summaryrefslogtreecommitdiff
path: root/deps/node/deps/icu-small/source/common/uhash.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'deps/node/deps/icu-small/source/common/uhash.cpp')
-rw-r--r--deps/node/deps/icu-small/source/common/uhash.cpp991
1 files changed, 0 insertions, 991 deletions
diff --git a/deps/node/deps/icu-small/source/common/uhash.cpp b/deps/node/deps/icu-small/source/common/uhash.cpp
deleted file mode 100644
index 239997d0..00000000
--- a/deps/node/deps/icu-small/source/common/uhash.cpp
+++ /dev/null
@@ -1,991 +0,0 @@
-// © 2016 and later: Unicode, Inc. and others.
-// License & terms of use: http://www.unicode.org/copyright.html
-/*
-******************************************************************************
-* Copyright (C) 1997-2016, International Business Machines
-* Corporation and others. All Rights Reserved.
-******************************************************************************
-* Date Name Description
-* 03/22/00 aliu Adapted from original C++ ICU Hashtable.
-* 07/06/01 aliu Modified to support int32_t keys on
-* platforms with sizeof(void*) < 32.
-******************************************************************************
-*/
-
-#include "uhash.h"
-#include "unicode/ustring.h"
-#include "cstring.h"
-#include "cmemory.h"
-#include "uassert.h"
-#include "ustr_imp.h"
-
-/* This hashtable is implemented as a double hash. All elements are
- * stored in a single array with no secondary storage for collision
- * resolution (no linked list, etc.). When there is a hash collision
- * (when two unequal keys have the same hashcode) we resolve this by
- * using a secondary hash. The secondary hash is an increment
- * computed as a hash function (a different one) of the primary
- * hashcode. This increment is added to the initial hash value to
- * obtain further slots assigned to the same hash code. For this to
- * work, the length of the array and the increment must be relatively
- * prime. The easiest way to achieve this is to have the length of
- * the array be prime, and the increment be any value from
- * 1..length-1.
- *
- * Hashcodes are 32-bit integers. We make sure all hashcodes are
- * non-negative by masking off the top bit. This has two effects: (1)
- * modulo arithmetic is simplified. If we allowed negative hashcodes,
- * then when we computed hashcode % length, we could get a negative
- * result, which we would then have to adjust back into range. It's
- * simpler to just make hashcodes non-negative. (2) It makes it easy
- * to check for empty vs. occupied slots in the table. We just mark
- * empty or deleted slots with a negative hashcode.
- *
- * The central function is _uhash_find(). This function looks for a
- * slot matching the given key and hashcode. If one is found, it
- * returns a pointer to that slot. If the table is full, and no match
- * is found, it returns NULL -- in theory. This would make the code
- * more complicated, since all callers of _uhash_find() would then
- * have to check for a NULL result. To keep this from happening, we
- * don't allow the table to fill. When there is only one
- * empty/deleted slot left, uhash_put() will refuse to increase the
- * count, and fail. This simplifies the code. In practice, one will
- * seldom encounter this using default UHashtables. However, if a
- * hashtable is set to a U_FIXED resize policy, or if memory is
- * exhausted, then the table may fill.
- *
- * High and low water ratios control rehashing. They establish levels
- * of fullness (from 0 to 1) outside of which the data array is
- * reallocated and repopulated. Setting the low water ratio to zero
- * means the table will never shrink. Setting the high water ratio to
- * one means the table will never grow. The ratios should be
- * coordinated with the ratio between successive elements of the
- * PRIMES table, so that when the primeIndex is incremented or
- * decremented during rehashing, it brings the ratio of count / length
- * back into the desired range (between low and high water ratios).
- */
-
-/********************************************************************
- * PRIVATE Constants, Macros
- ********************************************************************/
-
-/* This is a list of non-consecutive primes chosen such that
- * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
- * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
- * ratio is changed, the low and high water ratios should also be
- * adjusted to suit.
- *
- * These prime numbers were also chosen so that they are the largest
- * prime number while being less than a power of two.
- */
-static const int32_t PRIMES[] = {
- 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
- 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
- 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
- 1073741789, 2147483647 /*, 4294967291 */
-};
-
-#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
-#define DEFAULT_PRIME_INDEX 4
-
-/* These ratios are tuned to the PRIMES array such that a resize
- * places the table back into the zone of non-resizing. That is,
- * after a call to _uhash_rehash(), a subsequent call to
- * _uhash_rehash() should do nothing (should not churn). This is only
- * a potential problem with U_GROW_AND_SHRINK.
- */
-static const float RESIZE_POLICY_RATIO_TABLE[6] = {
- /* low, high water ratio */
- 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
- 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
- 0.0F, 1.0F /* U_FIXED: Never change size */
-};
-
-/*
- Invariants for hashcode values:
-
- * DELETED < 0
- * EMPTY < 0
- * Real hashes >= 0
-
- Hashcodes may not start out this way, but internally they are
- adjusted so that they are always positive. We assume 32-bit
- hashcodes; adjust these constants for other hashcode sizes.
-*/
-#define HASH_DELETED ((int32_t) 0x80000000)
-#define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
-
-#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
-
-/* This macro expects a UHashTok.pointer as its keypointer and
- valuepointer parameters */
-#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
- if (hash->keyDeleter != NULL && keypointer != NULL) { \
- (*hash->keyDeleter)(keypointer); \
- } \
- if (hash->valueDeleter != NULL && valuepointer != NULL) { \
- (*hash->valueDeleter)(valuepointer); \
- }
-
-/*
- * Constants for hinting whether a key or value is an integer
- * or a pointer. If a hint bit is zero, then the associated
- * token is assumed to be an integer.
- */
-#define HINT_KEY_POINTER (1)
-#define HINT_VALUE_POINTER (2)
-
-/********************************************************************
- * PRIVATE Implementation
- ********************************************************************/
-
-static UHashTok
-_uhash_setElement(UHashtable *hash, UHashElement* e,
- int32_t hashcode,
- UHashTok key, UHashTok value, int8_t hint) {
-
- UHashTok oldValue = e->value;
- if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
- e->key.pointer != key.pointer) { /* Avoid double deletion */
- (*hash->keyDeleter)(e->key.pointer);
- }
- if (hash->valueDeleter != NULL) {
- if (oldValue.pointer != NULL &&
- oldValue.pointer != value.pointer) { /* Avoid double deletion */
- (*hash->valueDeleter)(oldValue.pointer);
- }
- oldValue.pointer = NULL;
- }
- /* Compilers should copy the UHashTok union correctly, but even if
- * they do, memory heap tools (e.g. BoundsChecker) can get
- * confused when a pointer is cloaked in a union and then copied.
- * TO ALLEVIATE THIS, we use hints (based on what API the user is
- * calling) to copy pointers when we know the user thinks
- * something is a pointer. */
- if (hint & HINT_KEY_POINTER) {
- e->key.pointer = key.pointer;
- } else {
- e->key = key;
- }
- if (hint & HINT_VALUE_POINTER) {
- e->value.pointer = value.pointer;
- } else {
- e->value = value;
- }
- e->hashcode = hashcode;
- return oldValue;
-}
-
-/**
- * Assumes that the given element is not empty or deleted.
- */
-static UHashTok
-_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
- UHashTok empty;
- U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
- --hash->count;
- empty.pointer = NULL; empty.integer = 0;
- return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
-}
-
-static void
-_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
- U_ASSERT(hash != NULL);
- U_ASSERT(((int32_t)policy) >= 0);
- U_ASSERT(((int32_t)policy) < 3);
- hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
- hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
-}
-
-/**
- * Allocate internal data array of a size determined by the given
- * prime index. If the index is out of range it is pinned into range.
- * If the allocation fails the status is set to
- * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
- * either case the previous array pointer is overwritten.
