// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * Copyright (C) 2013-2015, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * collationfastlatinbuilder.cpp * * created on: 2013aug09 * created by: Markus W. Scherer */ #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2 #if DEBUG_COLLATION_FAST_LATIN_BUILDER #include #include #endif #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/ucol.h" #include "unicode/ucharstrie.h" #include "unicode/unistr.h" #include "unicode/uobject.h" #include "unicode/uscript.h" #include "cmemory.h" #include "collation.h" #include "collationdata.h" #include "collationfastlatin.h" #include "collationfastlatinbuilder.h" #include "uassert.h" #include "uvectr64.h" U_NAMESPACE_BEGIN struct CollationData; namespace { /** * Compare two signed int64_t values as if they were unsigned. */ int32_t compareInt64AsUnsigned(int64_t a, int64_t b) { if((uint64_t)a < (uint64_t)b) { return -1; } else if((uint64_t)a > (uint64_t)b) { return 1; } else { return 0; } } // TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp /** * Like Java Collections.binarySearch(List, String, Comparator). * * @return the index>=0 where the item was found, * or the index<0 for inserting the string at ~index in sorted order */ int32_t binarySearch(const int64_t list[], int32_t limit, int64_t ce) { if (limit == 0) { return ~0; } int32_t start = 0; for (;;) { int32_t i = (start + limit) / 2; int32_t cmp = compareInt64AsUnsigned(ce, list[i]); if (cmp == 0) { return i; } else if (cmp < 0) { if (i == start) { return ~start; // insert ce before i } limit = i; } else { if (i == start) { return ~(start + 1); // insert ce after i } start = i; } } } } // namespace CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode) : ce0(0), ce1(0), contractionCEs(errorCode), uniqueCEs(errorCode), miniCEs(NULL), firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0), firstShortPrimary(0), shortPrimaryOverflow(FALSE), headerLength(0) { } CollationFastLatinBuilder::~CollationFastLatinBuilder() { uprv_free(miniCEs); } UBool CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } if(!result.isEmpty()) { // This builder is not reusable. errorCode = U_INVALID_STATE_ERROR; return FALSE; } if(!loadGroups(data, errorCode)) { return FALSE; } // Fast handling of digits. firstShortPrimary = firstDigitPrimary; getCEs(data, errorCode); if(!encodeUniqueCEs(errorCode)) { return FALSE; } if(shortPrimaryOverflow) { // Give digits long mini primaries, // so that there are more short primaries for letters. firstShortPrimary = firstLatinPrimary; resetCEs(); getCEs(data, errorCode); if(!encodeUniqueCEs(errorCode)) { return FALSE; } } // Note: If we still have a short-primary overflow but not a long-primary overflow, // then we could calculate how many more long primaries would fit, // and set the firstShortPrimary to that many after the current firstShortPrimary, // and try again. // However, this might only benefit the en_US_POSIX tailoring, // and it is simpler to suppress building fast Latin data for it in genrb, // or by returning FALSE here if shortPrimaryOverflow. UBool ok = !shortPrimaryOverflow && encodeCharCEs(errorCode) && encodeContractions(errorCode); contractionCEs.removeAllElements(); // might reduce heap memory usage uniqueCEs.removeAllElements(); return ok; } UBool CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } headerLength = 1 + NUM_SPECIAL_GROUPS; uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength; result.append((UChar)r0); // The first few reordering groups should be special groups // (space, punct, ..., digit) followed by Latn, then Grek and other scripts. for(int32_t i = 0; i < NUM_SPECIAL_GROUPS; ++i) { lastSpecialPrimaries[i] = data.getLastPrimaryForGroup(UCOL_REORDER_CODE_FIRST + i); if(lastSpecialPrimaries[i] == 0) { // missing data return FALSE; } result.append((UChar)0); // reserve a slot for this group } firstDigitPrimary = data.getFirstPrimaryForGroup(UCOL_REORDER_CODE_DIGIT); firstLatinPrimary = data.getFirstPrimaryForGroup(USCRIPT_LATIN); lastLatinPrimary = data.getLastPrimaryForGroup(USCRIPT_LATIN); if(firstDigitPrimary == 0 || firstLatinPrimary == 0) { // missing data return FALSE; } return TRUE; } UBool CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const { // Both or neither need to be encoded as short primaries, // so that we can test only one and use the same bit mask. if(p >= firstShortPrimary) { return q >= firstShortPrimary; } else if(q >= firstShortPrimary) { return FALSE; } // Both or neither must be potentially-variable, // so that we can test only one and determine if both are variable. uint32_t lastVariablePrimary = lastSpecialPrimaries[NUM_SPECIAL_GROUPS - 1]; if(p > lastVariablePrimary) { return q > lastVariablePrimary; } else if(q > lastVariablePrimary) { return FALSE; } // Both will be encoded with long mini primaries. // They must be in the same special reordering group, // so that we can test only one and determine if both are variable. U_ASSERT(p != 0 && q != 0); for(int32_t i = 0;; ++i) { // will terminate uint32_t lastPrimary = lastSpecialPrimaries[i]; if(p <= lastPrimary) { return q <= lastPrimary; } else if(q <= lastPrimary) { return FALSE; } } } void CollationFastLatinBuilder::resetCEs() { contractionCEs.removeAllElements(); uniqueCEs.removeAllElements(); shortPrimaryOverflow = FALSE; result.truncate(headerLength); } void CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } int32_t i = 0; for(UChar c = 0;; ++i, ++c) { if(c == CollationFastLatin::LATIN_LIMIT) { c = CollationFastLatin::PUNCT_START; } else if(c == CollationFastLatin::PUNCT_LIMIT) { break; } const CollationData *d; uint32_t ce32 = data.getCE32(c); if(ce32 == Collation::FALLBACK_CE32) { d = data.base; ce32 = d->getCE32(c); } else { d = &data; } if(getCEsFromCE32(*d, c, ce32, errorCode)) { charCEs[i][0] = ce0; charCEs[i][1] = ce1; addUniqueCE(ce0, errorCode); addUniqueCE(ce1, errorCode); } else { // bail out for c charCEs[i][0] = ce0 = Collation::NO_CE; charCEs[i][1] = ce1 = 0; } if(c == 0 && !isContractionCharCE(ce0)) { // Always map U+0000 to a contraction. // Write a contraction list with only a default value if there is no real contraction. U_ASSERT(contractionCEs.isEmpty()); addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG; charCEs[0][1] = 0; } } // Terminate the last contraction list. contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode); } UBool CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } ce32 = data.getFinalCE32(ce32); ce1 = 0; if(Collation::isSimpleOrLongCE32(ce32)) { ce0 = Collation::ceFromCE32(ce32); } else { switch(Collation::tagFromCE32(ce32)) { case Collation::LATIN_EXPANSION_TAG: ce0 = Collation::latinCE0FromCE32(ce32); ce1 = Collation::latinCE1FromCE32(ce32); break; case Collation::EXPANSION32_TAG: { const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32); int32_t length = Collation::lengthFromCE32(ce32); if(length <= 2) { ce0 = Collation::ceFromCE32(ce32s[0]); if(length == 2) { ce1 = Collation::ceFromCE32(ce32s[1]); } break; } else { return FALSE; } } case Collation::EXPANSION_TAG: { const int64_t *ces = data.ces + Collation::indexFromCE32(ce32); int32_t length = Collation::lengthFromCE32(ce32); if(length <= 2) { ce0 = ces[0]; if(length == 2) { ce1 = ces[1]; } break; } else { return FALSE; } } // Note: We could support PREFIX_TAG (assert c>=0) // by recursing on its default CE32 and checking that none of the prefixes starts // with a fast Latin character. // However, currently (2013) there are only the L-before-middle-dot // prefix mappings in the Latin range, and those would be rejected anyway. case Collation::CONTRACTION_TAG: U_ASSERT(c >= 0); return getCEsFromContractionCE32(data, ce32, errorCode); case Collation::OFFSET_TAG: U_ASSERT(c >= 0); ce0 = data.getCEFromOffsetCE32(c, ce32); break; default: return FALSE; } } // A mapping can be completely ignorable. if(ce0 == 0) { return ce1 == 0; } // We do not support an ignorable ce0 unless it is completely ignorable. uint32_t p0 = (uint32_t)(ce0 >> 32); if(p0 == 0) { return FALSE; } // We only support primaries up to the Latin script. if(p0 > lastLatinPrimary) { return FALSE; } // We support non-common secondary and case weights only together with short primaries. uint32_t lower32_0 = (uint32_t)ce0; if(p0 < firstShortPrimary) { uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK; if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; } } // No below-common tertiary weights. if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } if(ce1 != 0) { // Both primaries must be in the same group, // or both must get short mini primaries, // or a short-primary CE is followed by a secondary CE. // This is so that we can test the first primary and use the same mask for both, // and determine for both whether they are variable. uint32_t p1 = (uint32_t)(ce1 >> 32); if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; } uint32_t lower32_1 = (uint32_t)ce1; // No tertiary CEs. if((lower32_1 >> 16) == 0) { return FALSE; } // We support non-common secondary and case weights // only for secondary CEs or together with short primaries. if(p1 != 0 && p1 < firstShortPrimary) { uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK; if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; } } // No below-common tertiary weights. if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } } // No quaternary weights. if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; } return TRUE; } UBool CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } const UChar *p = data.contexts + Collation::indexFromCE32(ce32); ce32 = CollationData::readCE32(p); // Default if no suffix match. // Since the original ce32 is not a prefix mapping, // the default ce32 must not be another contraction. U_ASSERT(!Collation::isContractionCE32(ce32)); int32_t contractionIndex = contractionCEs.size(); if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); } else { // Bail out for c-without-contraction. addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode); } // Handle an encodable contraction unless the next contraction is too long // and starts with the same character. int32_t prevX = -1; UBool addContraction = FALSE; UCharsTrie::Iterator suffixes(p + 2, 0, errorCode); while(suffixes.next(errorCode)) { const UnicodeString &suffix = suffixes.getString(); int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0)); if(x < 0) { continue; } // ignore anything but fast Latin text if(x == prevX) { if(addContraction) { // Bail out for all contractions starting with this character. addContractionEntry(x, Collation::NO_CE, 0, errorCode); addContraction = FALSE; } continue; } if(addContraction) { addContractionEntry(prevX, ce0, ce1, errorCode); } ce32 = (uint32_t)suffixes.getValue(); if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { addContraction = TRUE; } else { addContractionEntry(x, Collation::NO_CE, 0, errorCode); addContraction = FALSE; } prevX = x; } if(addContraction) { addContractionEntry(prevX, ce0, ce1, errorCode); } if(U_FAILURE(errorCode)) { return FALSE; } // Note: There might not be any fast Latin contractions, but // we need to enter contraction handling anyway so that we can bail out // when there is a non-fast-Latin character following. // For example: Danish &Y<> 32) == Collation::NO_CE_PRIMARY) { return; } ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); if(i < 0) { uniqueCEs.insertElementAt(ce, ~i, errorCode); } } uint32_t CollationFastLatinBuilder::getMiniCE(int64_t ce) const { ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); U_ASSERT(index >= 0); return miniCEs[index]; } UBool CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } uprv_free(miniCEs); miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2); if(miniCEs == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return FALSE; } int32_t group = 0; uint32_t lastGroupPrimary = lastSpecialPrimaries[group]; // The lowest unique CE must be at least a secondary CE. U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0); uint32_t prevPrimary = 0; uint32_t prevSecondary = 0; uint32_t pri = 0; uint32_t sec = 0; uint32_t ter = CollationFastLatin::COMMON_TER; for(int32_t i = 0; i < uniqueCEs.size(); ++i) { int64_t ce = uniqueCEs.elementAti(i); // Note: At least one of the p/s/t weights changes from one unique CE to the next. // (uniqueCEs does not store case bits.) uint32_t p = (uint32_t)(ce >> 32); if(p != prevPrimary) { while(p > lastGroupPrimary) { U_ASSERT(pri <= CollationFastLatin::MAX_LONG); // Set the group's header entry to the // last "long primary" in or before the group. result.setCharAt(1 + group, (UChar)pri); if(++group < NUM_SPECIAL_GROUPS) { lastGroupPrimary = lastSpecialPrimaries[group]; } else { lastGroupPrimary = 0xffffffff; break; } } if(p < firstShortPrimary) { if(pri == 0) { pri = CollationFastLatin::MIN_LONG; } else if(pri < CollationFastLatin::MAX_LONG) { pri += CollationFastLatin::LONG_INC; } else { #if DEBUG_COLLATION_FAST_LATIN_BUILDER printf("long-primary overflow for %08x\n", p); #endif miniCEs[i] = CollationFastLatin::BAIL_OUT; continue; } } else { if(pri < CollationFastLatin::MIN_SHORT) { pri = CollationFastLatin::MIN_SHORT; } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) { // Reserve the highest primary weight for U+FFFF. pri += CollationFastLatin::SHORT_INC; } else { #if DEBUG_COLLATION_FAST_LATIN_BUILDER printf("short-primary overflow for %08x\n", p); #endif shortPrimaryOverflow = TRUE; miniCEs[i] = CollationFastLatin::BAIL_OUT; continue; } } prevPrimary = p; prevSecondary = Collation::COMMON_WEIGHT16; sec = CollationFastLatin::COMMON_SEC; ter = CollationFastLatin::COMMON_TER; } uint32_t lower32 = (uint32_t)ce; uint32_t s = lower32 >> 16; if(s != prevSecondary) { if(pri == 0) { if(sec == 0) { sec = CollationFastLatin::MIN_SEC_HIGH; } else if(sec < CollationFastLatin::MAX_SEC_HIGH) { sec += CollationFastLatin::SEC_INC; } else { miniCEs[i] = CollationFastLatin::BAIL_OUT; continue; } prevSecondary = s; ter = CollationFastLatin::COMMON_TER; } else if(s < Collation::COMMON_WEIGHT16) { if(sec == CollationFastLatin::COMMON_SEC) { sec = CollationFastLatin::MIN_SEC_BEFORE; } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) { sec += CollationFastLatin::SEC_INC; } else { miniCEs[i] = CollationFastLatin::BAIL_OUT; continue; } } else if(s == Collation::COMMON_WEIGHT16) { sec = CollationFastLatin::COMMON_SEC; } else { if(sec < CollationFastLatin::MIN_SEC_AFTER) { sec = CollationFastLatin::MIN_SEC_AFTER; } else if(sec < CollationFastLatin::MAX_SEC_AFTER) { sec += CollationFastLatin::SEC_INC; } else { miniCEs[i] = CollationFastLatin::BAIL_OUT; continue; } } prevSecondary = s; ter = CollationFastLatin::COMMON_TER; } U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK; if(t > Collation::COMMON_WEIGHT16) { if(ter < CollationFastLatin::MAX_TER_AFTER) { ++ter; } else { miniCEs[i] = CollationFastLatin::BAIL_OUT; continue; } } if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) { U_ASSERT(sec == CollationFastLatin::COMMON_SEC); miniCEs[i] = (uint16_t)(pri | ter); } else { miniCEs[i] = (uint16_t)(pri | sec | ter); } } #if DEBUG_COLLATION_FAST_LATIN_BUILDER printf("last mini primary: %04x\n", pri); #endif #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2 for(int32_t i = 0; i < uniqueCEs.size(); ++i) { int64_t ce = uniqueCEs.elementAti(i); printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]); } #endif return U_SUCCESS(errorCode); } UBool CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } int32_t miniCEsStart = result.length(); for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { result.append((UChar)0); // initialize to completely ignorable } int32_t indexBase = result.length(); for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { int64_t ce = charCEs[i][0]; if(isContractionCharCE(ce)) { continue; } // defer contraction uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]); if(miniCE > 0xffff) { // Note: There is a chance that this new expansion is the same as a previous one, // and if so, then we could reuse the other expansion. // However, that seems unlikely. int32_t expansionIndex = result.length() - indexBase; if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { miniCE = CollationFastLatin::BAIL_OUT; } else { result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); miniCE = CollationFastLatin::EXPANSION | expansionIndex; } } result.setCharAt(miniCEsStart + i, (UChar)miniCE); } return U_SUCCESS(errorCode); } UBool CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) { // We encode all contraction lists so that