/* * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_lcl.h" #include /* * First you setup M and L parameters and pass the key schedule. This is * called once per session setup... */ void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, unsigned int M, unsigned int L, void *key, block128_f block) { memset(ctx->nonce.c, 0, sizeof(ctx->nonce.c)); ctx->nonce.c[0] = ((u8)(L - 1) & 7) | (u8)(((M - 2) / 2) & 7) << 3; ctx->blocks = 0; ctx->block = block; ctx->key = key; } /* !!! Following interfaces are to be called *once* per packet !!! */ /* Then you setup per-message nonce and pass the length of the message */ int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx, const unsigned char *nonce, size_t nlen, size_t mlen) { unsigned int L = ctx->nonce.c[0] & 7; /* the L parameter */ if (nlen < (14 - L)) return -1; /* nonce is too short */ if (sizeof(mlen) == 8 && L >= 3) { ctx->nonce.c[8] = (u8)(mlen >> (56 % (sizeof(mlen) * 8))); ctx->nonce.c[9] = (u8)(mlen >> (48 % (sizeof(mlen) * 8))); ctx->nonce.c[10] = (u8)(mlen >> (40 % (sizeof(mlen) * 8))); ctx->nonce.c[11] = (u8)(mlen >> (32 % (sizeof(mlen) * 8))); } else ctx->nonce.u[1] = 0; ctx->nonce.c[12] = (u8)(mlen >> 24); ctx->nonce.c[13] = (u8)(mlen >> 16); ctx->nonce.c[14] = (u8)(mlen >> 8); ctx->nonce.c[15] = (u8)mlen; ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */ memcpy(&ctx->nonce.c[1], nonce, 14 - L); return 0; } /* Then you pass additional authentication data, this is optional */ void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx, const unsigned char *aad, size_t alen) { unsigned int i; block128_f block = ctx->block; if (alen == 0) return; ctx->nonce.c[0] |= 0x40; /* set Adata flag */ (*block) (ctx->nonce.c, ctx->cmac.c, ctx->key), ctx->blocks++; if (alen < (0x10000 - 0x100)) { ctx->cmac.c[0] ^= (u8)(alen >> 8); ctx->cmac.c[1] ^= (u8)alen; i = 2; } else if (sizeof(alen) == 8 && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFF; ctx->cmac.c[2] ^= (u8)(alen >> (56 % (sizeof(alen) * 8))); ctx->cmac.c[3] ^= (u8)(alen >> (48 % (sizeof(alen) * 8))); ctx->cmac.c[4] ^= (u8)(alen >> (40 % (sizeof(alen) * 8))); ctx->cmac.c[5] ^= (u8)(alen >> (32 % (sizeof(alen) * 8))); ctx->cmac.c[6] ^= (u8)(alen >> 24); ctx->cmac.c[7] ^= (u8)(alen >> 16); ctx->cmac.c[8] ^= (u8)(alen >> 8); ctx->cmac.c[9] ^= (u8)alen; i = 10; } else { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFE; ctx->cmac.c[2] ^= (u8)(alen >> 24); ctx->cmac.c[3] ^= (u8)(alen >> 16); ctx->cmac.c[4] ^= (u8)(alen >> 8); ctx->cmac.c[5] ^= (u8)alen; i = 6; } do { for (; i < 16 && alen; ++i, ++aad, --alen) ctx->cmac.c[i] ^= *aad; (*block) (ctx->cmac.c, ctx->cmac.c, ctx->key), ctx->blocks++; i = 0; } while (alen); } /* Finally you encrypt or decrypt the message */ /* * counter part of nonce may not be larger than L*8 bits, L is not larger * than 8, therefore 64-bit counter... */ static void ctr64_inc(unsigned char *counter) { unsigned int n = 8; u8 c; counter += 8; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++; ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; /* length mismatch */ ctx->blocks += ((len + 15) >> 3) | 1; if (ctx->blocks > (U64(1) << 61)) return -2; /* too much data */ while (len >= 16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; memcpy(temp.c, inp, 16); ctx->cmac.u[0] ^= temp.u[0]; ctx->cmac.u[1] ^= temp.u[1]; #else ctx->cmac.u[0] ^= ((u64 *)inp)[0]; ctx->cmac.u[1] ^= ((u64 *)inp)[1]; #endif (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) temp.u[0] ^= scratch.u[0]; temp.u[1] ^= scratch.u[1]; memcpy(out, temp.c, 16); #else ((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0]; ((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1]; #endif inp += 16; out += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= inp[i]; (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) out[i] = scratch.c[i] ^ inp[i]; } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key); ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; while (len >= 16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; #endif (*block) (ctx->nonce.c, scratch.c, key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) memcpy(temp.c, inp, 16); ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]); ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]); memcpy(out, scratch.c, 16); #else ctx->cmac.u[0] ^= (((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0]); ctx->cmac.u[1] ^= (((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1]); #endif (*block) (ctx->cmac.c, ctx->cmac.c, key); inp += 16; out += 16; len -= 16; } if (len) { (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]); (*block) (ctx->cmac.c, ctx->cmac.c, key); } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } static void ctr64_add(unsigned char *counter, size_t inc) { size_t n = 8, val = 0; counter += 8; do { --n; val += counter[n] + (inc & 0xff); counter[n] = (unsigned char)val; val >>= 8; /* carry bit */ inc >>= 8; } while (n && (inc || val)); } int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len, ccm128_f stream) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++; ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; /* length mismatch */ ctx->blocks += ((len + 15) >> 3) | 1; if (ctx->blocks > (U64(1) << 61)) return -2; /* too much data */ if ((n = len / 16)) { (*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; if (len) ctr64_add(ctx->nonce.c, n / 16); } if (len) { for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= inp[i]; (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) out[i] = scratch.c[i] ^ inp[i]; } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len, ccm128_f stream) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key); ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; if ((n = len / 16)) { (*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; if (len) ctr64_add(ctx->nonce.c, n / 16); } if (len) { (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]); (*block) (ctx->cmac.c, ctx->cmac.c, key); } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { unsigned int M = (ctx->nonce.c[0] >> 3) & 7; /* the M parameter */ M *= 2; M += 2; if (len != M) return 0; memcpy(tag, ctx->cmac.c, M); return M; }