZeroRegFor(rd), operand); } void Assembler::mrs(const Register& rt, SystemRegister sysreg) { DCHECK(rt.Is64Bits()); Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); } void Assembler::msr(SystemRegister sysreg, const Register& rt) { DCHECK(rt.Is64Bits()); Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); } void Assembler::hint(SystemHint code) { Emit(HINT | ImmHint(code) | Rt(xzr)); } // NEON structure loads and stores. Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) { Instr addr_field = RnSP(addr.base()); if (addr.IsPostIndex()) { static_assert(NEONLoadStoreMultiStructPostIndex == static_cast( NEONLoadStoreSingleStructPostIndex), "Opcodes must match for NEON post index memop."); addr_field |= NEONLoadStoreMultiStructPostIndex; if (addr.offset() == 0) { addr_field |= RmNot31(addr.regoffset()); } else { // The immediate post index addressing mode is indicated by rm = 31. // The immediate is implied by the number of vector registers used. addr_field |= (0x1F << Rm_offset); } } else { DCHECK(addr.IsImmediateOffset() && (addr.offset() == 0)); } return addr_field; } void Assembler::LoadStoreStructVerify(const VRegister& vt, const MemOperand& addr, Instr op) { #ifdef DEBUG // Assert that addressing mode is either offset (with immediate 0), post // index by immediate of the size of the register list, or post index by a // value in a core register. if (addr.IsImmediateOffset()) { DCHECK_EQ(addr.offset(), 0); } else { int offset = vt.SizeInBytes(); switch (op) { case NEON_LD1_1v: case NEON_ST1_1v: offset *= 1; break; case NEONLoadStoreSingleStructLoad1: case NEONLoadStoreSingleStructStore1: case NEON_LD1R: offset = (offset / vt.LaneCount()) * 1; break; case NEON_LD1_2v: case NEON_ST1_2v: case NEON_LD2: case NEON_ST2: offset *= 2; break; case NEONLoadStoreSingleStructLoad2: case NEONLoadStoreSingleStructStore2: case NEON_LD2R: offset = (offset / vt.LaneCount()) * 2; break; case NEON_LD1_3v: case NEON_ST1_3v: case NEON_LD3: case NEON_ST3: offset *= 3; break; case NEONLoadStoreSingleStructLoad3: case NEONLoadStoreSingleStructStore3: case NEON_LD3R: offset = (offset / vt.LaneCount()) * 3; break; case NEON_LD1_4v: case NEON_ST1_4v: case NEON_LD4: case NEON_ST4: offset *= 4; break; case NEONLoadStoreSingleStructLoad4: case NEONLoadStoreSingleStructStore4: case NEON_LD4R: offset = (offset / vt.LaneCount()) * 4; break; default: UNREACHABLE(); } DCHECK(!addr.regoffset().Is(NoReg) || addr.offset() == offset); } #else USE(vt); USE(addr); USE(op); #endif } void Assembler::LoadStoreStruct(const VRegister& vt, const MemOperand& addr, NEONLoadStoreMultiStructOp op) { LoadStoreStructVerify(vt, addr, op); DCHECK(vt.IsVector() || vt.Is1D()); Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); } void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt, const MemOperand& addr, NEONLoadStoreSingleStructOp op) { LoadStoreStructVerify(vt, addr, op); Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); } void Assembler::ld1(const VRegister& vt, const MemOperand& src) { LoadStoreStruct(vt, src, NEON_LD1_1v); } void Assembler::ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, src, NEON_LD1_2v); } void Assembler::ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, src, NEON_LD1_3v); } void Assembler::ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, src, NEON_LD1_4v); } void Assembler::ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, src, NEON_LD2); } void Assembler::ld2(const VRegister& vt, const VRegister& vt2, int lane, const MemOperand& src) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2); } void Assembler::ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R); } void Assembler::ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, src, NEON_LD3); } void Assembler::ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, int lane, const MemOperand& src) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3); } void Assembler::ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R); } void Assembler::ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, src, NEON_LD4); } void Assembler::ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, int lane, const MemOperand& src) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4); } void Assembler::ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R); } void Assembler::st1(const VRegister& vt, const MemOperand& src) { LoadStoreStruct(vt, src, NEON_ST1_1v); } void Assembler::st1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, src, NEON_ST1_2v); } void Assembler::st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, src, NEON_ST1_3v); } void Assembler::st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, src, NEON_ST1_4v); } void Assembler::st2(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, dst, NEON_ST2); } void Assembler::st2(const VRegister& vt, const VRegister& vt2, int lane, const MemOperand& dst) { USE(vt2); DCHECK(AreSameFormat(vt, vt2)); DCHECK(AreConsecutive(vt, vt2)); LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2); } void Assembler::st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& dst) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, dst, NEON_ST3); } void Assembler::st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, int lane, const MemOperand& dst) { USE(vt2); USE(vt3); DCHECK(AreSameFormat(vt, vt2, vt3)); DCHECK(AreConsecutive(vt, vt2, vt3)); LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3); } void Assembler::st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& dst) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, dst, NEON_ST4); } void Assembler::st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, int lane, const MemOperand& dst) { USE(vt2); USE(vt3); USE(vt4); DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4); } void Assembler::LoadStoreStructSingle(const VRegister& vt, uint32_t lane, const MemOperand& addr, NEONLoadStoreSingleStructOp op) { LoadStoreStructVerify(vt, addr, op); // We support vt arguments of the form vt.VxT() or vt.T(), where x is the // number of lanes, and T is b, h, s or d. unsigned lane_size = vt.LaneSizeInBytes(); DCHECK_LT(lane, kQRegSize / lane_size); // Lane size is encoded in the opcode field. Lane index is encoded in the Q, // S and size fields. lane *= lane_size; // Encodings for S[0]/D[0] and S[2]/D[1] are distinguished using the least- // significant bit of the size field, so we increment lane here to account for // that. if (lane_size == 8) lane++; Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask; Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask; Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask; Instr instr = op; switch (lane_size) { case 1: instr |= NEONLoadStoreSingle_b; break; case 2: instr |= NEONLoadStoreSingle_h; break; case 4: instr |= NEONLoadStoreSingle_s; break; default: DCHECK_EQ(lane_size, 8U); instr |= NEONLoadStoreSingle_d; } Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt)); } void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) { LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1); } void Assembler::ld1r(const VRegister& vt, const MemOperand& src) { LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R); } void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) { LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1); } void Assembler::dmb(BarrierDomain domain, BarrierType type) { Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); } void Assembler::dsb(BarrierDomain domain, BarrierType type) { Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); } void Assembler::isb() { Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); } void Assembler::csdb() { hint(CSDB); } void Assembler::fmov(const VRegister& vd, double imm) { if (vd.IsScalar()) { DCHECK(vd.Is1D()); Emit(FMOV_d_imm | Rd(vd) | ImmFP(imm)); } else { DCHECK(vd.Is2D()); Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit; Emit(NEON_Q | op | ImmNEONFP(imm) | NEONCmode(0xF) | Rd(vd)); } } void Assembler::fmov(const VRegister& vd, float imm) { if (vd.IsScalar()) { DCHECK(vd.Is1S()); Emit(FMOV_s_imm | Rd(vd) | ImmFP(imm)); } else { DCHECK(vd.Is2S() | vd.Is4S()); Instr op = NEONModifiedImmediate_MOVI; Instr q = vd.Is4S() ? NEON_Q : 0; Emit(q | op | ImmNEONFP(imm) | NEONCmode(0xF) | Rd(vd)); } } void Assembler::fmov(const Register& rd, const VRegister& fn) { DCHECK_EQ(rd.SizeInBits(), fn.SizeInBits()); FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; Emit(op | Rd(rd) | Rn(fn)); } void Assembler::fmov(const VRegister& vd, const Register& rn) { DCHECK_EQ(vd.SizeInBits(), rn.SizeInBits()); FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx; Emit(op | Rd(vd) | Rn(rn)); } void Assembler::fmov(const VRegister& vd, const VRegister& vn) { DCHECK_EQ(vd.SizeInBits(), vn.SizeInBits()); Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn)); } void Assembler::fmov(const VRegister& vd, int index, const Register& rn) { DCHECK((index == 1) && vd.Is1D() && rn.IsX()); USE(index); Emit(FMOV_d1_x | Rd(vd) | Rn(rn)); } void Assembler::fmov(const Register& rd, const VRegister& vn, int index) { DCHECK((index == 1) && vn.Is1D() && rd.IsX()); USE(index); Emit(FMOV_x_d1 | Rd(rd) | Rn(vn)); } void Assembler::fmadd(const VRegister& fd, const VRegister& fn, const VRegister& fm, const VRegister& fa) { FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d); } void Assembler::fmsub(const VRegister& fd, const VRegister& fn, const VRegister& fm, const VRegister& fa) { FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); } void Assembler::fnmadd(const VRegister& fd, const VRegister& fn, const VRegister& fm, const VRegister& fa) { FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d); } void Assembler::fnmsub(const VRegister& fd, const VRegister& fn, const VRegister& fm, const VRegister& fa) { FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d); } void Assembler::fnmul(const VRegister& vd, const VRegister& vn, const VRegister& vm) { DCHECK(AreSameSizeAndType(vd, vn, vm)); Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d; Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::fcmp(const VRegister& fn, const VRegister& fm) { DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits()); Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); } void Assembler::fcmp(const VRegister& fn, double value) { USE(value); // Although the fcmp instruction can strictly only take an immediate value of // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't // affect the result of the comparison. DCHECK_EQ(value, 0.0); Emit(FPType(fn) | FCMP_zero | Rn(fn)); } void Assembler::fccmp(const VRegister& fn, const VRegister& fm, StatusFlags nzcv, Condition cond) { DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits()); Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); } void Assembler::fcsel(const VRegister& fd, const VRegister& fn, const VRegister& fm, Condition cond) { DCHECK_EQ(fd.SizeInBits(), fn.SizeInBits()); DCHECK_EQ(fd.SizeInBits(), fm.SizeInBits()); Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); } void Assembler::NEONFPConvertToInt(const Register& rd, const VRegister& vn, Instr op) { Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd)); } void Assembler::NEONFPConvertToInt(const VRegister& vd, const VRegister& vn, Instr op) { if (vn.IsScalar()) { DCHECK((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D())); op |= NEON_Q | NEONScalar; } Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::fcvt(const VRegister& vd, const VRegister& vn) { FPDataProcessing1SourceOp op; if (vd.Is1D()) { DCHECK(vn.Is1S() || vn.Is1H()); op = vn.Is1S() ? FCVT_ds : FCVT_dh; } else if (vd.Is1S()) { DCHECK(vn.Is1D() || vn.Is1H()); op = vn.Is1D() ? FCVT_sd : FCVT_sh; } else { DCHECK(vd.Is1H()); DCHECK(vn.Is1D() || vn.Is1S()); op = vn.Is1D() ? FCVT_hd : FCVT_hs; } FPDataProcessing1Source(vd, vn, op); } void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S())); Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd)); } void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S())); Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd)); } void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) { DCHECK((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S())); Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd)); } void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) { DCHECK((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S())); Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd)); } void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) { Instr format = 1 << NEONSize_offset; if (vd.IsScalar()) { DCHECK(vd.Is1S() && vn.Is1D()); Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd)); } else { DCHECK(vd.Is2S() && vn.Is2D()); Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd)); } } void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) { DCHECK(vd.Is4S() && vn.Is2D()); Instr format = 1 << NEONSize_offset; Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd)); } #define NEON_FP2REGMISC_FCVT_LIST(V) \ V(fcvtnu, NEON_FCVTNU, FCVTNU) \ V(fcvtns, NEON_FCVTNS, FCVTNS) \ V(fcvtpu, NEON_FCVTPU, FCVTPU) \ V(fcvtps, NEON_FCVTPS, FCVTPS) \ V(fcvtmu, NEON_FCVTMU, FCVTMU) \ V(fcvtms, NEON_FCVTMS, FCVTMS) \ V(fcvtau, NEON_FCVTAU, FCVTAU) \ V(fcvtas, NEON_FCVTAS, FCVTAS) #define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \ void Assembler::FN(const Register& rd, const VRegister& vn) { \ NEONFPConvertToInt(rd, vn, SCA_OP); \ } \ void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ NEONFPConvertToInt(vd, vn, VEC_OP); \ } NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS) #undef DEFINE_ASM_FUNCS void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) { DCHECK_GE(fbits, 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_SCVTF); } else { DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm); } } void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) { DCHECK_GE(fbits, 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_UCVTF); } else { DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm); } } void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) { DCHECK_GE(fbits, 0); if (fbits == 0) { Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd)); } else { Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | Rd(vd)); } } void Assembler::ucvtf(const VRegister& fd, const Register& rn, int fbits) { DCHECK_GE(fbits, 0); if (fbits == 0) { Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); } else { Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | Rd(fd)); } } void Assembler::NEON3Same(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3SameOp vop) { DCHECK(AreSameFormat(vd, vn, vm)); DCHECK(vd.IsVector() || !vd.IsQ()); Instr format, op = vop; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; format = SFormat(vd); } else { format = VFormat(vd); } Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEONFP3Same(const VRegister& vd, const VRegister& vn, const VRegister& vm, Instr op) { DCHECK(AreSameFormat(vd, vn, vm)); Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); } #define NEON_FP2REGMISC_LIST(V) \ V(fabs, NEON_FABS, FABS) \ V(fneg, NEON_FNEG, FNEG) \ V(fsqrt, NEON_FSQRT, FSQRT) \ V(frintn, NEON_FRINTN, FRINTN) \ V(frinta, NEON_FRINTA, FRINTA) \ V(frintp, NEON_FRINTP, FRINTP) \ V(frintm, NEON_FRINTM, FRINTM) \ V(frintx, NEON_FRINTX, FRINTX) \ V(frintz, NEON_FRINTZ, FRINTZ) \ V(frinti, NEON_FRINTI, FRINTI) \ V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \ V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar) #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ Instr op; \ if (vd.IsScalar()) { \ DCHECK(vd.Is1S() || vd.Is1D()); \ op = SCA_OP; \ } else { \ DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ op = VEC_OP; \ } \ NEONFP2RegMisc(vd, vn, op); \ } NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) { DCHECK((vd.Is8H() && vn.Is8B() && shift == 8) || (vd.Is4S() && vn.Is4H() && shift == 16) || (vd.Is2D() && vn.Is2S() && shift == 32)); USE(shift); Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); } void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) { USE(shift); DCHECK((vd.Is8H() && vn.Is16B() && shift == 8) || (vd.Is4S() && vn.Is8H() && shift == 16) || (vd.Is2D() && vn.Is4S() && shift == 32)); Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); } void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop, double