the first word of a list // terminates the previous list, and we only need one additional terminator at the end. if(U_FAILURE(errorCode)) { return FALSE; } int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS; int32_t firstContractionIndex = result.length(); for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { int64_t ce = charCEs[i][0]; if(!isContractionCharCE(ce)) { continue; } int32_t contractionIndex = result.length() - indexBase; if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT); continue; } UBool firstTriple = TRUE; for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) { int32_t x = contractionCEs.elementAti(index); if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; } int64_t cce0 = contractionCEs.elementAti(index + 1); int64_t cce1 = contractionCEs.elementAti(index + 2); uint32_t miniCE = encodeTwoCEs(cce0, cce1); if(miniCE == CollationFastLatin::BAIL_OUT) { result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT))); } else if(miniCE <= 0xffff) { result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT))); result.append((UChar)miniCE); } else { result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT))); result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); } firstTriple = FALSE; } // Note: There is a chance that this new contraction list is the same as a previous one, // and if so, then we could truncate the result and reuse the other list. // However, that seems unlikely. result.setCharAt(headerLength + i, (UChar)(CollationFastLatin::CONTRACTION | contractionIndex)); } if(result.length() > firstContractionIndex) { // Terminate the last contraction list. result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK); } if(result.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; return FALSE; } #if DEBUG_COLLATION_FAST_LATIN_BUILDER printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2); puts(" header & below-digit groups map"); int32_t i = 0; for(; i < headerLength; ++i) { printf(" %04x", result[i]); } printf("\n char mini CEs"); U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0); for(; i < indexBase; i += 16) { UChar32 c = i - headerLength; if(c >= CollationFastLatin::LATIN_LIMIT) { c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT; } printf("\n %04x:", c); for(int32_t j = 0; j < 16; ++j) { printf(" %04x", result[i + j]); } } printf("\n expansions & contractions"); for(; i < result.length(); ++i) { if((i - indexBase) % 16 == 0) { puts(""); } printf(" %04x", result[i]); } puts(""); #endif return TRUE; } uint32_t CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const { if(first == 0) { return 0; // completely ignorable } if(first == Collation::NO_CE) { return CollationFastLatin::BAIL_OUT; } U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY); uint32_t miniCE = getMiniCE(first); if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; } if(miniCE >= CollationFastLatin::MIN_SHORT) { // Extract & copy the case bits. // Shift them from normal CE bits 15..14 to mini CE bits 4..3. uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3)); // Only in mini CEs: Ignorable case bits = 0, lowercase = 1. c += CollationFastLatin::LOWER_CASE; miniCE |= c; } if(second == 0) { return miniCE; } uint32_t miniCE1 = getMiniCE(second); if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; } uint32_t case1 = (uint32_t)second & Collation::CASE_MASK; if(miniCE >= CollationFastLatin::MIN_SHORT && (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) { // Try to combine the two mini CEs into one. uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK; uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK; if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 && ter1 == CollationFastLatin::COMMON_TER) { // sec1>=sec_high implies pri1==0. return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1; } } if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) { // Secondary CE, or a CE with a short primary, copy the case bits. case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE; miniCE1 |= case1; } return (miniCE << 16) | miniCE1; } U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION