summaryrefslogtreecommitdiff
path: root/deps/node/deps/icu-small/source/i18n/nfrule.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'deps/node/deps/icu-small/source/i18n/nfrule.cpp')
-rw-r--r--deps/node/deps/icu-small/source/i18n/nfrule.cpp1622
1 files changed, 0 insertions, 1622 deletions
diff --git a/deps/node/deps/icu-small/source/i18n/nfrule.cpp b/deps/node/deps/icu-small/source/i18n/nfrule.cpp
deleted file mode 100644
index b5e7892d..00000000
--- a/deps/node/deps/icu-small/source/i18n/nfrule.cpp
+++ /dev/null
@@ -1,1622 +0,0 @@
-// © 2016 and later: Unicode, Inc. and others.
-// License & terms of use: http://www.unicode.org/copyright.html
-/*
-******************************************************************************
-* Copyright (C) 1997-2015, International Business Machines
-* Corporation and others. All Rights Reserved.
-******************************************************************************
-* file name: nfrule.cpp
-* encoding: UTF-8
-* tab size: 8 (not used)
-* indentation:4
-*
-* Modification history
-* Date Name Comments
-* 10/11/2001 Doug Ported from ICU4J
-*/
-
-#include "nfrule.h"
-
-#if U_HAVE_RBNF
-
-#include "unicode/localpointer.h"
-#include "unicode/rbnf.h"
-#include "unicode/tblcoll.h"
-#include "unicode/plurfmt.h"
-#include "unicode/upluralrules.h"
-#include "unicode/coleitr.h"
-#include "unicode/uchar.h"
-#include "nfrs.h"
-#include "nfrlist.h"
-#include "nfsubs.h"
-#include "patternprops.h"
-#include "putilimp.h"
-
-U_NAMESPACE_BEGIN
-
-NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
- : baseValue((int32_t)0)
- , radix(10)
- , exponent(0)
- , decimalPoint(0)
- , fRuleText(_ruleText)
- , sub1(NULL)
- , sub2(NULL)
- , formatter(_rbnf)
- , rulePatternFormat(NULL)
-{
- if (!fRuleText.isEmpty()) {
- parseRuleDescriptor(fRuleText, status);
- }
-}
-
-NFRule::~NFRule()
-{
- if (sub1 != sub2) {
- delete sub2;
- sub2 = NULL;
- }
- delete sub1;
- sub1 = NULL;
- delete rulePatternFormat;
- rulePatternFormat = NULL;
-}
-
-static const UChar gLeftBracket = 0x005b;
-static const UChar gRightBracket = 0x005d;
-static const UChar gColon = 0x003a;
-static const UChar gZero = 0x0030;
-static const UChar gNine = 0x0039;
-static const UChar gSpace = 0x0020;
-static const UChar gSlash = 0x002f;
-static const UChar gGreaterThan = 0x003e;
-static const UChar gLessThan = 0x003c;
-static const UChar gComma = 0x002c;
-static const UChar gDot = 0x002e;
-static const UChar gTick = 0x0027;
-//static const UChar gMinus = 0x002d;
-static const UChar gSemicolon = 0x003b;
-static const UChar gX = 0x0078;
-
-static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
-static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */
-static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
-
-static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */
-static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
-
-static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
-static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
-static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
-static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
-static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
-static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
-static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
-static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
-static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
-static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
-static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
-static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
-
-static const UChar * const RULE_PREFIXES[] = {
- gLessLess, gLessPercent, gLessHash, gLessZero,
- gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
- gEqualPercent, gEqualHash, gEqualZero, NULL
-};
-
-void
-NFRule::makeRules(UnicodeString& description,
- NFRuleSet *owner,
- const NFRule *predecessor,
- const RuleBasedNumberFormat *rbnf,
- NFRuleList& rules,
- UErrorCode& status)
-{
- // we know we're making at least one rule, so go ahead and
- // new it up and initialize its basevalue and divisor
- // (this also strips the rule descriptor, if any, off the
- // descripton string)
- NFRule* rule1 = new NFRule(rbnf, description, status);
- /* test for NULL */
- if (rule1 == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- description = rule1->fRuleText;
-
- // check the description to see whether there's text enclosed
- // in brackets
- int32_t brack1 = description.indexOf(gLeftBracket);
- int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
-
- // if the description doesn't contain a matched pair of brackets,
- // or if it's of a type that doesn't recognize bracketed text,
- // then leave the description alone, initialize the rule's
- // rule text and substitutions, and return that rule
- if (brack2 < 0 || brack1 > brack2
- || rule1->getType() == kProperFractionRule
- || rule1->getType() == kNegativeNumberRule
- || rule1->getType() == kInfinityRule
- || rule1->getType() == kNaNRule)
- {
- rule1->extractSubstitutions(owner, description, predecessor, status);
- }
- else {
- // if the description does contain a matched pair of brackets,
- // then it's really shorthand for two rules (with one exception)
- NFRule* rule2 = NULL;
- UnicodeString sbuf;
-
- // we'll actually only split the rule into two rules if its
- // base value is an even multiple of its divisor (or it's one
- // of the special rules)
- if ((rule1->baseValue > 0
- && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
- || rule1->getType() == kImproperFractionRule
- || rule1->getType() == kMasterRule) {
-
- // if it passes that test, new up the second rule. If the
- // rule set both rules will belong to is a fraction rule
- // set, they both have the same base value; otherwise,
- // increment the original rule's base value ("rule1" actually
- // goes SECOND in the rule set's rule list)
- rule2 = new NFRule(rbnf, UnicodeString(), status);
- /* test for NULL */
- if (rule2 == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- if (rule1->baseValue >= 0) {
- rule2->baseValue = rule1->baseValue;
- if (!owner->isFractionRuleSet()) {
- ++rule1->baseValue;
- }
- }
-
- // if the description began with "x.x" and contains bracketed
- // text, it describes both the improper fraction rule and
- // the proper fraction rule
- else if (rule1->getType() == kImproperFractionRule) {
- rule2->setType(kProperFractionRule);
- }
-
- // if the description began with "x.0" and contains bracketed
- // text, it describes both the master rule and the
- // improper fraction rule
- else if (rule1->getType() == kMasterRule) {
- rule2->baseValue = rule1->baseValue;
- rule1->setType(kImproperFractionRule);
- }
-
- // both rules have the same radix and exponent (i.e., the
- // same divisor)
- rule2->radix = rule1->radix;
- rule2->exponent = rule1->exponent;
-
- // rule2's rule text omits the stuff in brackets: initalize
- // its rule text and substitutions accordingly
- sbuf.append(description, 0, brack1);
- if (brack2 + 1 < description.length()) {
- sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
- }
- rule2->extractSubstitutions(owner, sbuf, predecessor, status);
- }
-
- // rule1's text includes the text in the brackets but omits
- // the brackets themselves: initialize _its_ rule text and
- // substitutions accordingly
- sbuf.setTo(description, 0, brack1);
- sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
- if (brack2 + 1 < description.length()) {
- sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
- }
- rule1->extractSubstitutions(owner, sbuf, predecessor, status);
-
- // if we only have one rule, return it; if we have two, return
- // a two-element array containing them (notice that rule2 goes
- // BEFORE rule1 in the list: in all cases, rule2 OMITS the
- // material in the brackets and rule1 INCLUDES the material
- // in the brackets)
- if (rule2 != NULL) {
- if (rule2->baseValue >= kNoBase) {
- rules.add(rule2);
- }
- else {
- owner->setNonNumericalRule(rule2);
- }
- }
- }
- if (rule1->baseValue >= kNoBase) {
- rules.add(rule1);
- }
- else {
- owner->setNonNumericalRule(rule1);
- }
-}
-
-/**
- * This function parses the rule's rule descriptor (i.e., the base
- * value and/or other tokens that precede the rule's rule text
- * in the description) and sets the rule's base value, radix, and
- * exponent according to the descriptor. (If the description doesn't
- * include a rule descriptor, then this function sets everything to
- * default values and the rule set sets the rule's real base value).
- * @param description The rule's description
- * @return If "description" included a rule descriptor, this is
- * "description" with the descriptor and any trailing whitespace
- * stripped off. Otherwise; it's "descriptor" unchangd.
- */
-void
-NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
-{
- // the description consists of a rule descriptor and a rule body,
- // separated by a colon. The rule descriptor is optional. If
- // it's omitted, just set the base value to 0.
- int32_t p = description.indexOf(gColon);
- if (p != -1) {
- // copy the descriptor out into its own string and strip it,
- // along with any trailing whitespace, out of the original
- // description
- UnicodeString descriptor;
- descriptor.setTo(description, 0, p);
-
- ++p;
- while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
- ++p;
- }
- description.removeBetween(0, p);
-
- // check first to see if the rule descriptor matches the token
- // for one of the special rules. If it does, set the base
- // value to the correct identifier value
- int descriptorLength = descriptor.length();
- UChar firstChar = descriptor.charAt(0);
- UChar lastChar = descriptor.charAt(descriptorLength - 1);
- if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
- // if the rule descriptor begins with a digit, it's a descriptor
- // for a normal rule
- // since we don't have Long.parseLong, and this isn't much work anyway,
- // just build up the value as we encounter the digits.
- int64_t val = 0;
- p = 0;
- UChar c = gSpace;
-
- // begin parsing the descriptor: copy digits
- // into "tempValue", skip periods, commas, and spaces,
- // stop on a slash or > sign (or at the end of the string),
- // and throw an exception on any other character
- int64_t ll_10 = 10;
- while (p < descriptorLength) {
- c = descriptor.charAt(p);
- if (c >= gZero && c <= gNine) {
- val = val * ll_10 + (int32_t)(c - gZero);
- }
- else if (c == gSlash || c == gGreaterThan) {
- break;
- }
- else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
- }
- else {
- // throw new IllegalArgumentException("Illegal character in rule descriptor");
- status = U_PARSE_ERROR;
- return;
- }
- ++p;
- }
-
- // we have the base value, so set it
- setBaseValue(val, status);
-
- // if we stopped the previous loop on a slash, we're
- // now parsing the rule's radix. Again, accumulate digits
- // in tempValue, skip punctuation, stop on a > mark, and
- // throw an exception on anything else
- if (c == gSlash) {
- val = 0;
- ++p;
- ll_10 = 10;
- while (p < descriptorLength) {
- c = descriptor.charAt(p);
- if (c >= gZero && c <= gNine) {
- val = val * ll_10 + (int32_t)(c - gZero);
- }
- else if (c == gGreaterThan) {
- break;
- }
- else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
- }
- else {
- // throw new IllegalArgumentException("Illegal character is rule descriptor");
- status = U_PARSE_ERROR;
- return;
- }
- ++p;
- }
-
- // tempValue now contain's the rule's radix. Set it
- // accordingly, and recalculate the rule's exponent
- radix = (int32_t)val;
- if (radix == 0) {
- // throw new IllegalArgumentException("Rule can't have radix of 0");
- status = U_PARSE_ERROR;
- }
-
- exponent = expectedExponent();
- }
-
- // if we stopped the previous loop on a > sign, then continue
- // for as long as we still see > signs. For each one,
- // decrement the exponent (unless the exponent is already 0).
- // If we see another character before reaching the end of
- // the descriptor, that's also a syntax error.
- if (c == gGreaterThan) {
- while (p < descriptor.length()) {
- c = descriptor.charAt(p);
- if (c == gGreaterThan && exponent > 0) {
- --exponent;
- } else {
- // throw new IllegalArgumentException("Illegal character in rule descriptor");
- status = U_PARSE_ERROR;
- return;
- }
- ++p;
- }
- }
- }
- else if (0 == descriptor.compare(gMinusX, 2)) {
- setType(kNegativeNumberRule);
- }
- else if (descriptorLength == 3) {
- if (firstChar == gZero && lastChar == gX) {
- setBaseValue(kProperFractionRule, status);
- decimalPoint = descriptor.charAt(1);
- }
- else if (firstChar == gX && lastChar == gX) {
- setBaseValue(kImproperFractionRule, status);
- decimalPoint = descriptor.charAt(1);
- }
- else if (firstChar == gX && lastChar == gZero) {
- setBaseValue(kMasterRule, status);
- decimalPoint = descriptor.charAt(1);
- }
- else if (descriptor.compare(gNaN, 3) == 0) {
- setBaseValue(kNaNRule, status);
- }
- else if (descriptor.compare(gInf, 3) == 0) {
- setBaseValue(kInfinityRule, status);
- }
- }
- }
- // else use the default base value for now.