value) { DCHECK(AreSameFormat(vd, vn)); DCHECK_EQ(value, 0.0); USE(value); Instr op = vop; if (vd.IsScalar()) { DCHECK(vd.Is1S() || vd.Is1D()); op |= NEON_Q | NEONScalar; } else { DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); } Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); } void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value); } void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value); } void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value); } void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value); } void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value); } void Assembler::frecpx(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsScalar()); DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is1S() || vd.Is1D()); Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd)); } void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) { DCHECK(vn.Is1S() || vn.Is1D()); DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits())); if (fbits == 0) { Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd)); } else { Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) | Rd(rd)); } } void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) { DCHECK_GE(fbits, 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_FCVTZS); } else { DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm); } } void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) { DCHECK(vn.Is1S() || vn.Is1D()); DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits())); if (fbits == 0) { Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd)); } else { Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) | Rd(rd)); } } void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) { DCHECK_GE(fbits, 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_FCVTZU); } else { DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm); } } void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, Instr op) { DCHECK(AreSameFormat(vd, vn)); Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); } void Assembler::NEON2RegMisc(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop, int value) { DCHECK(AreSameFormat(vd, vn)); DCHECK_EQ(value, 0); USE(value); Instr format, op = vop; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; format = SFormat(vd); } else { format = VFormat(vd); } Emit(format | op | Rn(vn) | Rd(vd)); } void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value); } void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMGE_zero, value); } void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMGT_zero, value); } void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMLE_zero, value); } void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMLT_zero, value); } #define NEON_3SAME_LIST(V) \ V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \ V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \ V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \ V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \ V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \ V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \ V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \ V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \ V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \ V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \ V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \ V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \ V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \ V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \ V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \ V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \ V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \ V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \ V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \ V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \ V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \ V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \ V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \ V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \ V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \ V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \ V(uqadd, NEON_UQADD, true) \ V(sqadd, NEON_SQADD, true) \ V(uqsub, NEON_UQSUB, true) \ V(sqsub, NEON_SQSUB, true) \ V(sqshl, NEON_SQSHL, true) \ V(uqshl, NEON_UQSHL, true) \ V(sqrshl, NEON_SQRSHL, true) \ V(uqrshl, NEON_UQRSHL, true) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm) { \ DCHECK(AS); \ NEON3Same(vd, vn, vm, OP); \ } NEON_3SAME_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_FP3SAME_LIST_V2(V) \ V(fadd, NEON_FADD, FADD) \ V(fsub, NEON_FSUB, FSUB) \ V(fmul, NEON_FMUL, FMUL) \ V(fdiv, NEON_FDIV, FDIV) \ V(fmax, NEON_FMAX, FMAX) \ V(fmaxnm, NEON_FMAXNM, FMAXNM) \ V(fmin, NEON_FMIN, FMIN) \ V(fminnm, NEON_FMINNM, FMINNM) \ V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \ V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \ V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \ V(fabd, NEON_FABD, NEON_FABD_scalar) \ V(fmla, NEON_FMLA, 0) \ V(fmls, NEON_FMLS, 0) \ V(facge, NEON_FACGE, NEON_FACGE_scalar) \ V(facgt, NEON_FACGT, NEON_FACGT_scalar) \ V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \ V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \ V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \ V(faddp, NEON_FADDP, 0) \ V(fmaxp, NEON_FMAXP, 0) \ V(fminp, NEON_FMINP, 0) \ V(fmaxnmp, NEON_FMAXNMP, 0) \ V(fminnmp, NEON_FMINNMP, 0) #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm) { \ Instr op; \ if ((SCA_OP != 0) && vd.IsScalar()) { \ DCHECK(vd.Is1S() || vd.Is1D()); \ op = SCA_OP; \ } else { \ DCHECK(vd.IsVector()); \ DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ op = VEC_OP; \ } \ NEONFP3Same(vd, vn, vm, op); \ } NEON_FP3SAME_LIST_V2(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::addp(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is1D() && vn.Is2D())); Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd)); } void Assembler::faddp(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fminp(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) { DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd)); } void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) { NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR); } void Assembler::mov(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); if (vd.IsD()) { orr(vd.V8B(), vn.V8B(), vn.V8B()); } else { DCHECK(vd.IsQ()); orr(vd.V16B(), vn.V16B(), vn.V16B()); } } void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) { NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC); } void Assembler::movi(const VRegister& vd, const uint64_t imm, Shift shift, const int shift_amount) { DCHECK((shift == LSL) || (shift == MSL)); if (vd.Is2D() || vd.Is1D()) { DCHECK_EQ(shift_amount, 0); int imm8 = 0; for (int i = 0; i < 8; ++i) { int byte = (imm >> (i * 8)) & 0xFF; DCHECK((byte == 0) || (byte == 0xFF)); if (byte == 0xFF) { imm8 |= (1 << i); } } Instr q = vd.Is2D() ? NEON_Q : 0; Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI | ImmNEONabcdefgh(imm8) | NEONCmode(0xE) | Rd(vd)); } else if (shift == LSL) { NEONModifiedImmShiftLsl(vd, static_cast(imm), shift_amount, NEONModifiedImmediate_MOVI); } else { NEONModifiedImmShiftMsl(vd, static_cast(imm), shift_amount, NEONModifiedImmediate_MOVI); } } void Assembler::mvn(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); if (vd.IsD()) { not_(vd.V8B(), vn.V8B()); } else { DCHECK(vd.IsQ()); not_(vd.V16B(), vn.V16B()); } } void Assembler::mvni(const VRegister& vd, const int imm8, Shift shift, const int shift_amount) { DCHECK((shift == LSL) || (shift == MSL)); if (shift == LSL) { NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); } else { NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); } } void Assembler::NEONFPByElement(const VRegister& vd, const VRegister& vn, const VRegister& vm, int vm_index, NEONByIndexedElementOp vop) { DCHECK(AreSameFormat(vd, vn)); DCHECK((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) || (vd.Is1D() && vm.Is1D())); DCHECK((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2))); Instr op = vop; int index_num_bits = vm.Is1S() ? 2 : 1; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; } Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEONByElement(const VRegister& vd, const VRegister& vn, const VRegister& vm, int vm_index, NEONByIndexedElementOp vop) { DCHECK(AreSameFormat(vd, vn)); DCHECK((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) || (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S())); DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || (vm.Is1S() && (vm_index < 4))); Instr format, op = vop; int index_num_bits = vm.Is1H() ? 3 : 2; if (vd.IsScalar()) { op |= NEONScalar | NEON_Q; format = SFormat(vn); } else { format = VFormat(vn); } Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEONByElementL(const VRegister& vd, const VRegister& vn, const VRegister& vm, int vm_index, NEONByIndexedElementOp vop) { DCHECK((vd.Is4S() && vn.Is4H() && vm.Is1H()) || (vd.Is4S() && vn.Is8H() && vm.Is1H()) || (vd.Is1S() && vn.Is1H() && vm.Is1H()) || (vd.Is2D() && vn.Is2S() && vm.Is1S()) || (vd.Is2D() && vn.Is4S() && vm.Is1S()) || (vd.Is1D() && vn.Is1S() && vm.Is1S())); DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || (vm.Is1S() && (vm_index < 4))); Instr format, op = vop; int index_num_bits = vm.Is1H() ? 3 : 2; if (vd.IsScalar()) { op |= NEONScalar | NEON_Q; format = SFormat(vn); } else { format = VFormat(vn); } Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd)); } #define NEON_BYELEMENT_LIST(V) \ V(mul, NEON_MUL_byelement, vn.IsVector()) \ V(mla, NEON_MLA_byelement, vn.IsVector()) \ V(mls, NEON_MLS_byelement, vn.IsVector()) \ V(sqdmulh, NEON_SQDMULH_byelement, true) \ V(sqrdmulh, NEON_SQRDMULH_byelement, true) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm, int vm_index) { \ DCHECK(AS); \ NEONByElement(vd, vn, vm, vm_index, OP); \ } NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_FPBYELEMENT_LIST(V) \ V(fmul, NEON_FMUL_byelement) \ V(fmla, NEON_FMLA_byelement) \ V(fmls, NEON_FMLS_byelement) \ V(fmulx, NEON_FMULX_byelement) #define DEFINE_ASM_FUNC(FN, OP) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm, int vm_index) { \ NEONFPByElement(vd, vn, vm, vm_index, OP); \ } NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_BYELEMENT_LONG_LIST(V) \ V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \ V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \ V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \ V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \ V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \ V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \ V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \ V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \ V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \ V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \ V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \ V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \ V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \ V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \ V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \ V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \ V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \ V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ()) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, const VRegister& vn, \ const VRegister& vm, int vm_index) { \ DCHECK(AS); \ NEONByElementL(vd, vn, vm, vm_index, OP); \ } NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::suqadd(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_SUQADD); } void Assembler::usqadd(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_USQADD); } void Assembler::abs(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_ABS); } void Assembler::sqabs(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_SQABS); } void Assembler::neg(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_NEG); } void Assembler::sqneg(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_SQNEG); } void Assembler::NEONXtn(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop) { Instr format, op = vop; if (vd.IsScalar()) { DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || (vd.Is1S() && vn.Is1D())); op |= NEON_Q | NEONScalar; format = SFormat(vd); } else { DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); format = VFormat(vd); } Emit(format | op | Rn(vn) | Rd(vd)); } void Assembler::xtn(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() && vd.IsD()); NEONXtn(vd, vn, NEON_XTN); } void Assembler::xtn2(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_XTN); } void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsScalar() || vd.IsD()); NEONXtn(vd, vn, NEON_SQXTN); } void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_SQXTN); } void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsScalar() || vd.IsD()); NEONXtn(vd, vn, NEON_SQXTUN); } void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_SQXTUN); } void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsScalar() || vd.IsD()); NEONXtn(vd, vn, NEON_UQXTN); } void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) { DCHECK(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_UQXTN); } // NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size". void Assembler::not_(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is8B() || vd.Is16B()); Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); } void Assembler::rbit(const VRegister& vd, const VRegister& vn) { DCHECK(AreSameFormat(vd, vn)); DCHECK(vd.Is8B() || vd.Is16B()); Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); } void Assembler::ext(const VRegister& vd, const VRegister& vn, const VRegister& vm, int index) { DCHECK(AreSameFormat(vd, vn, vm)); DCHECK(vd.Is8B() || vd.Is16B()); DCHECK((0 <= index) && (index < vd.LaneCount())); Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd)); } void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) { Instr q, scalar; // We support vn arguments of the form vn.VxT() or vn.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vn.LaneSizeInBytes(); NEONFormatField format; switch (lane_size) { case 1: format = NEON_16B; break; case 2: format = NEON_8H; break; case 4: format = NEON_4S; break; default: DCHECK_EQ(lane_size, 8); format = NEON_2D; break; } if (vd.IsScalar()) { q = NEON_Q; scalar = NEONScalar; } else { DCHECK(!vd.Is1D()); q = vd.IsD() ? 0 : NEON_Q; scalar = 0; } Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) | Rd(vd)); } void Assembler::dcptr(Label* label) { RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); if (label->is_bound()) { // The label is bound, so it does not need to be updated and the internal // reference should be emitted. // // In this case, label->pos() returns the offset of the label from the // start of the buffer. internal_reference_positions_.push_back(pc_offset()); dc64(reinterpret_cast(buffer_ + label->pos())); } else { int32_t offset; if (label->is_linked()) { // The label is linked, so the internal reference should be added // onto the end of the label's link chain. // // In this case, label->pos() returns the offset of the last linked // instruction from the start of the buffer. offset = label->pos() - pc_offset(); DCHECK_NE(offset, kStartOfLabelLinkChain); } else { // The label is unused, so it now becomes linked and the internal // reference is at the start of the new link chain. offset = kStartOfLabelLinkChain; } // The instruction at pc is now the last link in the label's chain. label->link_to(pc_offset()); // Traditionally the offset to the previous instruction in the chain is // encoded in the instruction payload (e.g. branch range) but internal // references are not instructions so while unbound they are encoded as // two consecutive brk instructions. The two 16-bit immediates are used // to encode the offset. offset >>= kInstrSizeLog2; DCHECK(is_int32(offset)); uint32_t high16 = unsigned_bitextract_32(31, 16, offset); uint32_t low16 = unsigned_bitextract_32(15, 0, offset); brk(high16); brk(low16); } } // Below, a