summaryrefslogtreecommitdiff
path: root/deps/node/deps/icu-small/source/i18n/double-conversion-ieee.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/node/deps/icu-small/source/i18n/double-conversion-ieee.h')
-rw-r--r--deps/node/deps/icu-small/source/i18n/double-conversion-ieee.h420
1 files changed, 0 insertions, 420 deletions
diff --git a/deps/node/deps/icu-small/source/i18n/double-conversion-ieee.h b/deps/node/deps/icu-small/source/i18n/double-conversion-ieee.h
deleted file mode 100644
index 952bcea2..00000000
--- a/deps/node/deps/icu-small/source/i18n/double-conversion-ieee.h
+++ /dev/null
@@ -1,420 +0,0 @@
-// © 2018 and later: Unicode, Inc. and others.
-// License & terms of use: http://www.unicode.org/copyright.html
-//
-// From the double-conversion library. Original license:
-//
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
-#include "unicode/utypes.h"
-#if !UCONFIG_NO_FORMATTING
-
-#ifndef DOUBLE_CONVERSION_DOUBLE_H_
-#define DOUBLE_CONVERSION_DOUBLE_H_
-
-// ICU PATCH: Customize header file paths for ICU.
-
-#include "double-conversion-diy-fp.h"
-
-// ICU PATCH: Wrap in ICU namespace
-U_NAMESPACE_BEGIN
-
-namespace double_conversion {
-
-// We assume that doubles and uint64_t have the same endianness.
-static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
-static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
-static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
-static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
-
-// Helper functions for doubles.
-class Double {
- public:
- static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
- static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
- static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
- static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
- static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
- static const int kSignificandSize = 53;
-
- Double() : d64_(0) {}
- explicit Double(double d) : d64_(double_to_uint64(d)) {}
- explicit Double(uint64_t d64) : d64_(d64) {}
- explicit Double(DiyFp diy_fp)
- : d64_(DiyFpToUint64(diy_fp)) {}
-
- // The value encoded by this Double must be greater or equal to +0.0.
- // It must not be special (infinity, or NaN).
- DiyFp AsDiyFp() const {
- ASSERT(Sign() > 0);
- ASSERT(!IsSpecial());
- return DiyFp(Significand(), Exponent());
- }
-
- // The value encoded by this Double must be strictly greater than 0.
- DiyFp AsNormalizedDiyFp() const {
- ASSERT(value() > 0.0);
- uint64_t f = Significand();
- int e = Exponent();
-
- // The current double could be a denormal.
- while ((f & kHiddenBit) == 0) {
- f <<= 1;
- e--;
- }
- // Do the final shifts in one go.
- f <<= DiyFp::kSignificandSize - kSignificandSize;
- e -= DiyFp::kSignificandSize - kSignificandSize;
- return DiyFp(f, e);
- }
-
- // Returns the double's bit as uint64.
- uint64_t AsUint64() const {
- return d64_;
- }
-
- // Returns the next greater double. Returns +infinity on input +infinity.
- double NextDouble() const {
- if (d64_ == kInfinity) return Double(kInfinity).value();
- if (Sign() < 0 && Significand() == 0) {
- // -0.0
- return 0.0;
- }
- if (Sign() < 0) {
- return Double(d64_ - 1).value();
- } else {
- return Double(d64_ + 1).value();
- }
- }
-
- double PreviousDouble() const {
- if (d64_ == (kInfinity | kSignMask)) return -Infinity();
- if (Sign() < 0) {
- return Double(d64_ + 1).value();
- } else {
- if (Significand() == 0) return -0.0;
- return Double(d64_ - 1).value();
- }
- }
-
- int Exponent() const {
- if (IsDenormal()) return kDenormalExponent;
-
- uint64_t d64 = AsUint64();
- int biased_e =
- static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
- return biased_e - kExponentBias;
- }
-
- uint64_t Significand() const {
- uint64_t d64 = AsUint64();
- uint64_t significand = d64 & kSignificandMask;
- if (!IsDenormal()) {
- return significand + kHiddenBit;
- } else {
- return significand;
- }
- }
-
- // Returns true if the double is a denormal.
- bool IsDenormal() const {
- uint64_t d64 = AsUint64();
- return (d64 & kExponentMask) == 0;
- }
-
- // We consider denormals not to be special.
- // Hence only Infinity and NaN are special.
- bool IsSpecial() const {
- uint64_t d64 = AsUint64();
- return (d64 & kExponentMask) == kExponentMask;
- }
-
- bool IsNan() const {
- uint64_t d64 = AsUint64();
- return ((d64 & kExponentMask) == kExponentMask) &&
- ((d64 & kSignificandMask) != 0);
- }
-
- bool IsInfinite() const {
- uint64_t d64 = AsUint64();
- return ((d64 & kExponentMask) == kExponentMask) &&
- ((d64 & kSignificandMask) == 0);
- }
-
- int Sign() const {
- uint64_t d64 = AsUint64();
- return (d64 & kSignMask) == 0? 1: -1;
- }
-
- // Precondition: the value encoded by this Double must be greater or equal
- // than +0.0.
- DiyFp UpperBoundary() const {
- ASSERT(Sign() > 0);
- return DiyFp(Significand() * 2 + 1, Exponent() - 1);
- }
-
- // Computes the two boundaries of this.
- // The bigger boundary (m_plus) is normalized. The lower boundary has the same
- // exponent as m_plus.
- // Precondition: the value encoded by this Double must be greater than 0.
- void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
- ASSERT(value() > 0.0);
- DiyFp v = this->AsDiyFp();
- DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
- DiyFp m_minus;
- if (LowerBoundaryIsCloser()) {
- m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
- } else {
- m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
- }
- m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
- m_minus.set_e(m_plus.e());
- *out_m_plus = m_plus;
- *out_m_minus = m_minus;
- }
-
- bool LowerBoundaryIsCloser() const {
- // The boundary is closer if the significand is of the form f == 2^p-1 then
- // the lower boundary is closer.
- // Think of v = 1000e10 and v- = 9999e9.
- // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
- // at a distance of 1e8.
- // The only exception is for the smallest normal: the largest denormal is
- // at the same distance as its successor.
- // Note: denormals have the same exponent as the smallest normals.
- bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
- return physical_significand_is_zero && (Exponent() != kDenormalExponent);
- }
-
- double value() const { return uint64_to_double(d64_); }
-
- // Returns the significand size for a given order of magnitude.
- // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
- // This function returns the number of significant binary digits v will have
- // once it's encoded into a double. In almost all cases this is equal to
- // kSignificandSize. The only exceptions are denormals. They start with
- // leading zeroes and their effective significand-size is hence smaller.
- static int SignificandSizeForOrderOfMagnitude(int order) {
- if (order >= (kDenormalExponent + kSignificandSize)) {
- return kSignificandSize;
- }
- if (order <= kDenormalExponent) return 0;
- return order - kDenormalExponent;
- }
-
- static double Infinity() {
- return Double(kInfinity).value();
- }
-
- static double NaN() {
- return Double(kNaN).value();
- }
-
- private:
- static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
- static const int kDenormalExponent = -kExponentBias + 1;
- static const int kMaxExponent = 0x7FF - kExponentBias;
- static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
- static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
-
- const uint64_t d64_;
-
- static uint64_t DiyFpToUint64(DiyFp diy_fp) {
- uint64_t significand = diy_fp.f();
- int exponent = diy_fp.e();
- while (significand > kHiddenBit + kSignificandMask) {
- significand >>= 1;
- exponent++;
- }
- if (exponent >= kMaxExponent) {
- return kInfinity;
- }
- if (exponent < kDenormalExponent) {
- return 0;
- }
- while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
- significand <<= 1;
- exponent--;
- }
- uint64_t biased_exponent;
- if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
- biased_exponent = 0;
- } else {
- biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
- }
- return (significand & kSignificandMask) |
- (biased_exponent << kPhysicalSignificandSize);
- }
-
- DISALLOW_COPY_AND_ASSIGN(Double);
-};
-
-class Single {
- public:
- static const uint32_t kSignMask = 0x80000000;
- static const uint32_t kExponentMask = 0x7F800000;
- static const uint32_t kSignificandMask = 0x007FFFFF;
- static const uint32_t kHiddenBit = 0x00800000;
- static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit.
- static const int kSignificandSize = 24;
-
- Single() : d32_(0) {}
- explicit Single(float f) : d32_(float_to_uint32(f)) {}
- explicit Single(uint32_t d32) : d32_(d32) {}
-
- // The value encoded by this Single must be greater or equal to +0.0.
- // It must not be special (infinity, or NaN).
- DiyFp AsDiyFp() const {
- ASSERT(Sign() > 0);
- ASSERT(!IsSpecial());
- return DiyFp(Significand(), Exponent());
- }
-
- // Returns the single's bit as uint64.
- uint32_t AsUint32() const {
- return d32_;
- }
-
- int Exponent() const {
- if (IsDenormal()) return kDenormalExponent;
-
- uint32_t d32 = AsUint32();
- int biased_e =
- static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
- return biased_e - kExponentBias;
- }
-
- uint32_t Significand() const {
- uint32_t d32 = AsUint32();
- uint32_t significand = d32 & kSignificandMask;
- if (!IsDenormal()) {
- return significand + kHiddenBit;
- } else {
- return significand;
- }
- }
-
- // Returns true if the single is a denormal.
- bool IsDenormal() const {
- uint32_t d32 = AsUint32();
- return (d32 & kExponentMask) == 0;
- }
-
- // We consider denormals not to be special.
- // Hence only Infinity and NaN are special.
- bool IsSpecial() const {
- uint32_t d32 = AsUint32();
- return (d32 & kExponentMask) == kExponentMask;
- }
-
- bool IsNan() const {
- uint32_t d32 = AsUint32();
- return ((d32 & kExponentMask) == kExponentMask) &&
- ((d32 & kSignificandMask) != 0);
- }
-
- bool IsInfinite() const {
- uint32_t d32 = AsUint32();
- return ((d32 & kExponentMask) == kExponentMask) &&
- ((d32 & kSignificandMask) == 0);
- }
-
- int Sign() const {
- uint32_t d32 = AsUint32();
- return (d32 & kSignMask) == 0? 1: -1;
- }
-
- // Computes the two boundaries of this.
- // The bigger boundary (m_plus) is normalized. The lower boundary has the same
- // exponent as m_plus.
- // Precondition: the value encoded by this Single must be greater than 0.
- void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
- ASSERT(value() > 0.0);
- DiyFp v = this->AsDiyFp();
- DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
- DiyFp m_minus;
- if (LowerBoundaryIsCloser()) {
- m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
- } else {
- m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
- }
- m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
- m_minus.set_e(m_plus.e());
- *out_m_plus = m_plus;
- *out_m_minus = m_minus;
- }
-
- // Precondition: the value encoded by this Single must be greater or equal
- // than +0.0.
- DiyFp UpperBoundary() const {
- ASSERT(Sign() > 0);
- return DiyFp(Significand() * 2 + 1, Exponent() - 1);
- }
-
- bool LowerBoundaryIsCloser() const {
- // The boundary is closer if the significand is of the form f == 2^p-1 then
- // the lower boundary is closer.
- // Think of v = 1000e10 and v- = 9999e9.
- // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
- // at a distance of 1e8.
- // The only exception is for the smallest normal: the largest denormal is
- // at the same distance as its successor.
- // Note: denormals have the same exponent as the smallest normals.
- bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
- return physical_significand_is_zero && (Exponent() != kDenormalExponent);
- }
-
- float value() const { return uint32_to_float(d32_); }
-
- static float Infinity() {
- return Single(kInfinity).value();
- }
-
- static float NaN() {
- return Single(kNaN).value();
- }
-
- private:
- static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
- static const int kDenormalExponent = -kExponentBias + 1;
- static const int kMaxExponent = 0xFF - kExponentBias;
- static const uint32_t kInfinity = 0x7F800000;
- static const uint32_t kNaN = 0x7FC00000;
-
- const uint32_t d32_;
-
- DISALLOW_COPY_AND_ASSIGN(Single);
-};
-
-} // namespace double_conversion
-
-// ICU PATCH: Close ICU namespace
-U_NAMESPACE_END
-
-#endif // DOUBLE_CONVERSION_DOUBLE_H_
-#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING