// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING && !UPRV_INCOMPLETE_CPP11_SUPPORT #include "uassert.h" #include #include "cmemory.h" #include "decNumber.h" #include #include "number_decimalquantity.h" #include "decContext.h" #include "decNumber.h" #include "number_roundingutils.h" #include "unicode/plurrule.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; namespace { int8_t NEGATIVE_FLAG = 1; int8_t INFINITY_FLAG = 2; int8_t NAN_FLAG = 4; static constexpr int32_t DEFAULT_DIGITS = 34; typedef MaybeStackHeaderAndArray DecNumberWithStorage; /** Helper function to convert a decNumber-compatible string into a decNumber. */ void stringToDecNumber(StringPiece n, DecNumberWithStorage &dn) { decContext set; uprv_decContextDefault(&set, DEC_INIT_BASE); uprv_decContextSetRounding(&set, DEC_ROUND_HALF_EVEN); set.traps = 0; // no traps, thank you if (n.length() > DEFAULT_DIGITS) { dn.resize(n.length(), 0); set.digits = n.length(); } else { set.digits = DEFAULT_DIGITS; } uprv_decNumberFromString(dn.getAlias(), n.data(), &set); U_ASSERT(DECDPUN == 1); } /** Helper function for safe subtraction (no overflow). */ inline int32_t safeSubtract(int32_t a, int32_t b) { // Note: In C++, signed integer subtraction is undefined behavior. int32_t diff = static_cast(static_cast(a) - static_cast(b)); if (b < 0 && diff < a) { return INT32_MAX; } if (b > 0 && diff > a) { return INT32_MIN; } return diff; } static double DOUBLE_MULTIPLIERS[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21}; } // namespace DecimalQuantity::DecimalQuantity() { setBcdToZero(); flags = 0; } DecimalQuantity::~DecimalQuantity() { if (usingBytes) { uprv_free(fBCD.bcdBytes.ptr); fBCD.bcdBytes.ptr = nullptr; usingBytes = false; } } DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { *this = other; } DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { if (this == &other) { return *this; } copyBcdFrom(other); lOptPos = other.lOptPos; lReqPos = other.lReqPos; rReqPos = other.rReqPos; rOptPos = other.rOptPos; scale = other.scale; precision = other.precision; flags = other.flags; origDouble = other.origDouble; origDelta = other.origDelta; isApproximate = other.isApproximate; return *this; } void DecimalQuantity::clear() { lOptPos = INT32_MAX; lReqPos = 0; rReqPos = 0; rOptPos = INT32_MIN; flags = 0; setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data } void DecimalQuantity::setIntegerLength(int32_t minInt, int32_t maxInt) { // Validation should happen outside of DecimalQuantity, e.g., in the Rounder class. U_ASSERT(minInt >= 0); U_ASSERT(maxInt >= minInt); // Save values into internal state // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE lOptPos = maxInt; lReqPos = minInt; } void DecimalQuantity::setFractionLength(int32_t minFrac, int32_t maxFrac) { // Validation should happen outside of DecimalQuantity, e.g., in the Rounder class. U_ASSERT(minFrac >= 0); U_ASSERT(maxFrac >= minFrac); // Save values into internal state // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE rReqPos = -minFrac; rOptPos = -maxFrac; } uint64_t DecimalQuantity::getPositionFingerprint() const { uint64_t fingerprint = 0; fingerprint ^= lOptPos; fingerprint ^= (lReqPos << 16); fingerprint ^= (static_cast(rReqPos) << 32); fingerprint ^= (static_cast(rOptPos) << 48); return fingerprint; } void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode, int32_t minMaxFrac, UErrorCode& status) { // TODO: This is innefficient. Improve? // TODO: Should we convert to decNumber instead? double temp = toDouble(); temp /= roundingIncrement; setToDouble(temp); roundToMagnitude(0, roundingMode, status); temp = toDouble(); temp *= roundingIncrement; setToDouble(temp); // Since we reset the value to a double, we need to specify the rounding boundary // in order to get the DecimalQuantity out of approximation mode. roundToMagnitude(-minMaxFrac, roundingMode, status); } void DecimalQuantity::multiplyBy(int32_t multiplicand) { if (isInfinite() || isZero() || isNaN()) { return; } // TODO: Should we convert to decNumber instead? double temp = toDouble(); temp *= multiplicand; setToDouble(temp); } int32_t DecimalQuantity::getMagnitude() const { U_ASSERT(precision != 0); return scale + precision - 1; } void