-
- // finally, if the rule body begins with an apostrophe, strip it off
- // (this is generally used to put whitespace at the beginning of
- // a rule's rule text)
- if (description.length() > 0 && description.charAt(0) == gTick) {
- description.removeBetween(0, 1);
- }
-
- // return the description with all the stuff we've just waded through
- // stripped off the front. It now contains just the rule body.
- // return description;
-}
-
-/**
-* Searches the rule's rule text for the substitution tokens,
-* creates the substitutions, and removes the substitution tokens
-* from the rule's rule text.
-* @param owner The rule set containing this rule
-* @param predecessor The rule preseding this one in "owners" rule list
-* @param ownersOwner The RuleBasedFormat that owns this rule
-*/
-void
-NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
- const UnicodeString &ruleText,
- const NFRule* predecessor,
- UErrorCode& status)
-{
- if (U_FAILURE(status)) {
- return;
- }
- fRuleText = ruleText;
- sub1 = extractSubstitution(ruleSet, predecessor, status);
- if (sub1 == NULL) {
- // Small optimization. There is no need to create a redundant NullSubstitution.
- sub2 = NULL;
- }
- else {
- sub2 = extractSubstitution(ruleSet, predecessor, status);
- }
- int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
- int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
- if (pluralRuleEnd >= 0) {
- int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart);
- if (endType < 0) {
- status = U_PARSE_ERROR;
- return;
- }
- UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
- UPluralType pluralType;
- if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
- pluralType = UPLURAL_TYPE_CARDINAL;
- }
- else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
- pluralType = UPLURAL_TYPE_ORDINAL;
- }
- else {
- status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- }
- rulePatternFormat = formatter->createPluralFormat(pluralType,
- fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
- }
-}
-
-/**
-* Searches the rule's rule text for the first substitution token,
-* creates a substitution based on it, and removes the token from
-* the rule's rule text.
-* @param owner The rule set containing this rule
-* @param predecessor The rule preceding this one in the rule set's
-* rule list
-* @param ownersOwner The RuleBasedNumberFormat that owns this rule
-* @return The newly-created substitution. This is never null; if
-* the rule text doesn't contain any substitution tokens, this will
-* be a NullSubstitution.
-*/
-NFSubstitution *
-NFRule::extractSubstitution(const NFRuleSet* ruleSet,
- const NFRule* predecessor,
- UErrorCode& status)
-{
- NFSubstitution* result = NULL;
-
- // search the rule's rule text for the first two characters of
- // a substitution token
- int32_t subStart = indexOfAnyRulePrefix();
- int32_t subEnd = subStart;
-
- // if we didn't find one, create a null substitution positioned
- // at the end of the rule text
- if (subStart == -1) {
- return NULL;
- }
-
- // special-case the ">>>" token, since searching for the > at the
- // end will actually find the > in the middle
- if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
- subEnd = subStart + 2;
-
- // otherwise the substitution token ends with the same character
- // it began with
- } else {
- UChar c = fRuleText.charAt(subStart);
- subEnd = fRuleText.indexOf(c, subStart + 1);
- // special case for '<%foo<<'
- if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) {
- // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
- // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
- // to get around this. Having the duplicate at the front would cause problems with
- // rules like "<<%" to format, say, percents...
- ++subEnd;
- }
- }
-
- // if we don't find the end of the token (i.e., if we're on a single,
- // unmatched token character), create a null substitution positioned
- // at the end of the rule
- if (subEnd == -1) {
- return NULL;
- }
-
- // if we get here, we have a real substitution token (or at least
- // some text bounded by substitution token characters). Use
- // makeSubstitution() to create the right kind of substitution
- UnicodeString subToken;
- subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart);
- result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
- this->formatter, subToken, status);
-
- // remove the substitution from the rule text
- fRuleText.removeBetween(subStart, subEnd+1);
-
- return result;
-}
-
-/**
- * Sets the rule's base value, and causes the radix and exponent
- * to be recalculated. This is used during construction when we
- * don't know the rule's base value until after it's been
- * constructed. It should be used at any other time.
- * @param The new base value for the rule.
- */
-void
-NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
-{
- // set the base value
- baseValue = newBaseValue;
- radix = 10;
-
- // if this isn't a special rule, recalculate the radix and exponent
- // (the radix always defaults to 10; if it's supposed to be something
- // else, it's cleaned up by the caller and the exponent is
- // recalculated again-- the only function that does this is
- // NFRule.parseRuleDescriptor() )
- if (baseValue >= 1) {
- exponent = expectedExponent();
-
- // this function gets called on a fully-constructed rule whose
- // description didn't specify a base value. This means it
- // has substitutions, and some substitutions hold on to copies
- // of the rule's divisor. Fix their copies of the divisor.
- if (sub1 != NULL) {
- sub1->setDivisor(radix, exponent, status);
- }
- if (sub2 != NULL) {
- sub2->setDivisor(radix, exponent, status);
- }
-
- // if this is a special rule, its radix and exponent are basically
- // ignored. Set them to "safe" default values
- } else {
- exponent = 0;
- }
-}
-
-/**
-* This calculates the rule's exponent based on its radix and base
-* value. This will be the highest power the radix can be raised to
-* and still produce a result less than or equal to the base value.
-*/
-int16_t
-NFRule::expectedExponent() const
-{
- // since the log of 0, or the log base 0 of something, causes an
- // error, declare the exponent in these cases to be 0 (we also
- // deal with the special-rule identifiers here)
- if (radix == 0 || baseValue < 1) {
- return 0;
- }
-
- // we get rounding error in some cases-- for example, log 1000 / log 10
- // gives us 1.9999999996 instead of 2. The extra logic here is to take
- // that into account
- int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
- int64_t temp = util64_pow(radix, tempResult + 1);
- if (temp <= baseValue) {
- tempResult += 1;
- }
- return tempResult;
-}
-
-/**
- * Searches the rule's rule text for any of the specified strings.
- * @return The index of the first match in the rule's rule text
- * (i.e., the first substring in the rule's rule text that matches
- * _any_ of the strings in "strings"). If none of the strings in
- * "strings" is found in the rule's rule text, returns -1.
