/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include #include #include #include #undef NANOSEC #define NANOSEC ((uint64_t) 1e9) struct thread_ctx { void (*entry)(void* arg); void* arg; }; static void* uv__thread_start(void *arg) { struct thread_ctx *ctx_p; struct thread_ctx ctx; ctx_p = arg; ctx = *ctx_p; free(ctx_p); ctx.entry(ctx.arg); return 0; } int uv_thread_create(uv_thread_t *tid, void (*entry)(void *arg), void *arg) { struct thread_ctx* ctx; int err; ctx = malloc(sizeof(*ctx)); if (ctx == NULL) return UV_ENOMEM; ctx->entry = entry; ctx->arg = arg; err = pthread_create(tid, NULL, uv__thread_start, ctx); if (err) free(ctx); return err ? -1 : 0; } uv_thread_t uv_thread_self(void) { return pthread_self(); } int uv_thread_join(uv_thread_t *tid) { return -pthread_join(*tid, NULL); } int uv_thread_equal(const uv_thread_t* t1, const uv_thread_t* t2) { return pthread_equal(*t1, *t2); } int uv_mutex_init(uv_mutex_t* mutex) { #if defined(NDEBUG) || !defined(PTHREAD_MUTEX_ERRORCHECK) return -pthread_mutex_init(mutex, NULL); #else pthread_mutexattr_t attr; int err; if (pthread_mutexattr_init(&attr)) abort(); if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)) abort(); err = pthread_mutex_init(mutex, &attr); if (pthread_mutexattr_destroy(&attr)) abort(); return -err; #endif } void uv_mutex_destroy(uv_mutex_t* mutex) { if (pthread_mutex_destroy(mutex)) abort(); } void uv_mutex_lock(uv_mutex_t* mutex) { if (pthread_mutex_lock(mutex)) abort(); } int uv_mutex_trylock(uv_mutex_t* mutex) { int err; /* FIXME(bnoordhuis) EAGAIN means recursive lock limit reached. Arguably * a bug, should probably abort rather than return -EAGAIN. */ err = pthread_mutex_trylock(mutex); if (err && err != EBUSY && err != EAGAIN) abort(); return -err; } void uv_mutex_unlock(uv_mutex_t* mutex) { if (pthread_mutex_unlock(mutex)) abort(); } int uv_rwlock_init(uv_rwlock_t* rwlock) { return -pthread_rwlock_init(rwlock, NULL); } void uv_rwlock_destroy(uv_rwlock_t* rwlock) { if (pthread_rwlock_destroy(rwlock)) abort(); } void uv_rwlock_rdlock(uv_rwlock_t* rwlock) { if (pthread_rwlock_rdlock(rwlock)) abort(); } int uv_rwlock_tryrdlock(uv_rwlock_t* rwlock) { int err; err = pthread_rwlock_tryrdlock(rwlock); if (err && err != EBUSY && err != EAGAIN) abort(); return -err; } void uv_rwlock_rdunlock(uv_rwlock_t* rwlock) { if (pthread_rwlock_unlock(rwlock)) abort(); } void uv_rwlock_wrlock(uv_rwlock_t* rwlock) { if (pthread_rwlock_wrlock(rwlock)) abort(); } int uv_rwlock_trywrlock(uv_rwlock_t* rwlock) { int err; err = pthread_rwlock_trywrlock(rwlock); if (err && err != EBUSY && err != EAGAIN) abort(); return -err; } void uv_rwlock_wrunlock(uv_rwlock_t* rwlock) { if (pthread_rwlock_unlock(rwlock)) abort(); } void uv_once(uv_once_t* guard, void (*callback)(void)) { if (pthread_once(guard, callback)) abort(); } #if defined(__APPLE__) && defined(__MACH__) int uv_sem_init(uv_sem_t* sem, unsigned int value) { kern_return_t err; err = semaphore_create(mach_task_self(), sem, SYNC_POLICY_FIFO, value); if (err == KERN_SUCCESS) return 0; if (err == KERN_INVALID_ARGUMENT) return -EINVAL; if (err == KERN_RESOURCE_SHORTAGE) return -ENOMEM; abort(); return -EINVAL; /* Satisfy the compiler. */ } void uv_sem_destroy(uv_sem_t* sem) { if (semaphore_destroy(mach_task_self(), *sem)) abort(); } void uv_sem_post(uv_sem_t* sem) { if (semaphore_signal(*sem)) abort(); } void uv_sem_wait(uv_sem_t* sem) { int r; do r = semaphore_wait(*sem); while (r == KERN_ABORTED); if (r != KERN_SUCCESS) abort(); } int uv_sem_trywait(uv_sem_t* sem) { mach_timespec_t interval; kern_return_t err; interval.tv_sec = 0; interval.tv_nsec = 0; err = semaphore_timedwait(*sem, interval); if (err == KERN_SUCCESS) return 0; if (err == KERN_OPERATION_TIMED_OUT) return -EAGAIN; abort(); return -EINVAL; /* Satisfy the compiler. */ } #else /* !(defined(__APPLE__) && defined(__MACH__)) */ int uv_sem_init(uv_sem_t* sem, unsigned int value) { if (sem_init(sem, 0, value)) return -errno; return 0; } void uv_sem_destroy(uv_sem_t* sem) { if (sem_destroy(sem)) abort(); } void uv_sem_post(uv_sem_t* sem) { if (sem_post(sem)) abort(); } void uv_sem_wait(uv_sem_t* sem) { int r; do r = sem_wait(sem); while (r == -1 && errno == EINTR); if (r) abort(); } int uv_sem_trywait(uv_sem_t* sem) { int r; do r = sem_trywait(sem); while (r == -1 && errno == EINTR); if (r) { if (errno == EAGAIN) return -EAGAIN; abort(); } return 0; } #endif /* defined(__APPLE__) && defined(__MACH__) */ #if defined(__APPLE__) && defined(__MACH__) int uv_cond_init(uv_cond_t* cond) { return -pthread_cond_init(cond, NULL); } #else /* !(defined(__APPLE__) && defined(__MACH__)) */ int uv_cond_init(uv_cond_t* cond) { pthread_condattr_t attr; int err; err = pthread_condattr_init(&attr); if (err) return -err; #if !(defined(__ANDROID__) && defined(HAVE_PTHREAD_COND_TIMEDWAIT_MONOTONIC)) err = pthread_condattr_setclock(&attr, CLOCK_MONOTONIC); if (err) goto error2; #endif err = pthread_cond_init(cond, &attr); if (err) goto error2; err = pthread_condattr_destroy(&attr); if (err) goto error; return 0; error: pthread_cond_destroy(cond); error2: pthread_condattr_destroy(&attr); return -err; } #endif /* defined(__APPLE__) && defined(__MACH__) */ void uv_cond_destroy(uv_cond_t* cond) { if (pthread_cond_destroy(cond)) abort(); } void uv_cond_signal(uv_cond_t* cond) { if (pthread_cond_signal(cond)) abort(); } void uv_cond_broadcast(uv_cond_t* cond) { if (pthread_cond_broadcast(cond)) abort(); } void uv_cond_wait(uv_cond_t* cond, uv_mutex_t* mutex) { if (pthread_cond_wait(cond, mutex)) abort(); } int uv_cond_timedwait(uv_cond_t* cond, uv_mutex_t* mutex, uint64_t timeout) { int r; struct timespec ts; #if defined(__APPLE__) && defined(__MACH__) ts.tv_sec = timeout / NANOSEC; ts.tv_nsec = timeout % NANOSEC; r = pthread_cond_timedwait_relative_np(cond, mutex, &ts); #else timeout += uv__hrtime(UV_CLOCK_PRECISE); ts.tv_sec = timeout / NANOSEC; ts.tv_nsec = timeout % NANOSEC; #if defined(__ANDROID__) && defined(HAVE_PTHREAD_COND_TIMEDWAIT_MONOTONIC) /* * The bionic pthread implementation doesn't support CLOCK_MONOTONIC, * but has this alternative function instead. */ r = pthread_cond_timedwait_monotonic_np(cond, mutex, &ts); #else r = pthread_cond_timedwait(cond, mutex, &ts); #endif /* __ANDROID__ */ #endif if (r == 0) return 0; if (r == ETIMEDOUT) return -ETIMEDOUT; abort(); return -EINVAL; /* Satisfy the compiler. */ } #if defined(__APPLE__) && defined(__MACH__) int uv_barrier_init(uv_barrier_t* barrier, unsigned int count) { int err; barrier->n = count; barrier->count = 0; err = uv_mutex_init(&barrier->mutex); if (err) return -err; err = uv_sem_init(&barrier->turnstile1, 0); if (err) goto error2; err = uv_sem_init(&barrier->turnstile2, 1); if (err) goto error; return 0; error: uv_sem_destroy(&barrier->turnstile1); error2: uv_mutex_destroy(&barrier->mutex); return -err; } void uv_barrier_destroy(uv_barrier_t* barrier) { uv_sem_destroy(&barrier->turnstile2); uv_sem_destroy(&barrier->turnstile1); uv_mutex_destroy(&barrier->mutex); } int uv_barrier_wait(uv_barrier_t* barrier) { int serial_thread; uv_mutex_lock(&barrier->mutex); if (++barrier->count == barrier->n) { uv_sem_wait(&barrier->turnstile2); uv_sem_post(&barrier->turnstile1); } uv_mutex_unlock(&barrier->mutex); uv_sem_wait(&barrier->turnstile1); uv_sem_post(&barrier->turnstile1); uv_mutex_lock(&barrier->mutex); serial_thread = (--barrier->count == 0); if (serial_thread) { uv_sem_wait(&barrier->turnstile1); uv_sem_post(&barrier->turnstile2); } uv_mutex_unlock(&barrier->mutex); uv_sem_wait(&barrier->turnstile2); uv_sem_post(&barrier->turnstile2); return serial_thread; } #else /* !(defined(__APPLE__) && defined(__MACH__)) */ int uv_barrier_init(uv_barrier_t* barrier, unsigned int count) { return -pthread_barrier_init(barrier, NULL, count); } void uv_barrier_destroy(uv_barrier_t* barrier) { if (pthread_barrier_destroy(barrier)) abort(); } int uv_barrier_wait(uv_barrier_t* barrier) { int r = pthread_barrier_wait(barrier); if (r && r != PTHREAD_BARRIER_SERIAL_THREAD) abort(); return r == PTHREAD_BARRIER_SERIAL_THREAD; } #endif /* defined(__APPLE__) && defined(__MACH__) */ int uv_key_create(uv_key_t* key) { return -pthread_key_create(key, NULL); } void uv_key_delete(uv_key_t* key) { if (pthread_key_delete(*key)) abort(); } void* uv_key_get(uv_key_t* key) { return pthread_getspecific(*key); } void uv_key_set(uv_key_t* key, void* value) { if (pthread_setspecific(*key, value)) abort(); }