DecimalQuantity::adjustMagnitude(int32_t delta) { if (precision != 0) { scale += delta; origDelta += delta; } } StandardPlural::Form DecimalQuantity::getStandardPlural(const PluralRules *rules) const { if (rules == nullptr) { // Fail gracefully if the user didn't provide a PluralRules return StandardPlural::Form::OTHER; } else { UnicodeString ruleString = rules->select(*this); return StandardPlural::orOtherFromString(ruleString); } } double DecimalQuantity::getPluralOperand(PluralOperand operand) const { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. U_ASSERT(!isApproximate); switch (operand) { case PLURAL_OPERAND_I: return static_cast(toLong()); case PLURAL_OPERAND_F: return static_cast(toFractionLong(true)); case PLURAL_OPERAND_T: return static_cast(toFractionLong(false)); case PLURAL_OPERAND_V: return fractionCount(); case PLURAL_OPERAND_W: return fractionCountWithoutTrailingZeros(); default: return std::abs(toDouble()); } } int32_t DecimalQuantity::getUpperDisplayMagnitude() const { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment in the header file explaining the "isApproximate" field. U_ASSERT(!isApproximate); int32_t magnitude = scale + precision; int32_t result = (lReqPos > magnitude) ? lReqPos : (lOptPos < magnitude) ? lOptPos : magnitude; return result - 1; } int32_t DecimalQuantity::getLowerDisplayMagnitude() const { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment in the header file explaining the "isApproximate" field. U_ASSERT(!isApproximate); int32_t magnitude = scale; int32_t result = (rReqPos < magnitude) ? rReqPos : (rOptPos > magnitude) ? rOptPos : magnitude; return result; } int8_t DecimalQuantity::getDigit(int32_t magnitude) const { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. U_ASSERT(!isApproximate); return getDigitPos(magnitude - scale); } int32_t DecimalQuantity::fractionCount() const { return -getLowerDisplayMagnitude(); } int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { return -scale > 0 ? -scale : 0; // max(-scale, 0) } bool DecimalQuantity::isNegative() const { return (flags & NEGATIVE_FLAG) != 0; } bool DecimalQuantity::isInfinite() const { return (flags & INFINITY_FLAG) != 0; } bool DecimalQuantity::isNaN() const { return (flags & NAN_FLAG) != 0; } bool DecimalQuantity::isZero() const { return precision == 0; } DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { setBcdToZero(); flags = 0; if (n < 0) { flags |= NEGATIVE_FLAG; n = -n; } if (n != 0) { _setToInt(n); compact(); } return *this; } void DecimalQuantity::_setToInt(int32_t n) { if (n == INT32_MIN) { readLongToBcd(-static_cast(n)); } else { readIntToBcd(n); } } DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { setBcdToZero(); flags = 0; if (n < 0) { flags |= NEGATIVE_FLAG; n = -n; } if (n != 0) { _setToLong(n); compact(); } return *this; } void DecimalQuantity::_setToLong(int64_t n) { if (n == INT64_MIN) { static const char *int64minStr = "9.223372036854775808E+18"; DecNumberWithStorage dn; stringToDecNumber(int64minStr, dn); readDecNumberToBcd(dn.getAlias()); } else if (n <= INT32_MAX) { readIntToBcd(static_cast(n)); } else { readLongToBcd(n); } } DecimalQuantity &DecimalQuantity::setToDouble(double n) { setBcdToZero(); flags = 0; // signbit() from handles +0.0 vs -0.0 if (std::signbit(n) != 0) { flags |= NEGATIVE_FLAG; n = -n; } if (std::isnan(n) != 0) { flags |= NAN_FLAG; } else if (std::isfinite(n) == 0) { flags |= INFINITY_FLAG; } else if (n != 0) { _setToDoubleFast(n); compact(); } return *this; } void DecimalQuantity::_setToDoubleFast(double n) { isApproximate = true; origDouble = n; origDelta = 0; // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now. // TODO: Make a fast path for other types of doubles. if (!std::numeric_limits::is_iec559) { convertToAccurateDouble(); // Turn off the approximate double flag, since the value is now exact. isApproximate = false; origDouble = 0.0; return; } // To get the bits from the double, use memcpy, which takes care of endianness. uint64_t ieeeBits; uprv_memcpy(&ieeeBits, &n, sizeof(n)); int32_t exponent = static_cast((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; // Not all integers can be represented exactly for exponent > 52 if (exponent <= 52 && static_cast(n) == n) { _setToLong(static_cast(n)); return; } // 3.3219... is log2(10) auto fracLength = static_cast ((52 - exponent) / 3.32192809489); if (fracLength >= 0) { int32_t i = fracLength; // 1e22 is the largest exact double. for (; i >= 22; i -= 22) n *= 1e22; n *= DOUBLE_MULTIPLIERS[i]; } else { int32_t i = fracLength; // 1e22 is the largest exact double. for (; i <= -22; i += 22) n /= 1e22; n /= DOUBLE_MULTIPLIERS[-i]; } auto result = static_cast(std::round(n)); if (result != 0) { _setToLong(result); scale -= fracLength; } } void DecimalQuantity::convertToAccurateDouble() { double n = origDouble; U_ASSERT(n != 0); int32_t delta = origDelta; setBcdToZero(); // Call the slow oracle function (Double.toString in Java, sprintf in C++). // The constant DBL_DIG defines a platform-specific number of digits in a double. // However, this tends to be too low (see #11318). Instead, we always use 14 decimal places. static constexpr size_t CAP = 1 + 14 + 8; // Extra space for '+', '.', e+NNN, and '\0' char dstr[CAP]; snprintf(dstr, CAP, "%+1.14e", n); // uprv_decNumberFromString() will parse the string expecting '.' as a // decimal separator, however sprintf() can use ',' in certain locales. // Overwrite a ',' with '.' here before proceeding. char *decimalSeparator = strchr(dstr, ','); if (decimalSeparator != nullptr) { *decimalSeparator = '.'; } StringPiece sp(dstr); DecNumberWithStorage dn; stringToDecNumber(dstr, dn); _setToDecNumber(dn.getAlias()); scale += delta; explicitExactDouble = true; } DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n) { setBcdToZero(); flags = 0; DecNumberWithStorage dn; stringToDecNumber(n, dn); // The code path for decNumber is modeled after BigDecimal in Java. if (decNumberIsNegative(dn.getAlias())) { flags |= NEGATIVE_FLAG; } if (!decNumberIsZero(dn.getAlias())) { _setToDecNumber(dn.getAlias()); } return *this; } void DecimalQuantity::_setToDecNumber(decNumber *n) { // Java fastpaths for ints here. In C++, just always read directly from the decNumber. readDecNumberToBcd(n); compact(); } int64_t DecimalQuantity::toLong() const { int64_t result = 0L; for (int32_t magnitude = scale + precision - 1; magnitude >= 0; magnitude--) { result = result * 10 + getDigitPos(magnitude - scale); } return result; } int64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { int64_t result = 0L; int32_t magnitude = -1; for (; (magnitude >= scale || (includeTrailingZeros && magnitude >= rReqPos)) && magnitude >= rOptPos; magnitude--) { result = result * 10 + getDigitPos(magnitude - scale); } return result; } double DecimalQuantity::toDouble() const { if (isApproximate) { return toDoubleFromOriginal(); } if (isNaN()) { return NAN; } else if (isInfinite()) { return isNegative() ? -INFINITY : INFINITY; } int64_t tempLong = 0L; int32_t lostDigits = precision - (precision < 17 ? precision : 17); for (int shift = precision - 1; shift >= lostDigits; shift--) { tempLong = tempLong * 10 + getDigitPos(shift); } double result = static_cast(tempLong); int32_t _scale = scale + lostDigits; if (_scale >= 0) { // 1e22 is the largest exact double. int32_t i = _scale; for (; i >= 22; i -= 22) result *= 1e22; result *= DOUBLE_MULTIPLIERS[i]; } else { // 1e22 is the largest exact double. int32_t i = _scale; for (; i <= -22; i += 22) result /= 1e22; result /= DOUBLE_MULTIPLIERS[-i]; } if (isNegative()) { result = -result; } return result; } double DecimalQuantity::toDoubleFromOriginal() const { double result = origDouble; int32_t delta = origDelta; if (delta >= 0) { // 1e22 is the largest exact double. for (; delta >= 22; delta -= 22) result *= 1e22; result *= DOUBLE_MULTIPLIERS[delta]; } else { // 1e22 is the largest exact double. for (; delta <= -22; delta += 22) result /= 1e22; result /= DOUBLE_MULTIPLIERS[-delta]; } if (isNegative()) { result *= -1; } return result; } void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { // The position in the BCD at which rounding will be performed; digits to the right of position // will be rounded away. // TODO: Andy: There was a test failure because of integer overflow here. Should I do // "safe subtraction" everywhere in the code? What's the nicest way to do it? int position = safeSubtract(magnitude, scale); if (position <= 0 && !isApproximate) { // All digits are to the left of the rounding magnitude. } else if (precision == 0) { // No rounding for zero. } else { // Perform rounding logic. // "leading" = most significant digit to the right of rounding // "trailing" = least significant digit to the left of rounding int8_t leadingDigit = getDigitPos(safeSubtract(position, 1)); int8_t trailingDigit = getDigitPos(position); // Compute which section of the number we are in. // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) // LOWER means we are between the bottom edge and the midpoint, like 1.391 // MIDPOINT means we are exactly in the middle, like 1.500 // UPPER means we are between the midpoint and the top edge, like 1.916 roundingutils::Section section = roundingutils::SECTION_MIDPOINT; if (!isApproximate) { if (leadingDigit < 5) { section = roundingutils::SECTION_LOWER; } else if (leadingDigit > 5) { section = roundingutils::SECTION_UPPER; } else { for (int p = safeSubtract(position, 2); p >= 0; p--) { if (getDigitPos(p) != 0) { section = roundingutils::SECTION_UPPER; break; } } } } else { int32_t p = safeSubtract(position, 2); int32_t minP = uprv_max(0, precision - 14); if (leadingDigit == 0) { section = roundingutils::SECTION_LOWER_EDGE; for (; p >= minP; p--) { if (getDigitPos(p) != 0) { section = roundingutils::SECTION_LOWER; break; } } } else if (leadingDigit == 4) { for (; p >= minP; p--) { if (getDigitPos(p) != 9) { section = roundingutils::SECTION_LOWER; break; } } } else if (leadingDigit == 5) { for (; p >= minP; p--) { if (getDigitPos(p) != 0) { section = roundingutils::SECTION_UPPER; break; } } } else if (leadingDigit == 9) { section = roundingutils::SECTION_UPPER_EDGE; for (; p >= minP; p--) { if (getDigitPos(p) != 9) { section = roundingutils::SECTION_UPPER; break; } } } else if (leadingDigit < 5) { section = roundingutils::SECTION_LOWER; } else { section = roundingutils::SECTION_UPPER; } bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode); if (safeSubtract(position, 1) < precision - 14 || (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) || (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { // Oops! This means that we have to get the exact representation of the double, because // the zone of uncertainty is along the rounding boundary. convertToAccurateDouble(); roundToMagnitude(magnitude, roundingMode, status); // start over return; } // Turn off the approximate double flag, since the value is now confirmed to be exact. isApproximate = false; origDouble = 0.0; origDelta = 0; if (position <= 0) { // All digits are to the left of the rounding magnitude. return; } // Good to continue rounding. if (section == -1) { section = roundingutils::SECTION_LOWER; } if (section == -2) { section = roundingutils::SECTION_UPPER; } } bool roundDown = roundingutils::getRoundingDirection((trailingDigit % 2) == 0, isNegative(), section, roundingMode, status); if (U_FAILURE(status)) { return; } // Perform truncation if (position >= precision) { setBcdToZero(); scale = magnitude; } else { shiftRight(position); } // Bubble the result to the higher digits if (!roundDown) { if (trailingDigit == 9) { int bubblePos = 0; // Note: in the long implementation, the most digits BCD can have at this point is 15, // so bubblePos <= 15 and getDigitPos(bubblePos) is safe. for (; getDigitPos(bubblePos) == 9; bubblePos++) {} shiftRight(bubblePos); // shift off the trailing 9s } int8_t digit0 = getDigitPos(0); U_ASSERT(digit0 != 9); setDigitPos(0, static_cast(digit0 + 1)); precision += 1; // in case an extra digit got added } compact(); } } void DecimalQuantity::roundToInfinity() { if (isApproximate) { convertToAccurateDouble(); } } void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { U_ASSERT(leadingZeros >= 0); // Zero requires special handling to maintain the invariant that the least-significant digit // in the BCD is nonzero. if (value == 0) { if (appendAsInteger && precision != 0) { scale += leadingZeros + 1; } return; } // Deal with trailing zeros if (scale > 0) { leadingZeros += scale; if (appendAsInteger) { scale = 0; } } // Append digit shiftLeft(leadingZeros + 1); setDigitPos(0, value); // Fix scale if in integer mode if (appendAsInteger) { scale += leadingZeros + 1; } } UnicodeString DecimalQuantity::toPlainString() const { UnicodeString sb; if (isNegative()) { sb.append(u'-'); } for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { sb.append(getDigit(m) + u'0'); if (m == 0) { sb.append(u'.'); } } return sb; } //////////////////////////////////////////////////// /// End of DecimalQuantity_AbstractBCD.java /// /// Start of DecimalQuantity_DualStorageBCD.java /// //////////////////////////////////////////////////// int8_t DecimalQuantity::getDigitPos(int32_t position) const { if (usingBytes) { if (position < 0 || position > precision) { return 0; } return fBCD.bcdBytes.ptr[position]; } else { if (position < 0 || position >= 16) { return 0; } return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf); } } void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { U_ASSERT(position >= 0); if (usingBytes) { ensureCapacity(position + 1); fBCD.bcdBytes.ptr[position] = value; } else if (position >= 16) { switchStorage(); ensureCapacity(position + 1); fBCD.bcdBytes.ptr[position] = value; } else { int shift = position * 4; fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift); } } void DecimalQuantity::shiftLeft(int32_t numDigits) { if (!usingBytes && precision + numDigits > 16) { switchStorage(); } if (usingBytes) { ensureCapacity(precision + numDigits); int i = precision + numDigits - 1; for (; i >= numDigits; i--) { fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits]; } for (; i >= 0; i--) { fBCD.bcdBytes.ptr[i] = 0; } } else { fBCD.bcdLong <<= (numDigits * 4); } scale -= numDigits; precision += numDigits; } void DecimalQuantity::shiftRight(int32_t numDigits) { if (usingBytes) { int i = 0; for (; i < precision - numDigits; i++) { fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits]; } for (; i < precision; i++) { fBCD.bcdBytes.ptr[i] = 0; } } else { fBCD.bcdLong >>= (numDigits * 4); } scale += numDigits; precision -= numDigits; } void DecimalQuantity::setBcdToZero() { if (usingBytes) { uprv_free(fBCD.bcdBytes.ptr); fBCD.bcdBytes.ptr = nullptr; usingBytes = false; } fBCD.bcdLong = 0L; scale = 0; precision = 0; isApproximate = false; origDouble = 0; origDelta = 0; } void DecimalQuantity::readIntToBcd(int32_t n) { U_ASSERT(n != 0); // ints always fit inside the long implementation. uint64_t result = 0L; int i = 16; for (; n != 0; n /= 10, i--) { result = (result >> 4) + ((static_cast(n) % 10) << 60); } U_ASSERT(!usingBytes); fBCD.bcdLong = result >> (i * 4); scale = 0; precision = 16 - i; } void DecimalQuantity::readLongToBcd(int64_t n) { U_ASSERT(n != 0); if (n >= 10000000000000000L) { ensureCapacity(); int i = 0; for (; n != 0L; n /= 10L, i++) { fBCD.bcdBytes.ptr[i] = static_cast(n % 10); } U_ASSERT(usingBytes); scale = 0; precision = i; } else { uint64_t result = 0L; int i = 16; for (; n != 0L; n /= 10L, i--) { result = (result >> 4) + ((n % 10) << 60); } U_ASSERT(i >= 0); U_ASSERT(!usingBytes); fBCD.bcdLong = result >> (i * 4); scale = 0; precision = 16 - i; } } void DecimalQuantity::readDecNumberToBcd(decNumber *dn) { if (dn->digits > 16) { ensureCapacity(dn->digits); for (int32_t i = 0; i < dn->digits; i++) { fBCD.bcdBytes.ptr[i] = dn->lsu[i]; } } else { uint64_t result = 0L; for (int32_t i = 0; i < dn->digits; i++) { result |= static_cast(dn->lsu[i]) << (4 * i); } fBCD.bcdLong = result; } scale = dn->exponent; precision = dn->digits; } void DecimalQuantity::compact() { if (usingBytes) { int32_t delta = 0; for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++); if (delta == precision) { // Number is zero setBcdToZero(); return; } else { // Remove trailing zeros shiftRight(delta); } // Compute precision int32_t leading = precision - 1; for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--); precision = leading + 1; // Switch storage mechanism if possible if (precision <= 16) { switchStorage(); } } else { if (fBCD.bcdLong == 0L) { // Number is zero setBcdToZero(); return; } // Compact the number (remove trailing zeros) // TODO: Use a more efficient algorithm here and below. There is a logarithmic one. int32_t delta = 0; for (; delta < precision && getDigitPos(delta) == 0; delta++); fBCD.bcdLong >>= delta * 4; scale += delta; // Compute precision int32_t leading = precision - 1; for (; leading >= 0 && getDigitPos(leading) == 0; leading--); precision = leading + 1; } } void DecimalQuantity::ensureCapacity() { ensureCapacity(40); } void DecimalQuantity::ensureCapacity(int32_t capacity) { if (capacity == 0) { return; } int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0; if (!usingBytes) { // TODO: There is nothing being done to check for memory allocation failures. // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can // make these arrays half the size. fBCD.bcdBytes.ptr = static_cast(uprv_malloc(capacity * sizeof(int8_t))); fBCD.bcdBytes.len = capacity; // Initialize the byte array to zeros (this is done automatically in Java) uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)); } else if (oldCapacity < capacity) { auto bcd1 = static_cast(uprv_malloc(capacity * 2 * sizeof(int8_t))); uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); // Initialize the rest of the byte array to zeros (this is done automatically in Java) uprv_memset(fBCD.bcdBytes.ptr + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)); uprv_free(fBCD.bcdBytes.ptr); fBCD.bcdBytes.ptr = bcd1; fBCD.bcdBytes.len = capacity * 2; } usingBytes = true; } void DecimalQuantity::switchStorage() { if (usingBytes) { // Change from bytes to long uint64_t bcdLong = 0L; for (int i = precision - 1; i >= 0; i--) { bcdLong <<= 4; bcdLong |= fBCD.bcdBytes.ptr[i]; } uprv_free(fBCD.bcdBytes.ptr); fBCD.bcdBytes.ptr = nullptr; fBCD.bcdLong = bcdLong; usingBytes = false; } else { // Change from long to bytes // Copy the long into a local variable since it will get munged when we allocate the bytes uint64_t bcdLong = fBCD.bcdLong; ensureCapacity(); for (int i = 0; i < precision; i++) { fBCD.bcdBytes.ptr[i] = static_cast(bcdLong & 0xf); bcdLong >>= 4; } U_ASSERT(usingBytes); } } void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { setBcdToZero(); if (other.usingBytes) { ensureCapacity(other.precision); uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t)); } else { fBCD.bcdLong = other.fBCD.bcdLong; } } const char16_t* DecimalQuantity::checkHealth() const { if (usingBytes) { if (precision == 0) { return u"Zero precision but we are in byte mode"; } int32_t capacity = fBCD.bcdBytes.len; if (precision > capacity) { return u"Precision exceeds length of byte array"; } if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; } if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; } for (int i = 0; i < precision; i++) { if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; } if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; } } for (int i = precision; i < capacity; i++) { if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; } } } else { if (precision == 0 && fBCD.bcdLong != 0) { return u"Value in bcdLong even though precision is zero"; } if (precision > 16) { return u"Precision exceeds length of long"; } if (precision != 0 && getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in long mode"; } if (precision != 0 && getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; } for (int i = 0; i < precision; i++) { if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; } if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; } } for (int i = precision; i < 16; i++) { if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; } } } // No error return nullptr; } UnicodeString DecimalQuantity::toString() const { MaybeStackArray digits(precision + 1); for (int32_t i = 0; i < precision; i++) { digits[i] = getDigitPos(precision - i - 1) + '0'; } digits[precision] = 0; // terminate buffer char buffer8[100]; snprintf( buffer8, sizeof(buffer8), "", (lOptPos > 999 ? 999 : lOptPos), lReqPos, rReqPos, (rOptPos < -999 ? -999 : rOptPos), (usingBytes ? "bytes" : "long"), (precision == 0 ? "0" : digits.getAlias()), "E", scale); return UnicodeString(buffer8, -1, US_INV); } UnicodeString DecimalQuantity::toNumberString() const { MaybeStackArray digits(precision + 11); for (int32_t i = 0; i < precision; i++) { digits[i] = getDigitPos(precision - i - 1) + '0'; } snprintf(digits.getAlias() + precision, 11, "E%d", scale); return UnicodeString(digits.getAlias(), -1, US_INV); } #endif /* #if !UCONFIG_NO_FORMATTING */