From da736d8259331a8ef13bf4bbb10bbb8a5c0e5299 Mon Sep 17 00:00:00 2001 From: Florian Dold Date: Tue, 13 Aug 2019 12:29:07 +0200 Subject: remove node/v8 from source tree --- deps/node/deps/brotli/c/enc/entropy_encode.c | 501 --------------------------- 1 file changed, 501 deletions(-) delete mode 100644 deps/node/deps/brotli/c/enc/entropy_encode.c (limited to 'deps/node/deps/brotli/c/enc/entropy_encode.c') diff --git a/deps/node/deps/brotli/c/enc/entropy_encode.c b/deps/node/deps/brotli/c/enc/entropy_encode.c deleted file mode 100644 index 97f9dfb8..00000000 --- a/deps/node/deps/brotli/c/enc/entropy_encode.c +++ /dev/null @@ -1,501 +0,0 @@ -/* Copyright 2010 Google Inc. All Rights Reserved. - - Distributed under MIT license. - See file LICENSE for detail or copy at https://opensource.org/licenses/MIT -*/ - -/* Entropy encoding (Huffman) utilities. */ - -#include "./entropy_encode.h" - -#include /* memset */ - -#include "../common/constants.h" -#include "../common/platform.h" -#include - -#if defined(__cplusplus) || defined(c_plusplus) -extern "C" { -#endif - -BROTLI_BOOL BrotliSetDepth( - int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) { - int stack[16]; - int level = 0; - int p = p0; - BROTLI_DCHECK(max_depth <= 15); - stack[0] = -1; - while (BROTLI_TRUE) { - if (pool[p].index_left_ >= 0) { - level++; - if (level > max_depth) return BROTLI_FALSE; - stack[level] = pool[p].index_right_or_value_; - p = pool[p].index_left_; - continue; - } else { - depth[pool[p].index_right_or_value_] = (uint8_t)level; - } - while (level >= 0 && stack[level] == -1) level--; - if (level < 0) return BROTLI_TRUE; - p = stack[level]; - stack[level] = -1; - } -} - -/* Sort the root nodes, least popular first. */ -static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( - const HuffmanTree* v0, const HuffmanTree* v1) { - if (v0->total_count_ != v1->total_count_) { - return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); - } - return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_); -} - -/* This function will create a Huffman tree. - - The catch here is that the tree cannot be arbitrarily deep. - Brotli specifies a maximum depth of 15 bits for "code trees" - and 7 bits for "code length code trees." - - count_limit is the value that is to be faked as the minimum value - and this minimum value is raised until the tree matches the - maximum length requirement. - - This algorithm is not of excellent performance for very long data blocks, - especially when population counts are longer than 2**tree_limit, but - we are not planning to use this with extremely long blocks. - - See http://en.wikipedia.org/wiki/Huffman_coding */ -void BrotliCreateHuffmanTree(const uint32_t* data, - const size_t length, - const int tree_limit, - HuffmanTree* tree, - uint8_t* depth) { - uint32_t count_limit; - HuffmanTree sentinel; - InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); - /* For block sizes below 64 kB, we never need to do a second iteration - of this loop. Probably all of our block sizes will be smaller than - that, so this loop is mostly of academic interest. If we actually - would need this, we would be better off with the Katajainen algorithm. */ - for (count_limit = 1; ; count_limit *= 2) { - size_t n = 0; - size_t i; - size_t j; - size_t k; - for (i = length; i != 0;) { - --i; - if (data[i]) { - const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit); - InitHuffmanTree(&tree[n++], count, -1, (int16_t)i); - } - } - - if (n == 1) { - depth[tree[0].index_right_or_value_] = 1; /* Only one element. */ - break; - } - - SortHuffmanTreeItems(tree, n, SortHuffmanTree); - - /* The nodes are: - [0, n): the sorted leaf nodes that we start with. - [n]: we add a sentinel here. - [n + 1, 2n): new parent nodes are added here, starting from - (n+1). These are naturally in ascending order. - [2n]: we add a sentinel at the end as well. - There will be (2n+1) elements at the end. */ - tree[n] = sentinel; - tree[n + 1] = sentinel; - - i = 0; /* Points to the next leaf node. */ - j = n + 1; /* Points to the next non-leaf node. */ - for (k = n - 1; k != 0; --k) { - size_t left, right; - if (tree[i].total_count_ <= tree[j].total_count_) { - left = i; - ++i; - } else { - left = j; - ++j; - } - if (tree[i].total_count_ <= tree[j].total_count_) { - right = i; - ++i; - } else { - right = j; - ++j; - } - - { - /* The sentinel node becomes the parent node. */ - size_t j_end = 2 * n - k; - tree[j_end].total_count_ = - tree[left].total_count_ + tree[right].total_count_; - tree[j_end].index_left_ = (int16_t)left; - tree[j_end].index_right_or_value_ = (int16_t)right; - - /* Add back the last sentinel node. */ - tree[j_end + 1] = sentinel; - } - } - if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) { - /* We need to pack the Huffman tree in tree_limit bits. If this was not - successful, add fake entities to the lowest values and retry. */ - break; - } - } -} - -static void Reverse(uint8_t* v, size_t start, size_t end) { - --end; - while (start < end) { - uint8_t tmp = v[start]; - v[start] = v[end]; - v[end] = tmp; - ++start; - --end; - } -} - -static void BrotliWriteHuffmanTreeRepetitions( - const uint8_t previous_value, - const uint8_t value, - size_t repetitions, - size_t* tree_size, - uint8_t* tree, - uint8_t* extra_bits_data) { - BROTLI_DCHECK(repetitions > 0); - if (previous_value != value) { - tree[*tree_size] = value; - extra_bits_data[*tree_size] = 0; - ++(*tree_size); - --repetitions; - } - if (repetitions == 7) { - tree[*tree_size] = value; - extra_bits_data[*tree_size] = 0; - ++(*tree_size); - --repetitions; - } - if (repetitions < 3) { - size_t i; - for (i = 0; i < repetitions; ++i) { - tree[*tree_size] = value; - extra_bits_data[*tree_size] = 0; - ++(*tree_size); - } - } else { - size_t start = *tree_size; - repetitions -= 3; - while (BROTLI_TRUE) { - tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH; - extra_bits_data[*tree_size] = repetitions & 0x3; - ++(*tree_size); - repetitions >>= 2; - if (repetitions == 0) { - break; - } - --repetitions; - } - Reverse(tree, start, *tree_size); - Reverse(extra_bits_data, start, *tree_size); - } -} - -static void BrotliWriteHuffmanTreeRepetitionsZeros( - size_t repetitions, - size_t* tree_size, - uint8_t* tree, - uint8_t* extra_bits_data) { - if (repetitions == 11) { - tree[*tree_size] = 0; - extra_bits_data[*tree_size] = 0; - ++(*tree_size); - --repetitions; - } - if (repetitions < 3) { - size_t i; - for (i = 0; i < repetitions; ++i) { - tree[*tree_size] = 0; - extra_bits_data[*tree_size] = 0; - ++(*tree_size); - } - } else { - size_t start = *tree_size; - repetitions -= 3; - while (BROTLI_TRUE) { - tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH; - extra_bits_data[*tree_size] = repetitions & 0x7; - ++(*tree_size); - repetitions >>= 3; - if (repetitions == 0) { - break; - } - --repetitions; - } - Reverse(tree, start, *tree_size); - Reverse(extra_bits_data, start, *tree_size); - } -} - -void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts, - uint8_t* good_for_rle) { - size_t nonzero_count = 0; - size_t stride; - size_t limit; - size_t sum; - const size_t streak_limit = 1240; - /* Let's make the Huffman code more compatible with RLE encoding. */ - size_t i; - for (i = 0; i < length; i++) { - if (counts[i]) { - ++nonzero_count; - } - } - if (nonzero_count < 16) { - return; - } - while (length != 0 && counts[length - 1] == 0) { - --length; - } - if (length == 0) { - return; /* All zeros. */ - } - /* Now counts[0..length - 1] does not have trailing zeros. */ - { - size_t nonzeros = 0; - uint32_t smallest_nonzero = 1 << 30; - for (i = 0; i < length; ++i) { - if (counts[i] != 0) { - ++nonzeros; - if (smallest_nonzero > counts[i]) { - smallest_nonzero = counts[i]; - } - } - } - if (nonzeros < 5) { - /* Small histogram will model it well. */ - return; - } - if (smallest_nonzero < 4) { - size_t zeros = length - nonzeros; - if (zeros < 6) { - for (i = 1; i < length - 1; ++i) { - if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { - counts[i] = 1; - } - } - } - } - if (nonzeros < 28) { - return; - } - } - /* 2) Let's mark all population counts that already can be encoded - with an RLE code. */ - memset(good_for_rle, 0, length); - { - /* Let's not spoil any of the existing good RLE codes. - Mark any seq of 0's that is longer as 5 as a good_for_rle. - Mark any seq of non-0's that is longer as 7 as a good_for_rle. */ - uint32_t symbol = counts[0]; - size_t step = 0; - for (i = 0; i <= length; ++i) { - if (i == length || counts[i] != symbol) { - if ((symbol == 0 && step >= 5) || - (symbol != 0 && step >= 7)) { - size_t k; - for (k = 0; k < step; ++k) { - good_for_rle[i - k - 1] = 1; - } - } - step = 1; - if (i != length) { - symbol = counts[i]; - } - } else { - ++step; - } - } - } - /* 3) Let's replace those population counts that lead to more RLE codes. - Math here is in 24.8 fixed point representation. */ - stride = 0; - limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; - sum = 0; - for (i = 0; i <= length; ++i) { - if (i == length || good_for_rle[i] || - (i != 0 && good_for_rle[i - 1]) || - (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) { - if (stride >= 4 || (stride >= 3 && sum == 0)) { - size_t k; - /* The stride must end, collapse what we have, if we have enough (4). */ - size_t count = (sum + stride / 2) / stride; - if (count == 0) { - count = 1; - } - if (sum == 0) { - /* Don't make an all zeros stride to be upgraded to ones. */ - count = 0; - } - for (k = 0; k < stride; ++k) { - /* We don't want to change value at counts[i], - that is already belonging to the next stride. Thus - 1. */ - counts[i - k - 1] = (uint32_t)count; - } - } - stride = 0; - sum = 0; - if (i < length - 2) { - /* All interesting strides have a count of at least 4, */ - /* at least when non-zeros. */ - limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; - } else if (i < length) { - limit = 256 * counts[i]; - } else { - limit = 0; - } - } - ++stride; - if (i != length) { - sum += counts[i]; - if (stride >= 4) { - limit = (256 * sum + stride / 2) / stride; - } - if (stride == 4) { - limit += 120; - } - } - } -} - -static void DecideOverRleUse(const uint8_t* depth, const size_t length, - BROTLI_BOOL* use_rle_for_non_zero, - BROTLI_BOOL* use_rle_for_zero) { - size_t total_reps_zero = 0; - size_t total_reps_non_zero = 0; - size_t count_reps_zero = 1; - size_t count_reps_non_zero = 1; - size_t i; - for (i = 0; i < length;) { - const uint8_t value = depth[i]; - size_t reps = 1; - size_t k; - for (k = i + 1; k < length && depth[k] == value; ++k) { - ++reps; - } - if (reps >= 3 && value == 0) { - total_reps_zero += reps; - ++count_reps_zero; - } - if (reps >= 4 && value != 0) { - total_reps_non_zero += reps; - ++count_reps_non_zero; - } - i += reps; - } - *use_rle_for_non_zero = - TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2); - *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2); -} - -void BrotliWriteHuffmanTree(const uint8_t* depth, - size_t length, - size_t* tree_size, - uint8_t* tree, - uint8_t* extra_bits_data) { - uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH; - size_t i; - BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE; - BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE; - - /* Throw away trailing zeros. */ - size_t new_length = length; - for (i = 0; i < length; ++i) { - if (depth[length - i - 1] == 0) { - --new_length; - } else { - break; - } - } - - /* First gather statistics on if it is a good idea to do RLE. */ - if (length > 50) { - /* Find RLE coding for longer codes. - Shorter codes seem not to benefit from RLE. */ - DecideOverRleUse(depth, new_length, - &use_rle_for_non_zero, &use_rle_for_zero); - } - - /* Actual RLE coding. */ - for (i = 0; i < new_length;) { - const uint8_t value = depth[i]; - size_t reps = 1; - if ((value != 0 && use_rle_for_non_zero) || - (value == 0 && use_rle_for_zero)) { - size_t k; - for (k = i + 1; k < new_length && depth[k] == value; ++k) { - ++reps; - } - } - if (value == 0) { - BrotliWriteHuffmanTreeRepetitionsZeros( - reps, tree_size, tree, extra_bits_data); - } else { - BrotliWriteHuffmanTreeRepetitions(previous_value, - value, reps, tree_size, - tree, extra_bits_data); - previous_value = value; - } - i += reps; - } -} - -static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) { - static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */ - 0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E, - 0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F - }; - size_t retval = kLut[bits & 0x0F]; - size_t i; - for (i = 4; i < num_bits; i += 4) { - retval <<= 4; - bits = (uint16_t)(bits >> 4); - retval |= kLut[bits & 0x0F]; - } - retval >>= ((0 - num_bits) & 0x03); - return (uint16_t)retval; -} - -/* 0..15 are values for bits */ -#define MAX_HUFFMAN_BITS 16 - -void BrotliConvertBitDepthsToSymbols(const uint8_t* depth, - size_t len, - uint16_t* bits) { - /* In Brotli, all bit depths are [1..15] - 0 bit depth means that the symbol does not exist. */ - uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 }; - uint16_t next_code[MAX_HUFFMAN_BITS]; - size_t i; - int code = 0; - for (i = 0; i < len; ++i) { - ++bl_count[depth[i]]; - } - bl_count[0] = 0; - next_code[0] = 0; - for (i = 1; i < MAX_HUFFMAN_BITS; ++i) { - code = (code + bl_count[i - 1]) << 1; - next_code[i] = (uint16_t)code; - } - for (i = 0; i < len; ++i) { - if (depth[i]) { - bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++); - } - } -} - -#if defined(__cplusplus) || defined(c_plusplus) -} /* extern "C" */ -#endif -- cgit v1.2.3