- */
-int32_t
-NFRule::indexOfAnyRulePrefix() const
-{
- int result = -1;
- for (int i = 0; RULE_PREFIXES[i]; i++) {
- int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]);
- if (pos != -1 && (result == -1 || pos < result)) {
- result = pos;
- }
- }
- return result;
-}
-
-//-----------------------------------------------------------------------
-// boilerplate
-//-----------------------------------------------------------------------
-
-static UBool
-util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
-{
- if (sub1) {
- if (sub2) {
- return *sub1 == *sub2;
- }
- } else if (!sub2) {
- return TRUE;
- }
- return FALSE;
-}
-
-/**
-* Tests two rules for equality.
-* @param that The rule to compare this one against
-* @return True is the two rules are functionally equivalent
-*/
-UBool
-NFRule::operator==(const NFRule& rhs) const
-{
- return baseValue == rhs.baseValue
- && radix == rhs.radix
- && exponent == rhs.exponent
- && fRuleText == rhs.fRuleText
- && util_equalSubstitutions(sub1, rhs.sub1)
- && util_equalSubstitutions(sub2, rhs.sub2);
-}
-
-/**
-* Returns a textual representation of the rule. This won't
-* necessarily be the same as the description that this rule
-* was created with, but it will produce the same result.
-* @return A textual description of the rule
-*/
-static void util_append64(UnicodeString& result, int64_t n)
-{
- UChar buffer[256];
- int32_t len = util64_tou(n, buffer, sizeof(buffer));
- UnicodeString temp(buffer, len);
- result.append(temp);
-}
-
-void
-NFRule::_appendRuleText(UnicodeString& result) const
-{
- switch (getType()) {
- case kNegativeNumberRule: result.append(gMinusX, 2); break;
- case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
- case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
- case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
- case kInfinityRule: result.append(gInf, 3); break;
- case kNaNRule: result.append(gNaN, 3); break;
- default:
- // for a normal rule, write out its base value, and if the radix is
- // something other than 10, write out the radix (with the preceding
- // slash, of course). Then calculate the expected exponent and if
- // if isn't the same as the actual exponent, write an appropriate
- // number of > signs. Finally, terminate the whole thing with
- // a colon.
- util_append64(result, baseValue);
- if (radix != 10) {
- result.append(gSlash);
- util_append64(result, radix);
- }
- int numCarets = expectedExponent() - exponent;
- for (int i = 0; i < numCarets; i++) {
- result.append(gGreaterThan);
- }
- break;
- }
- result.append(gColon);
- result.append(gSpace);
-
- // if the rule text begins with a space, write an apostrophe
- // (whitespace after the rule descriptor is ignored; the
- // apostrophe is used to make the whitespace significant)
- if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
- result.append(gTick);
- }
-
- // now, write the rule's rule text, inserting appropriate
- // substitution tokens in the appropriate places
- UnicodeString ruleTextCopy;
- ruleTextCopy.setTo(fRuleText);
-
- UnicodeString temp;
- if (sub2 != NULL) {
- sub2->toString(temp);
- ruleTextCopy.insert(sub2->getPos(), temp);
- }
- if (sub1 != NULL) {
- sub1->toString(temp);
- ruleTextCopy.insert(sub1->getPos(), temp);
- }
-
- result.append(ruleTextCopy);
-
- // and finally, top the whole thing off with a semicolon and
- // return the result
- result.append(gSemicolon);
-}
-
-int64_t NFRule::getDivisor() const
-{
- return util64_pow(radix, exponent);
-}
-
-
-//-----------------------------------------------------------------------
-// formatting
-//-----------------------------------------------------------------------
-
-/**
-* Formats the number, and inserts the resulting text into
-* toInsertInto.
-* @param number The number being formatted
-* @param toInsertInto The string where the resultant text should
-* be inserted
-* @param pos The position in toInsertInto where the resultant text
-* should be inserted
-*/
-void
-NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
-{
- // first, insert the rule's rule text into toInsertInto at the
- // specified position, then insert the results of the substitutions
- // into the right places in toInsertInto (notice we do the
- // substitutions in reverse order so that the offsets don't get
- // messed up)
- int32_t pluralRuleStart = fRuleText.length();
- int32_t lengthOffset = 0;
- if (!rulePatternFormat) {
- toInsertInto.insert(pos, fRuleText);
- }
- else {
- pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
- int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
- int initialLength = toInsertInto.length();
- if (pluralRuleEnd < fRuleText.length() - 1) {
- toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
- }
- toInsertInto.insert(pos,
- rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
- if (pluralRuleStart > 0) {
- toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
- }
- lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
- }
-
- if (sub2 != NULL) {
- sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
- }
- if (sub1 != NULL) {
- sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
- }
-}
-
-/**
-* Formats the number, and inserts the resulting text into
-* toInsertInto.
-* @param number The number being formatted
-* @param toInsertInto The string where the resultant text should
-* be inserted
-* @param pos The position in toInsertInto where the resultant text
-* should be inserted
-*/
-void
-NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
-{
- // first, insert the rule's rule text into toInsertInto at the
- // specified position, then insert the results of the substitutions
- // into the right places in toInsertInto
- // [again, we have two copies of this routine that do the same thing
- // so that we don't sacrifice precision in a long by casting it
- // to a double]
- int32_t pluralRuleStart = fRuleText.length();
- int32_t lengthOffset = 0;
- if (!rulePatternFormat) {
- toInsertInto.insert(pos, fRuleText);
- }
- else {
- pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
- int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
- int initialLength = toInsertInto.length();
- if (pluralRuleEnd < fRuleText.length() - 1) {
- toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
- }
- double pluralVal = number;
- if (0 <= pluralVal && pluralVal < 1) {
- // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
- // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
- pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
- }
- else {
- pluralVal = pluralVal / util64_pow(radix, exponent);
- }
- toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
- if (pluralRuleStart > 0) {
- toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
- }
- lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
- }
-
- if (sub2 != NULL) {
- sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
- }
- if (sub1 != NULL) {
- sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
- }
-}
-
-/**
-* Used by the owning rule set to determine whether to invoke the
-* rollback rule (i.e., whether this rule or the one that precedes
-* it in the rule set's list should be used to format the number)
-* @param The number being formatted
-* @return True if the rule set should use the rule that precedes
-* this one in its list; false if it should use this rule
-*/
-UBool
-NFRule::shouldRollBack(int64_t number) const
-{
- // we roll back if the rule contains a modulus substitution,
- // the number being formatted is an even multiple of the rule's
- // divisor, and the rule's base value is NOT an even multiple
- // of its divisor
- // In other words, if the original description had
- // 100: << hundred[ >>];
- // that expands into
- // 100: << hundred;
- // 101: << hundred >>;
- // internally. But when we're formatting 200, if we use the rule
- // at 101, which would normally apply, we get "two hundred zero".
- // To prevent this, we roll back and use the rule at 100 instead.
- // This is the logic that makes this happen: the rule at 101 has
- // a modulus substitution, its base value isn't an even multiple
- // of 100, and the value we're trying to format _is_ an even
- // multiple of 100. This is called the "rollback rule."
- if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
- int64_t re = util64_pow(radix, exponent);
- return (number % re) == 0 && (baseValue % re) != 0;
- }
- return FALSE;
-}
-
-//-----------------------------------------------------------------------
-// parsing
-//-----------------------------------------------------------------------
-
-/**
-* Attempts to parse the string with this rule.
-* @param text The string being parsed
-* @param parsePosition On entry, the value is ignored and assumed to
-* be 0. On exit, this has been updated with the position of the first
-* character not consumed by matching the text against this rule
-* (if this rule doesn't match the text at all, the parse position
-* if left unchanged (presumably at 0) and the function returns
-* new Long(0)).
-* @param isFractionRule True if this rule is contained within a
-* fraction rule set. This is only used if the rule has no
-* substitutions.
-* @return If this rule matched the text, this is the rule's base value
-* combined appropriately with the results of parsing the substitutions.
-* If nothing matched, this is new Long(0) and the parse position is
-* left unchanged. The result will be an instance of Long if the
-* result is an integer and Double otherwise. The result is never null.
-*/
-#ifdef RBNF_DEBUG
-#include <stdio.h>
-
-static void dumpUS(FILE* f, const UnicodeString& us) {
- int len = us.length();
- char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
- if (buf != NULL) {
- us.extract(0, len, buf);
- buf[len] = 0;
- fprintf(f, "%s", buf);
- uprv_free(buf); //delete[] buf;
- }
-}
-#endif
-UBool
-NFRule::doParse(const UnicodeString& text,
- ParsePosition& parsePosition,
- UBool isFractionRule,
- double upperBound,
- uint32_t nonNumericalExecutedRuleMask,
- Formattable& resVal) const
-{
- // internally we operate on a copy of the string being parsed
- // (because we're going to change it) and use our own ParsePosition
- ParsePosition pp;
- UnicodeString workText(text);
-
- int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length();
- int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length();
-
- // check to see whether the text before the first substitution
- // matches the text at the beginning of the string being
- // parsed. If it does, strip that off the front of workText;
- // otherwise, dump out with a mismatch
- UnicodeString prefix;
- prefix.setTo(fRuleText, 0, sub1Pos);
-
-#ifdef RBNF_DEBUG
- fprintf(stderr, "doParse %p ", this);
- {
- UnicodeString rt;
- _appendRuleText(rt);
- dumpUS(stderr, rt);
- }
-
- fprintf(stderr, " text: '");
- dumpUS(stderr, text);
- fprintf(stderr, "' prefix: '");
- dumpUS(stderr, prefix);
-#endif
- stripPrefix(workText, prefix, pp);
- int32_t prefixLength = text.length() - workText.length();
-
-#ifdef RBNF_DEBUG
- fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
-#endif
-
- if (pp.getIndex() == 0 && sub1Pos != 0) {
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
- parsePosition.setErrorIndex(pp.getErrorIndex());
- resVal.setLong(0);
- return TRUE;
- }
- if (baseValue == kInfinityRule) {
- // If you match this, don't try to perform any calculations on it.
- parsePosition.setIndex(pp.getIndex());
- resVal.setDouble(uprv_getInfinity());
- return TRUE;
- }
- if (baseValue == kNaNRule) {
- // If you match this, don't try to perform any calculations on it.
- parsePosition.setIndex(pp.getIndex());
- resVal.setDouble(uprv_getNaN());
- return TRUE;
- }
-
- // this is the fun part. The basic guts of the rule-matching
- // logic is matchToDelimiter(), which is called twice. The first
- // time it searches the input string for the rule text BETWEEN
- // the substitutions and tries to match the intervening text
- // in the input string with the first substitution. If that
- // succeeds, it then calls it again, this time to look for the
- // rule text after the second substitution and to match the
- // intervening input text against the second substitution.
- //
- // For example, say we have a rule that looks like this:
- // first << middle >> last;
- // and input text that looks like this:
- // first one middle two last
- // First we use stripPrefix() to match "first " in both places and
- // strip it off the front, leaving
- // one middle two last
- // Then we use matchToDelimiter() to match " middle " and try to
- // match "one" against a substitution. If it's successful, we now
- // have
- // two last
- // We use matchToDelimiter() a second time to match " last" and
- // try to match "two" against a substitution. If "two" matches
- // the substitution, we have a successful parse.
- //
- // Since it's possible in many cases to find multiple instances
- // of each of these pieces of rule text in the input string,
- // we need to try all the possible combinations of these
- // locations. This prevents us from prematurely declaring a mismatch,
- // and makes sure we match as much input text as we can.
- int highWaterMark = 0;
- double result = 0;
- int start = 0;
- double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
-
- UnicodeString temp;
- do {
- // our partial parse result starts out as this rule's base
- // value. If it finds a successful match, matchToDelimiter()
- // will compose this in some way with what it gets back from
- // the substitution, giving us a new partial parse result
- pp.setIndex(0);
-
- temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos);
- double partialResult = matchToDelimiter(workText, start, tempBaseValue,
- temp, pp, sub1,
- nonNumericalExecutedRuleMask,
- upperBound);
-
- // if we got a successful match (or were trying to match a
- // null substitution), pp is now pointing at the first unmatched
- // character. Take note of that, and try matchToDelimiter()
- // on the input text again
- if (pp.getIndex() != 0 || sub1 == NULL) {
- start = pp.getIndex();
-
- UnicodeString workText2;
- workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
- ParsePosition pp2;
-
- // the second matchToDelimiter() will compose our previous
- // partial result with whatever it gets back from its
- // substitution if there's a successful match, giving us
- // a real result
- temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos);
- partialResult = matchToDelimiter(workText2, 0, partialResult,
- temp, pp2, sub2,
- nonNumericalExecutedRuleMask,
- upperBound);
-
- // if we got a successful match on this second
- // matchToDelimiter() call, update the high-water mark
- // and result (if necessary)
- if (pp2.getIndex() != 0 || sub2 == NULL) {
- if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
- highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
- result = partialResult;
- }
- }
- else {
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
- int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
- if (i_temp> parsePosition.getErrorIndex()) {
- parsePosition.setErrorIndex(i_temp);
- }
- }
- }
- else {
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
- int32_t i_temp = sub1Pos + pp.getErrorIndex();
- if (i_temp > parsePosition.getErrorIndex()) {
- parsePosition.setErrorIndex(i_temp);
- }
- }
- // keep trying to match things until the outer matchToDelimiter()
- // call fails to make a match (each time, it picks up where it
- // left off the previous time)
- } while (sub1Pos != sub2Pos
- && pp.getIndex() > 0
- && pp.getIndex() < workText.length()
- && pp.getIndex() != start);
-
- // update the caller's ParsePosition with our high-water mark
- // (i.e., it now points at the first character this function
- // didn't match-- the ParsePosition is therefore unchanged if
- // we didn't match anything)
- parsePosition.setIndex(highWaterMark);
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
- if (highWaterMark > 0) {
- parsePosition.setErrorIndex(0);
- }
-
- // this is a hack for one unusual condition: Normally, whether this
- // rule belong to a fraction rule set or not is handled by its
- // substitutions. But if that rule HAS NO substitutions, then
- // we have to account for it here. By definition, if the matching
- // rule in a fraction rule set has no substitutions, its numerator
- // is 1, and so the result is the reciprocal of its base value.
- if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
- result = 1 / result;
- }
-
- resVal.setDouble(result);
- return TRUE; // ??? do we need to worry if it is a long or a double?
-}
-
-/**
-* This function is used by parse() to match the text being parsed
-* against a possible prefix string. This function
-* matches characters from the beginning of the string being parsed
-* to characters from the prospective prefix. If they match, pp is
-* updated to the first character not matched, and the result is
-* the unparsed part of the string. If they don't match, the whole
-* string is returned, and pp is left unchanged.
-* @param text The string being parsed
-* @param prefix The text to match against
-* @param pp On entry, ignored and assumed to be 0. On exit, points
-* to the first unmatched character (assuming the whole prefix matched),
-* or is unchanged (if the whole prefix didn't match).
-* @return If things match, this is the unparsed part of "text";
-* if they didn't match, this is "text".
-*/
-void
-NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
-{
- // if the prefix text is empty, dump out without doing anything
- if (prefix.length() != 0) {
- UErrorCode status = U_ZERO_ERROR;
- // use prefixLength() to match the beginning of
- // "text" against "prefix". This function returns the
- // number of characters from "text" that matched (or 0 if
- // we didn't match the whole prefix)
- int32_t pfl = prefixLength(text, prefix, status);
- if (U_FAILURE(status)) { // Memory allocation error.
- return;
- }
- if (pfl != 0) {
- // if we got a successful match, update the parse position
- // and strip the prefix off of "text"
- pp.setIndex(pp.getIndex() + pfl);
- text.remove(0, pfl);
- }
- }
-}
-
-/**
-* Used by parse() to match a substitution and any following text.
-* "text" is searched for instances of "delimiter". For each instance
-* of delimiter, the intervening text is tested to see whether it
-* matches the substitution. The longest match wins.
-* @param text The string being parsed
-* @param startPos The position in "text" where we should start looking
-* for "delimiter".
-* @param baseValue A partial parse result (often the rule's base value),
-* which is combined with the result from matching the substitution
-* @param delimiter The string to search "text" for.
-* @param pp Ignored and presumed to be 0 on entry. If there's a match,
-* on exit this will point to the first unmatched character.
-* @param sub If we find "delimiter" in "text", this substitution is used
-* to match the text between the beginning of the string and the
-* position of "delimiter." (If "delimiter" is the empty string, then
-* this function just matches against this substitution and updates
-* everything accordingly.)
-* @param upperBound When matching the substitution, it will only
-* consider rules with base values lower than this value.
-* @return If there's a match, this is the result of composing
-* baseValue with the result of matching the substitution. Otherwise,
-* this is new Long(0). It's never null. If the result is an integer,
-* this will be an instance of Long; otherwise, it's an instance of
-* Double.
-*
-* !!! note {dlf} in point of fact, in the java code the caller always converts
-* the result to a double, so we might as well return one.
-*/
-double
-NFRule::matchToDelimiter(const UnicodeString& text,
- int32_t startPos,
- double _baseValue,
- const UnicodeString& delimiter,
- ParsePosition& pp,
- const NFSubstitution* sub,
- uint32_t nonNumericalExecutedRuleMask,
- double upperBound) const
-{
- UErrorCode status = U_ZERO_ERROR;
- // if "delimiter" contains real (i.e., non-ignorable) text, search
- // it for "delimiter" beginning at "start". If that succeeds, then
- // use "sub"'s doParse() method to match the text before the
- // instance of "delimiter" we just found.
- if (!allIgnorable(delimiter, status)) {
- if (U_FAILURE(status)) { //Memory allocation error.
- return 0;
- }
- ParsePosition tempPP;
- Formattable result;
-
- // use findText() to search for "delimiter". It returns a two-
- // element array: element 0 is the position of the match, and
- // element 1 is the number of characters that matched
- // "delimiter".
- int32_t dLen;
- int32_t dPos = findText(text, delimiter, startPos, &dLen);
-
- // if findText() succeeded, isolate the text preceding the
- // match, and use "sub" to match that text
- while (dPos >= 0) {
- UnicodeString subText;
- subText.setTo(text, 0, dPos);
- if (subText.length() > 0) {
- UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
-#if UCONFIG_NO_COLLATION
- FALSE,
-#else
- formatter->isLenient(),
-#endif
- nonNumericalExecutedRuleMask,
- result);
-
- // if the substitution could match all the text up to
- // where we found "delimiter", then this function has
- // a successful match. Bump the caller's parse position
- // to point to the first character after the text
- // that matches "delimiter", and return the result
- // we got from parsing the substitution.
- if (success && tempPP.getIndex() == dPos) {
- pp.setIndex(dPos + dLen);
- return result.getDouble();
- }
- else {
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
- if (tempPP.getErrorIndex() > 0) {
- pp.setErrorIndex(tempPP.getErrorIndex());
- } else {
- pp.setErrorIndex(tempPP.getIndex());
- }
- }
- }
-
- // if we didn't match the substitution, search for another
- // copy of "delimiter" in "text" and repeat the loop if
- // we find it
- tempPP.setIndex(0);
- dPos = findText(text, delimiter, dPos + dLen, &dLen);
- }
- // if we make it here, this was an unsuccessful match, and we
- // leave pp unchanged and return 0
- pp.setIndex(0);
- return 0;
-
- // if "delimiter" is empty, or consists only of ignorable characters
- // (i.e., is semantically empty), thwe we obviously can't search
- // for "delimiter". Instead, just use "sub" to parse as much of
- // "text" as possible.
- }
- else if (sub == NULL) {
- return _baseValue;
- }
- else {
- ParsePosition tempPP;
- Formattable result;
-
- // try to match the whole string against the substitution
- UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
-#if UCONFIG_NO_COLLATION
- FALSE,
-#else
- formatter->isLenient(),
-#endif
- nonNumericalExecutedRuleMask,
- result);
- if (success && (tempPP.getIndex() != 0)) {
- // if there's a successful match (or it's a null
- // substitution), update pp to point to the first
- // character we didn't match, and pass the result from
- // sub.doParse() on through to the caller
- pp.setIndex(tempPP.getIndex());
- return result.getDouble();
- }
- else {
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
- pp.setErrorIndex(tempPP.getErrorIndex());
- }
-
- // and if we get to here, then nothing matched, so we return
- // 0 and leave pp alone
- return 0;
- }
-}
-
-/**
-* Used by stripPrefix() to match characters. If lenient parse mode
-* is off, this just calls startsWith(). If lenient parse mode is on,
-* this function uses CollationElementIterators to match characters in
-* the strings (only primary-order differences are significant in
-* determining whether there's a match).
-* @param str The string being tested
-* @param prefix The text we're hoping to see at the beginning
-* of "str"
-* @return If "prefix" is found at the beginning of "str", this
-* is the number of characters in "str" that were matched (this
-* isn't necessarily the same as the length of "prefix" when matching
-* text with a collator). If there's no match, this is 0.
-*/
-int32_t
-NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
-{
- // if we're looking for an empty prefix, it obviously matches
- // zero characters. Just go ahead and return 0.
- if (prefix.length() == 0) {
- return 0;
- }
-
-#if !UCONFIG_NO_COLLATION
- // go through all this grief if we're in lenient-parse mode
- if (formatter->isLenient()) {
- // get the formatter's collator and use it to create two
- // collation element iterators, one over the target string
- // and another over the prefix (right now, we'll throw an
- // exception if the collator we get back from the formatter
- // isn't a RuleBasedCollator, because RuleBasedCollator defines
- // the CollationElementIterator protocol. Hopefully, this
- // will change someday.)
- const RuleBasedCollator* collator = formatter->getCollator();
- if (collator == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return 0;
- }
- LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
- LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
- // Check for memory allocation error.
- if (strIter.isNull() || prefixIter.isNull()) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return 0;
- }
-
- UErrorCode err = U_ZERO_ERROR;
-
- // The original code was problematic. Consider this match:
- // prefix = "fifty-"
- // string = " fifty-7"
- // The intent is to match string up to the '7', by matching 'fifty-' at position 1
- // in the string. Unfortunately, we were getting a match, and then computing where
- // the match terminated by rematching the string. The rematch code was using as an
- // initial guess the substring of string between 0 and prefix.length. Because of
- // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
- // the position before the hyphen in the string. Recursing down, we then parsed the
- // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
- // This was not pretty, especially since the string "fifty-7" parsed just fine.
- //
- // We have newer APIs now, so we can use calls on the iterator to determine what we
- // matched up to. If we terminate because we hit the last element in the string,
- // our match terminates at this length. If we terminate because we hit the last element
- // in the target, our match terminates at one before the element iterator position.
-
- // match collation elements between the strings
- int32_t oStr = strIter->next(err);
- int32_t oPrefix = prefixIter->next(err);
-
- while (oPrefix != CollationElementIterator::NULLORDER) {
- // skip over ignorable characters in the target string
- while (CollationElementIterator::primaryOrder(oStr) == 0
- && oStr != CollationElementIterator::NULLORDER) {
- oStr = strIter->next(err);
- }
-
- // skip over ignorable characters in the prefix
- while (CollationElementIterator::primaryOrder(oPrefix) == 0
- && oPrefix != CollationElementIterator::NULLORDER) {
- oPrefix = prefixIter->next(err);
- }
-
- // dlf: move this above following test, if we consume the
- // entire target, aren't we ok even if the source was also
- // entirely consumed?
-
- // if skipping over ignorables brought to the end of
- // the prefix, we DID match: drop out of the loop
- if (oPrefix == CollationElementIterator::NULLORDER) {
- break;
- }
-
- // if skipping over ignorables brought us to the end
- // of the target string, we didn't match and return 0
- if (oStr == CollationElementIterator::NULLORDER) {
- return 0;
- }
-
- // match collation elements from the two strings
- // (considering only primary differences). If we
- // get a mismatch, dump out and return 0
- if (CollationElementIterator::primaryOrder(oStr)
- != CollationElementIterator::primaryOrder(oPrefix)) {
- return 0;
-
- // otherwise, advance to the next character in each string
- // and loop (we drop out of the loop when we exhaust
- // collation elements in the prefix)
- } else {
- oStr = strIter->next(err);
- oPrefix = prefixIter->next(err);
- }
- }
-
- int32_t result = strIter->getOffset();
- if (oStr != CollationElementIterator::NULLORDER) {
- --result; // back over character that we don't want to consume;
- }
-
-#ifdef RBNF_DEBUG
- fprintf(stderr, "prefix length: %d\n", result);
-#endif
- return result;
-#if 0
- //----------------------------------------------------------------
- // JDK 1.2-specific API call
- // return strIter.getOffset();
- //----------------------------------------------------------------
- // JDK 1.1 HACK (take out for 1.2-specific code)
-
- // if we make it to here, we have a successful match. Now we
- // have to find out HOW MANY characters from the target string
- // matched the prefix (there isn't necessarily a one-to-one
- // mapping between collation elements and characters).
- // In JDK 1.2, there's a simple getOffset() call we can use.
- // In JDK 1.1, on the other hand, we have to go through some
- // ugly contortions. First, use the collator to compare the
- // same number of characters from the prefix and target string.
- // If they're equal, we're done.
- collator->setStrength(Collator::PRIMARY);
- if (str.length() >= prefix.length()) {
- UnicodeString temp;
- temp.setTo(str, 0, prefix.length());
- if (collator->equals(temp, prefix)) {
-#ifdef RBNF_DEBUG
- fprintf(stderr, "returning: %d\n", prefix.length());
-#endif
- return prefix.length();
- }
- }
-
- // if they're not equal, then we have to compare successively
- // larger and larger substrings of the target string until we
- // get to one that matches the prefix. At that point, we know
- // how many characters matched the prefix, and we can return.
- int32_t p = 1;
- while (p <= str.length()) {
- UnicodeString temp;
- temp.setTo(str, 0, p);
- if (collator->equals(temp, prefix)) {
- return p;
- } else {
- ++p;
- }
- }
-
- // SHOULD NEVER GET HERE!!!
- return 0;
- //----------------------------------------------------------------
-#endif
-
- // If lenient parsing is turned off, forget all that crap above.
- // Just use String.startsWith() and be done with it.
- } else
-#endif
- {
- if (str.startsWith(prefix)) {
- return prefix.length();
- } else {
- return 0;
- }
- }
-}
-
-/**
-* Searches a string for another string. If lenient parsing is off,
-* this just calls indexOf(). If lenient parsing is on, this function
-* uses CollationElementIterator to match characters, and only
-* primary-order differences are significant in determining whether
-* there's a match.
-* @param str The string to search
-* @param key The string to search "str" for
-* @param startingAt The index into "str" where the search is to
-* begin
-* @return A two-element array of ints. Element 0 is the position
-* of the match, or -1 if there was no match. Element 1 is the
-* number of characters in "str" that matched (which isn't necessarily
-* the same as the length of "key")
-*/
-int32_t
-NFRule::findText(const UnicodeString& str,
- const UnicodeString& key,
- int32_t startingAt,
- int32_t* length) const
-{
- if (rulePatternFormat) {
- Formattable result;
- FieldPosition position(UNUM_INTEGER_FIELD);
- position.setBeginIndex(startingAt);
- rulePatternFormat->parseType(str, this, result, position);
- int start = position.getBeginIndex();
- if (start >= 0) {
- int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
- int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
- int32_t matchLen = position.getEndIndex() - start;
- UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart));
- UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix));
- if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
- && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
- {
- *length = matchLen + prefix.length() + suffix.length();
- return start - prefix.length();
- }
- }
- *length = 0;
- return -1;
- }
- if (!formatter->isLenient()) {
- // if lenient parsing is turned off, this is easy: just call
- // String.indexOf() and we're done
- *length = key.length();
- return str.indexOf(key, startingAt);
- }
- else {
- // but if lenient parsing is turned ON, we've got some work
- // ahead of us
- return findTextLenient(str, key, startingAt, length);
- }
-}
-
-int32_t
-NFRule::findTextLenient(const UnicodeString& str,
- const UnicodeString& key,
- int32_t startingAt,
- int32_t* length) const
-{
- //----------------------------------------------------------------
- // JDK 1.1 HACK (take out of 1.2-specific code)
-
- // in JDK 1.2, CollationElementIterator provides us with an
- // API to map between character offsets and collation elements
- // and we can do this by marching through the string comparing
- // collation elements. We can't do that in JDK 1.1. Insted,
- // we have to go through this horrible slow mess:
- int32_t p = startingAt;
- int32_t keyLen = 0;
-
- // basically just isolate smaller and smaller substrings of
- // the target string (each running to the end of the string,
- // and with the first one running from startingAt to the end)
- // and then use prefixLength() to see if the search key is at
- // the beginning of each substring. This is excruciatingly
- // slow, but it will locate the key and tell use how long the
- // matching text was.
- UnicodeString temp;
- UErrorCode status = U_ZERO_ERROR;
- while (p < str.length() && keyLen == 0) {
- temp.setTo(str, p, str.length() - p);
- keyLen = prefixLength(temp, key, status);
- if (U_FAILURE(status)) {
- break;
- }
- if (keyLen != 0) {
- *length = keyLen;
- return p;
- }
- ++p;
- }
- // if we make it to here, we didn't find it. Return -1 for the
- // location. The length should be ignored, but set it to 0,
- // which should be "safe"
- *length = 0;
- return -1;
-}
-
-/**
-* Checks to see whether a string consists entirely of ignorable
-* characters.
-* @param str The string to test.
-* @return true if the string is empty of consists entirely of
-* characters that the number formatter's collator says are
-* ignorable at the primary-order level. false otherwise.
-*/
-UBool
-NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
-{
- // if the string is empty, we can just return true
- if (str.length() == 0) {
- return TRUE;
- }
-
-#if !UCONFIG_NO_COLLATION
- // if lenient parsing is turned on, walk through the string with
- // a collation element iterator and make sure each collation
- // element is 0 (ignorable) at the primary level
- if (formatter->isLenient()) {
- const RuleBasedCollator* collator = formatter->getCollator();
- if (collator == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return FALSE;
- }
- LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
-
- // Memory allocation error check.
- if (iter.isNull()) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return FALSE;
- }
-
- UErrorCode err = U_ZERO_ERROR;
- int32_t o = iter->next(err);
- while (o != CollationElementIterator::NULLORDER
- && CollationElementIterator::primaryOrder(o) == 0) {
- o = iter->next(err);
- }
-
- return o == CollationElementIterator::NULLORDER;
- }
-#endif
-
- // if lenient parsing is turned off, there is no such thing as
- // an ignorable character: return true only if the string is empty
- return FALSE;
-}
-
-void
-NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
- if (sub1 != NULL) {
- sub1->setDecimalFormatSymbols(newSymbols, status);
- }
- if (sub2 != NULL) {
- sub2->setDecimalFormatSymbols(newSymbols, status);
- }
-}
-
-U_NAMESPACE_END
-
-/* U_HAVE_RBNF */
-#endif