difference in case for the same letter indicates a // negated bit. If b is 1, then B is 0. uint32_t Assembler::FPToImm8(double imm) { DCHECK(IsImmFP64(imm)); // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 // 0000.0000.0000.0000.0000.0000.0000.0000 uint64_t bits = bit_cast(imm); // bit7: a000.0000 uint64_t bit7 = ((bits >> 63) & 0x1) << 7; // bit6: 0b00.0000 uint64_t bit6 = ((bits >> 61) & 0x1) << 6; // bit5_to_0: 00cd.efgh uint64_t bit5_to_0 = (bits >> 48) & 0x3F; return static_cast(bit7 | bit6 | bit5_to_0); } Instr Assembler::ImmFP(double imm) { return FPToImm8(imm) << ImmFP_offset; } Instr Assembler::ImmNEONFP(double imm) { return ImmNEONabcdefgh(FPToImm8(imm)); } // Code generation helpers. void Assembler::MoveWide(const Register& rd, uint64_t imm, int shift, MoveWideImmediateOp mov_op) { // Ignore the top 32 bits of an immediate if we're moving to a W register. if (rd.Is32Bits()) { // Check that the top 32 bits are zero (a positive 32-bit number) or top // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). DCHECK(((imm >> kWRegSizeInBits) == 0) || ((imm >> (kWRegSizeInBits - 1)) == 0x1FFFFFFFF)); imm &= kWRegMask; } if (shift >= 0) { // Explicit shift specified. DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16)); shift /= 16; } else { // Calculate a new immediate and shift combination to encode the immediate // argument. shift = 0; if ((imm & ~0xFFFFUL) == 0) { // Nothing to do. } else if ((imm & ~(0xFFFFUL << 16)) == 0) { imm >>= 16; shift = 1; } else if ((imm & ~(0xFFFFUL << 32)) == 0) { DCHECK(rd.Is64Bits()); imm >>= 32; shift = 2; } else if ((imm & ~(0xFFFFUL << 48)) == 0) { DCHECK(rd.Is64Bits()); imm >>= 48; shift = 3; } } DCHECK(is_uint16(imm)); Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) | ImmMoveWide(static_cast(imm)) | ShiftMoveWide(shift)); } void Assembler::AddSub(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubOp op) { DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits()); DCHECK(!operand.NeedsRelocation(this)); if (operand.IsImmediate()) { int64_t immediate = operand.ImmediateValue(); DCHECK(IsImmAddSub(immediate)); Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | ImmAddSub(static_cast(immediate)) | dest_reg | RnSP(rn)); } else if (operand.IsShiftedRegister()) { DCHECK_EQ(operand.reg().SizeInBits(), rd.SizeInBits()); DCHECK_NE(operand.shift(), ROR); // For instructions of the form: // add/sub wsp, , [, LSL #0-3 ] // add/sub , wsp, [, LSL #0-3 ] // add/sub wsp, wsp, [, LSL #0-3 ] // adds/subs , wsp, [, LSL #0-3 ] // or their 64-bit register equivalents, convert the operand from shifted to // extended register mode, and emit an add/sub extended instruction. if (rn.IsSP() || rd.IsSP()) { DCHECK(!(rd.IsSP() && (S == SetFlags))); DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, AddSubExtendedFixed | op); } else { DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); } } else { DCHECK(operand.IsExtendedRegister()); DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); } } void Assembler::AddSubWithCarry(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubWithCarryOp op) { DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits()); DCHECK_EQ(rd.SizeInBits(), operand.reg().SizeInBits()); DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); DCHECK(!operand.NeedsRelocation(this)); Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); } void Assembler::hlt(int code) { DCHECK(is_uint16(code)); Emit(HLT | ImmException(code)); } void Assembler::brk(int code) { DCHECK(is_uint16(code)); Emit(BRK | ImmException(code)); } void Assembler::EmitStringData(const char* string) { size_t len = strlen(string) + 1; DCHECK_LE(RoundUp(len, kInstrSize), static_cast(kGap)); EmitData(string, static_cast(len)); // Pad with nullptr characters until pc_ is aligned. const char pad[] = {'\0', '\0', '\0', '\0'}; static_assert(sizeof(pad) == kInstrSize, "Size of padding must match instruction size."); EmitData(pad, RoundUp(pc_offset(), kInstrSize) - pc_offset()); } void Assembler::debug(const char* message, uint32_t code, Instr params) { #ifdef USE_SIMULATOR if (options().enable_simulator_code) { // The arguments to the debug marker need to be contiguous in memory, so // make sure we don't try to emit pools. BlockPoolsScope scope(this); Label start; bind(&start); // Refer to instructions-arm64.h for a description of the marker and its // arguments. hlt(kImmExceptionIsDebug); DCHECK_EQ(SizeOfCodeGeneratedSince(&start), kDebugCodeOffset); dc32(code); DCHECK_EQ(SizeOfCodeGeneratedSince(&start), kDebugParamsOffset); dc32(params); DCHECK_EQ(SizeOfCodeGeneratedSince(&start), kDebugMessageOffset); EmitStringData(message); hlt(kImmExceptionIsUnreachable); return; } // Fall through if Serializer is enabled. #else // Make sure we haven't dynamically enabled simulator code when there is no // simulator built in. DCHECK(!options().enable_simulator_code); #endif if (params & BREAK) { brk(0); } } void Assembler::Logical(const Register& rd, const Register& rn, const Operand& operand, LogicalOp op) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); DCHECK(!operand.NeedsRelocation(this)); if (operand.IsImmediate()) { int64_t immediate = operand.ImmediateValue(); unsigned reg_size = rd.SizeInBits(); DCHECK_NE(immediate, 0); DCHECK_NE(immediate, -1); DCHECK(rd.Is64Bits() || is_uint32(immediate)); // If the operation is NOT, invert the operation and immediate. if ((op & NOT) == NOT) { op = static_cast(op & ~NOT); immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask); } unsigned n, imm_s, imm_r; if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be encoded in the instruction. LogicalImmediate(rd, rn, n, imm_s, imm_r, op); } else { // This case is handled in the macro assembler. UNREACHABLE(); } } else { DCHECK(operand.IsShiftedRegister()); DCHECK(operand.reg().SizeInBits() == rd.SizeInBits()); Instr dp_op = static_cast(op | LogicalShiftedFixed); DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op); } } void Assembler::LogicalImmediate(const Register& rd, const Register& rn, unsigned n, unsigned imm_s, unsigned imm_r, LogicalOp op) { unsigned reg_size = rd.SizeInBits(); Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) | ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | Rn(rn)); } void Assembler::ConditionalCompare(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond, ConditionalCompareOp op) { Instr ccmpop; DCHECK(!operand.NeedsRelocation(this)); if (operand.IsImmediate()) { int64_t immediate = operand.ImmediateValue(); DCHECK(IsImmConditionalCompare(immediate)); ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(static_cast(immediate)); } else { DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); } Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); } void Assembler::DataProcessing1Source(const Register& rd, const Register& rn, DataProcessing1SourceOp op) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); Emit(SF(rn) | op | Rn(rn) | Rd(rd)); } void Assembler::FPDataProcessing1Source(const VRegister& vd, const VRegister& vn, FPDataProcessing1SourceOp op) { Emit(FPType(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::FPDataProcessing2Source(const VRegister& fd, const VRegister& fn, const VRegister& fm, FPDataProcessing2SourceOp op) { DCHECK(fd.SizeInBits() == fn.SizeInBits()); DCHECK(fd.SizeInBits() == fm.SizeInBits()); Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd)); } void Assembler::FPDataProcessing3Source(const VRegister& fd, const VRegister& fn, const VRegister& fm, const VRegister& fa, FPDataProcessing3SourceOp op) { DCHECK(AreSameSizeAndType(fd, fn, fm, fa)); Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa)); } void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd, const int imm8, const int left_shift, NEONModifiedImmediateOp op) { DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() || vd.Is4S()); DCHECK((left_shift == 0) || (left_shift == 8) || (left_shift == 16) || (left_shift == 24)); DCHECK(is_uint8(imm8)); int cmode_1, cmode_2, cmode_3; if (vd.Is8B() || vd.Is16B()) { DCHECK_EQ(op, NEONModifiedImmediate_MOVI); cmode_1 = 1; cmode_2 = 1; cmode_3 = 1; } else { cmode_1 = (left_shift >> 3) & 1; cmode_2 = left_shift >> 4; cmode_3 = 0; if (vd.Is4H() || vd.Is8H()) { DCHECK((left_shift == 0) || (left_shift == 8)); cmode_3 = 1; } } int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1); Instr q = vd.IsQ() ? NEON_Q : 0; Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); } void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd, const int imm8, const int shift_amount, NEONModifiedImmediateOp op) { DCHECK(vd.Is2S() || vd.Is4S()); DCHECK((shift_amount == 8) || (shift_amount == 16)); DCHECK(is_uint8(imm8)); int cmode_0 = (shift_amount >> 4) & 1; int cmode = 0xC | cmode_0; Instr q = vd.IsQ() ? NEON_Q : 0; Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); } void Assembler::EmitShift(const Register& rd, const Register& rn, Shift shift, unsigned shift_amount) { switch (shift) { case LSL: lsl(rd, rn, shift_amount); break; case LSR: lsr(rd, rn, shift_amount); break; case ASR: asr(rd, rn, shift_amount); break; case ROR: ror(rd, rn, shift_amount); break; default: UNREACHABLE(); } } void Assembler::EmitExtendShift(const Register& rd, const Register& rn, Extend extend, unsigned left_shift) { DCHECK(rd.SizeInBits() >= rn.SizeInBits()); unsigned reg_size = rd.SizeInBits(); // Use the correct size of register. Register rn_ = Register::Create(rn.code(), rd.SizeInBits()); // Bits extracted are high_bit:0. unsigned high_bit = (8 << (extend & 0x3)) - 1; // Number of bits left in the result that are not introduced by the shift. unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { switch (extend) { case UXTB: case UXTH: case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break; case SXTB: case SXTH: case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break; case UXTX: case SXTX: { DCHECK_EQ(rn.SizeInBits(), kXRegSizeInBits); // Nothing to extend. Just shift. lsl(rd, rn_, left_shift); break; } default: UNREACHABLE(); } } else { // No need to extend as the extended bits would be shifted away. lsl(rd, rn_, left_shift); } } void Assembler::DataProcShiftedRegister(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, Instr op) { DCHECK(operand.IsShiftedRegister()); DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount()))); DCHECK(!operand.NeedsRelocation(this)); Emit(SF(rd) | op | Flags(S) | ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); } void Assembler::DataProcExtendedRegister(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, Instr op) { DCHECK(!operand.NeedsRelocation(this)); Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | dest_reg | RnSP(rn)); } bool Assembler::IsImmAddSub(int64_t immediate) { return is_uint12(immediate) || (is_uint12(immediate >> 12) && ((immediate & 0xFFF) == 0)); } void Assembler::LoadStore(const CPURegister& rt, const MemOperand& addr, LoadStoreOp op) { Instr memop = op | Rt(rt) | RnSP(addr.base()); if (addr.IsImmediateOffset()) { unsigned size = CalcLSDataSize(op); if (IsImmLSScaled(addr.offset(), size)) { int offset = static_cast(addr.offset()); // Use the scaled addressing mode. Emit(LoadStoreUnsignedOffsetFixed | memop | ImmLSUnsigned(offset >> size)); } else if (IsImmLSUnscaled(addr.offset())) { int offset = static_cast(addr.offset()); // Use the unscaled addressing mode. Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset)); } else { // This case is handled in the macro assembler. UNREACHABLE(); } } else if (addr.IsRegisterOffset()) { Extend ext = addr.extend(); Shift shift = addr.shift(); unsigned shift_amount = addr.shift_amount(); // LSL is encoded in the option field as UXTX. if (shift == LSL) { ext = UXTX; } // Shifts are encoded in one bit, indicating a left shift by the memory // access size. DCHECK((shift_amount == 0) || (shift_amount == static_cast(CalcLSDataSize(op)))); Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) | ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0)); } else { // Pre-index and post-index modes. DCHECK(!rt.Is(addr.base())); if (IsImmLSUnscaled(addr.offset())) { int offset = static_cast(addr.offset()); if (addr.IsPreIndex()) { Emit(LoadStorePreIndexFixed | memop | ImmLS(offset)); } else { DCHECK(addr.IsPostIndex()); Emit(LoadStorePostIndexFixed | memop | ImmLS(offset)); } } else { // This case is handled in the macro assembler. UNREACHABLE(); } } } bool Assembler::IsImmLSUnscaled(int64_t offset) { return is_int9(offset); } bool Assembler::IsImmLSScaled(int64_t offset, unsigned size) { bool offset_is_size_multiple = (((offset >> size) << size) == offset); return offset_is_size_multiple && is_uint12(offset >> size); } bool Assembler::IsImmLSPair(int64_t offset, unsigned size) { bool offset_is_size_multiple = (((offset >> size) << size) == offset); return offset_is_size_multiple && is_int7(offset >> size); } bool Assembler::IsImmLLiteral(int64_t offset) { int inst_size = static_cast(kInstrSizeLog2); bool offset_is_inst_multiple = (((offset >> inst_size) << inst_size) == offset); DCHECK_GT(offset, 0); offset >>= kLoadLiteralScaleLog2; return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width); } // Test if a given value can be encoded in the immediate field of a logical // instruction. // If it can be encoded, the function returns true, and values pointed to by n, // imm_s and imm_r are updated with immediates encoded in the format required // by the corresponding fields in the logical instruction. // If it can not be encoded, the function returns false, and the values pointed // to by n, imm_s and imm_r are undefined. bool Assembler::IsImmLogical(uint64_t value, unsigned width, unsigned* n, unsigned* imm_s, unsigned* imm_r) { DCHECK((n != nullptr) && (imm_s != nullptr) && (imm_r != nullptr)); DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); bool negate = false; // Logical immediates are encoded using parameters n, imm_s and imm_r using // the following table: // // N imms immr size S R // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) // 0 11110s xxxxxr 2 UInt(s) UInt(r) // (s bits must not be all set) // // A pattern is constructed of size bits, where the least significant S+1 bits // are set. The pattern is rotated right by R, and repeated across a 32 or // 64-bit value, depending on destination register width. // // Put another way: the basic format of a logical immediate is a single // contiguous stretch of 1 bits, repeated across the whole word at intervals // given by a power of 2. To identify them quickly, we first locate the // lowest stretch of 1 bits, then the next 1 bit above that; that combination // is different for every logical immediate, so it gives us all the // information we need to identify the only logical immediate that our input // could be, and then we simply check if that's the value we actually have. // // (The rotation parameter does give the possibility of the stretch of 1 bits // going 'round the end' of the word. To deal with that, we observe that in // any situation where that happens the bitwise NOT of the value is also a // valid logical immediate. So we simply invert the input whenever its low bit // is set, and then we know that the rotated case can't arise.) if (value & 1) { // If the low bit is 1, negate the value, and set a flag to remember that we // did (so that we can adjust the return values appropriately). negate = true; value = ~value; } if (width == kWRegSizeInBits) { // To handle 32-bit logical immediates, the very easiest thing is to repeat // the input value twice to make a 64-bit word. The correct encoding of that // as a logical immediate will also be the correct encoding of the 32-bit // value. // The most-significant 32 bits may not be zero (ie. negate is true) so // shift the value left before duplicating it. value <<= kWRegSizeInBits; value |= value >> kWRegSizeInBits; } // The basic analysis idea: imagine our input word looks like this. // // 0011111000111110001111100011111000111110001111100011111000111110 // c b a // |<--d-->| // // We find the lowest set bit (as an actual power-of-2 value, not its index) // and call it a. Then we add a to our original number, which wipes out the // bottommost stretch of set bits and replaces it with a 1 carried into the // next zero bit. Then we look for the new lowest set bit, which is in // position b, and subtract it, so now our number is just like the original // but with the lowest stretch of set bits completely gone. Now we find the // lowest set bit again, which is position c in the diagram above. Then we'll // measure the distance d between bit positions a and c (using CLZ), and that // tells us that the only valid logical immediate that could possibly be equal // to this number is the one in which a stretch of bits running from a to just // below b is replicated every d bits. uint64_t a = LargestPowerOf2Divisor(value); uint64_t value_plus_a = value + a; uint64_t b = LargestPowerOf2Divisor(value_plus_a); uint64_t value_plus_a_minus_b = value_plus_a - b; uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b); int d, clz_a, out_n; uint64_t mask; if (c != 0) { // The general case, in which there is more than one stretch of set bits. // Compute the repeat distance d, and set up a bitmask covering the basic // unit of repetition (i.e. a word with the bottom d bits set). Also, in all // of these cases the N bit of the output will be zero. clz_a = CountLeadingZeros(a, kXRegSizeInBits); int clz_c = CountLeadingZeros(c, kXRegSizeInBits); d = clz_a - clz_c; mask = ((uint64_t{1} << d) - 1); out_n = 0; } else { // Handle degenerate cases. // // If any of those 'find lowest set bit' operations didn't find a set bit at // all, then the word will have been zero thereafter, so in particular the // last lowest_set_bit operation will have returned zero. So we can test for // all the special case conditions in one go by seeing if c is zero. if (a == 0) { // The input was zero (or all 1 bits, which will come to here too after we // inverted it at the start of the function), for which we just return // false. return false; } else { // Otherwise, if c was zero but a was not, then there's just one stretch // of set bits in our word, meaning that we have the trivial case of // d == 64 and only one 'repetition'. Set up all the same variables as in // the general case above, and set the N bit in the output. clz_a = CountLeadingZeros(a, kXRegSizeInBits); d = 64; mask = ~uint64_t{0}; out_n = 1; } } // If the repeat period d is not a power of two, it can't be encoded. if (!base::bits::IsPowerOfTwo(d)) { return false; } if (((b - a) & ~mask) != 0) { // If the bit stretch (b - a) does not fit within the mask derived from the // repeat period, then fail. return false; } // The only possible option is b - a repeated every d bits. Now we're going to // actually construct the valid logical immediate derived from that // specification, and see if it equals our original input. // // To repeat a value every d bits, we multiply it by a number of the form // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can // be derived using a table lookup on CLZ(d). static const uint64_t multipliers[] = { 0x0000000000000001UL, 0x0000000100000001UL, 0x0001000100010001UL, 0x0101010101010101UL, 0x1111111111111111UL, 0x5555555555555555UL, }; int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57; // Ensure that the index to the multipliers array is within bounds. DCHECK((multiplier_idx >= 0) && (static_cast(multiplier_idx) < arraysize(multipliers))); uint64_t multiplier = multipliers[multiplier_idx]; uint64_t candidate = (b - a) * multiplier; if (value != candidate) { // The candidate pattern doesn't match our input value, so fail. return false; } // We have a match! This is a valid logical immediate, so now we have to // construct the bits and pieces of the instruction encoding that generates // it. // Count the set bits in our basic stretch. The special case of clz(0) == -1 // makes the answer come out right for stretches that reach the very top of // the word (e.g. numbers like 0xFFFFC00000000000). int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits); int s = clz_a - clz_b; // Decide how many bits to rotate right by, to put the low bit of that basic // stretch in position a. int r; if (negate) { // If we inverted the input right at the start of this function, here's // where we compensate: the number of set bits becomes the number of clear // bits, and the rotation count is based on position b rather than position // a (since b is the location of the 'lowest' 1 bit after inversion). s = d - s; r = (clz_b + 1) & (d - 1); } else { r = (clz_a + 1) & (d - 1); } // Now we're done, except for having to encode the S output in such a way that // it gives both the number of set bits and the length of the repeated // segment. The s field is encoded like this: // // imms size S // ssssss 64 UInt(ssssss) // 0sssss 32 UInt(sssss) // 10ssss 16 UInt(ssss) // 110sss 8 UInt(sss) // 1110ss 4 UInt(ss) // 11110s 2 UInt(s) // // So we 'or' (-d << 1) with our computed s to form imms. *n = out_n; *imm_s = ((-d << 1) | (s - 1)) & 0x3F; *imm_r = r; return true; } bool Assembler::IsImmConditionalCompare(int64_t immediate) { return is_uint5(immediate); } bool Assembler::IsImmFP32(float imm) { // Valid values will have the form: // aBbb.bbbc.defg.h000.0000.0000.0000.0000 uint32_t bits = bit_cast(imm); // bits[19..0] are cleared. if ((bits & 0x7FFFF) != 0) { return false; } // bits[29..25] are all set or all cleared. uint32_t b_pattern = (bits >> 16) & 0x3E00; if (b_pattern != 0 && b_pattern != 0x3E00) { return false; } // bit[30] and bit[29] are opposite. if (((bits ^ (bits << 1)) & 0x40000000) == 0) { return false; } return true; } bool Assembler::IsImmFP64(double imm) { // Valid values will have the form: // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 // 0000.0000.0000.0000.0000.0000.0000.0000 uint64_t bits = bit_cast(imm); // bits[47..0] are cleared. if ((bits & 0xFFFFFFFFFFFFL) != 0) { return false; } // bits[61..54] are all set or all cleared. uint32_t b_pattern = (bits >> 48) & 0x3FC0; if (b_pattern != 0 && b_pattern != 0x3FC0) { return false; } // bit[62] and bit[61] are opposite. if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) { return false; } return true; } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer if (buffer_size_ < 1 * MB) { desc.buffer_size = 2 * buffer_size_; } else { desc.buffer_size = buffer_size_ + 1 * MB; } // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if (desc.buffer_size > kMaximalBufferSize) { V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); } byte* buffer = reinterpret_cast(buffer_); // Set up new buffer. desc.buffer = NewArray(desc.buffer_size); desc.origin = this; desc.instr_size = pc_offset(); desc.reloc_size = static_cast((buffer + buffer_size_) - reloc_info_writer.pos()); // Copy the data. intptr_t pc_delta = desc.buffer - buffer; intptr_t rc_delta = (desc.buffer + desc.buffer_size) - (buffer + buffer_size_); memmove(desc.buffer, buffer, desc.instr_size); memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ = pc_ + pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // None of our relocation types are pc relative pointing outside the code // buffer nor pc absolute pointing inside the code buffer, so there is no need // to relocate any emitted relocation entries. // Relocate internal references. for (auto pos : internal_reference_positions_) { intptr_t* p = reinterpret_cast(buffer_ + pos); *p += pc_delta; } // Pending relocation entries are also relative, no need to relocate. } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data, ConstantPoolMode constant_pool_mode) { if ((rmode == RelocInfo::COMMENT) || (rmode == RelocInfo::INTERNAL_REFERENCE) || (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) || (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) || (rmode == RelocInfo::DEOPT_INLINING_ID) || (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID)) { // Adjust code for new modes. DCHECK(RelocInfo::IsComment(rmode) || RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) || RelocInfo::IsDeoptPosition(rmode) || RelocInfo::IsInternalReference(rmode) || RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)); // These modes do not need an entry in the constant pool. } else if (constant_pool_mode == NEEDS_POOL_ENTRY) { bool new_constpool_entry = constpool_.RecordEntry(data, rmode); // Make sure the constant pool is not emitted in place of the next // instruction for which we just recorded relocation info. BlockConstPoolFor(1); if (!new_constpool_entry) return; } // For modes that cannot use the constant pool, a different sequence of // instructions will be emitted by this function's caller. if (!ShouldRecordRelocInfo(rmode)) return; // We do not try to reuse pool constants. RelocInfo rinfo(reinterpret_cast
(pc_), rmode, data, nullptr); DCHECK_GE(buffer_space(), kMaxRelocSize); // too late to grow buffer here reloc_info_writer.Write(&rinfo); } void Assembler::near_jump(int offset, RelocInfo::Mode rmode) { if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode, offset, NO_POOL_ENTRY); b(offset); } void Assembler::near_call(int offset, RelocInfo::Mode rmode) { if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode, offset, NO_POOL_ENTRY); bl(offset); } void Assembler::near_call(HeapObjectRequest request) { RequestHeapObject(request); int index = AddCodeTarget(Handle()); RecordRelocInfo(RelocInfo::CODE_TARGET, index, NO_POOL_ENTRY); bl(index); } void Assembler::BlockConstPoolFor(int instructions) { int pc_limit = pc_offset() + instructions * kInstrSize; if (no_const_pool_before_ < pc_limit) { no_const_pool_before_ = pc_limit; // Make sure the pool won't be blocked for too long. DCHECK(pc_limit < constpool_.MaxPcOffset()); } if (next_constant_pool_check_ < no_const_pool_before_) { next_constant_pool_check_ = no_const_pool_before_; } } void Assembler::CheckConstPool(bool force_emit, bool require_jump) { // Some short sequence of instruction mustn't be broken up by constant pool // emission, such sequences are protected by calls to BlockConstPoolFor and // BlockConstPoolScope. if (is_const_pool_blocked()) { // Something is wrong if emission is forced and blocked at the same time. DCHECK(!force_emit); return; } // There is nothing to do if there are no pending constant pool entries. if (constpool_.IsEmpty()) { // Calculate the offset of the next check. SetNextConstPoolCheckIn(kCheckConstPoolInterval); return; } // We emit a constant pool when: // * requested to do so by parameter force_emit (e.g. after each function). // * the distance to the first instruction accessing the constant pool is // kApproxMaxDistToConstPool or more. // * the number of entries in the pool is kApproxMaxPoolEntryCount or more. int dist = constpool_.DistanceToFirstUse(); int count = constpool_.EntryCount(); if (!force_emit && (dist < kApproxMaxDistToConstPool) && (count < kApproxMaxPoolEntryCount)) { return; } // Emit veneers for branches that would go out of range during emission of the // constant pool. int worst_case_size = constpool_.WorstCaseSize(); CheckVeneerPool(false, require_jump, kVeneerDistanceMargin + worst_case_size); // Check that the code buffer is large enough before emitting the constant // pool (this includes the gap to the relocation information). int needed_space = worst_case_size + kGap + 1 * kInstrSize; while (buffer_space() <= needed_space) { GrowBuffer(); } Label size_check; bind(&size_check); constpool_.Emit(require_jump); DCHECK(SizeOfCodeGeneratedSince(&size_check) <= static_cast(worst_case_size)); // Since a constant pool was just emitted, move the check offset forward by // the standard interval. SetNextConstPoolCheckIn(kCheckConstPoolInterval); } bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) { // Account for the branch around the veneers and the guard. int protection_offset = 2 * kInstrSize; return pc_offset() > max_reachable_pc - margin - protection_offset - static_cast(unresolved_branches_.size() * kMaxVeneerCodeSize); } void Assembler::RecordVeneerPool(int location_offset, int size) { RelocInfo rinfo(reinterpret_cast
(buffer_) + location_offset, RelocInfo::VENEER_POOL, static_cast(size), nullptr); reloc_info_writer.Write(&rinfo); } void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) { BlockPoolsScope scope(this); RecordComment("[ Veneers"); // The exact size of the veneer pool must be recorded (see the comment at the // declaration site of RecordConstPool()), but computing the number of // veneers that will be generated is not obvious. So instead we remember the // current position and will record the size after the pool has been // generated. Label size_check; bind(&size_check); int veneer_pool_relocinfo_loc = pc_offset(); Label end; if (need_protection) { b(&end); } EmitVeneersGuard(); Label veneer_size_check; std::multimap::iterator it, it_to_delete; it = unresolved_branches_.begin(); while (it != unresolved_branches_.end()) { if (force_emit || ShouldEmitVeneer(it->first, margin)) { Instruction* branch = InstructionAt(it->second.pc_offset_); Label* label = it->second.label_; #ifdef DEBUG bind(&veneer_size_check); #endif // Patch the branch to point to the current position, and emit a branch // to the label. Instruction* veneer = reinterpret_cast(pc_); RemoveBranchFromLabelLinkChain(branch, label, veneer); branch->SetImmPCOffsetTarget(options(), veneer); b(label); #ifdef DEBUG DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <= static_cast(kMaxVeneerCodeSize)); veneer_size_check.Unuse(); #endif it_to_delete = it++; unresolved_branches_.erase(it_to_delete); } else { ++it; } } // Record the veneer pool size. int pool_size = static_cast(SizeOfCodeGeneratedSince(&size_check)); RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size); if (unresolved_branches_.empty()) { next_veneer_pool_check_ = kMaxInt; } else { next_veneer_pool_check_ = unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; } bind(&end); RecordComment("]"); } void Assembler::CheckVeneerPool(bool force_emit, bool require_jump, int margin) { // There is nothing to do if there are no pending veneer pool entries. if (unresolved_branches_.empty()) { DCHECK_EQ(next_veneer_pool_check_, kMaxInt); return; } DCHECK(pc_offset() < unresolved_branches_first_limit()); // Some short sequence of instruction mustn't be broken up by veneer pool // emission, such sequences are protected by calls to BlockVeneerPoolFor and // BlockVeneerPoolScope. if (is_veneer_pool_blocked()) { DCHECK(!force_emit); return; } if (!require_jump) { // Prefer emitting veneers protected by an existing instruction. margin *= kVeneerNoProtectionFactor; } if (force_emit || ShouldEmitVeneers(margin)) { EmitVeneers(force_emit, require_jump, margin); } else { next_veneer_pool_check_ = unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; } } int Assembler::buffer_space() const { return static_cast(reloc_info_writer.pos() - pc_); } void Assembler::RecordConstPool(int size) { // We only need this for debugger support, to correctly compute offsets in the // code. RecordRelocInfo(RelocInfo::CONST_POOL, static_cast(size)); } void PatchingAssembler::PatchAdrFar(int64_t target_offset) { // The code at the current instruction should be: // adr rd, 0 // nop (adr_far) // nop (adr_far) // movz scratch, 0 // Verify the expected code. Instruction* expected_adr = InstructionAt(0); CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0)); int rd_code = expected_adr->Rd(); for (int i = 0; i < kAdrFarPatchableNNops; ++i) { CHECK(InstructionAt((i + 1) * kInstrSize)->IsNop(ADR_FAR_NOP)); } Instruction* expected_movz = InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstrSize); CHECK(expected_movz->IsMovz() && (expected_movz->ImmMoveWide() == 0) && (expected_movz->ShiftMoveWide() == 0)); int scratch_code = expected_movz->Rd(); // Patch to load the correct address. Register rd = Register::XRegFromCode(rd_code); Register scratch = Register::XRegFromCode(scratch_code); // Addresses are only 48 bits. adr(rd, target_offset & 0xFFFF); movz(scratch, (target_offset >> 16) & 0xFFFF, 16); movk(scratch, (target_offset >> 32) & 0xFFFF, 32); DCHECK_EQ(target_offset >> 48, 0); add(rd, rd, scratch); } void PatchingAssembler::PatchSubSp(uint32_t immediate) { // The code at the current instruction should be: // sub sp, sp, #0 // Verify the expected code. Instruction* expected_adr = InstructionAt(0); CHECK(expected_adr->IsAddSubImmediate()); sub(sp, sp, immediate); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64