- *
- * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
- */
-static void
-_uhash_allocate(UHashtable *hash,
- int32_t primeIndex,
- UErrorCode *status) {
-
- UHashElement *p, *limit;
- UHashTok emptytok;
-
- if (U_FAILURE(*status)) return;
-
- U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
-
- hash->primeIndex = static_cast<int8_t>(primeIndex);
- hash->length = PRIMES[primeIndex];
-
- p = hash->elements = (UHashElement*)
- uprv_malloc(sizeof(UHashElement) * hash->length);
-
- if (hash->elements == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
-
- emptytok.pointer = NULL; /* Only one of these two is needed */
- emptytok.integer = 0; /* but we don't know which one. */
-
- limit = p + hash->length;
- while (p < limit) {
- p->key = emptytok;
- p->value = emptytok;
- p->hashcode = HASH_EMPTY;
- ++p;
- }
-
- hash->count = 0;
- hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
- hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
-}
-
-static UHashtable*
-_uhash_init(UHashtable *result,
- UHashFunction *keyHash,
- UKeyComparator *keyComp,
- UValueComparator *valueComp,
- int32_t primeIndex,
- UErrorCode *status)
-{
- if (U_FAILURE(*status)) return NULL;
- U_ASSERT(keyHash != NULL);
- U_ASSERT(keyComp != NULL);
-
- result->keyHasher = keyHash;
- result->keyComparator = keyComp;
- result->valueComparator = valueComp;
- result->keyDeleter = NULL;
- result->valueDeleter = NULL;
- result->allocated = FALSE;
- _uhash_internalSetResizePolicy(result, U_GROW);
-
- _uhash_allocate(result, primeIndex, status);
-
- if (U_FAILURE(*status)) {
- return NULL;
- }
-
- return result;
-}
-
-static UHashtable*
-_uhash_create(UHashFunction *keyHash,
- UKeyComparator *keyComp,
- UValueComparator *valueComp,
- int32_t primeIndex,
- UErrorCode *status) {
- UHashtable *result;
-
- if (U_FAILURE(*status)) return NULL;
-
- result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
- if (result == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
- }
-
- _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
- result->allocated = TRUE;
-
- if (U_FAILURE(*status)) {
- uprv_free(result);
- return NULL;
- }
-
- return result;
-}
-
-/**
- * Look for a key in the table, or if no such key exists, the first
- * empty slot matching the given hashcode. Keys are compared using
- * the keyComparator function.
- *
- * First find the start position, which is the hashcode modulo
- * the length. Test it to see if it is:
- *
- * a. identical: First check the hash values for a quick check,
- * then compare keys for equality using keyComparator.
- * b. deleted
- * c. empty
- *
- * Stop if it is identical or empty, otherwise continue by adding a
- * "jump" value (moduloing by the length again to keep it within
- * range) and retesting. For efficiency, there need enough empty
- * values so that the searchs stop within a reasonable amount of time.
- * This can be changed by changing the high/low water marks.
- *
- * In theory, this function can return NULL, if it is full (no empty
- * or deleted slots) and if no matching key is found. In practice, we
- * prevent this elsewhere (in uhash_put) by making sure the last slot
- * in the table is never filled.
- *
- * The size of the table should be prime for this algorithm to work;
- * otherwise we are not guaranteed that the jump value (the secondary
- * hash) is relatively prime to the table length.
- */
-static UHashElement*
-_uhash_find(const UHashtable *hash, UHashTok key,
- int32_t hashcode) {
-
- int32_t firstDeleted = -1; /* assume invalid index */
- int32_t theIndex, startIndex;
- int32_t jump = 0; /* lazy evaluate */
- int32_t tableHash;
- UHashElement *elements = hash->elements;
-
- hashcode &= 0x7FFFFFFF; /* must be positive */
- startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
-
- do {
- tableHash = elements[theIndex].hashcode;
- if (tableHash == hashcode) { /* quick check */
- if ((*hash->keyComparator)(key, elements[theIndex].key)) {
- return &(elements[theIndex]);
- }
- } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
- /* We have hit a slot which contains a key-value pair,
- * but for which the hash code does not match. Keep
- * looking.
- */
- } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
- break;
- } else if (firstDeleted < 0) { /* remember first deleted */
- firstDeleted = theIndex;
- }
- if (jump == 0) { /* lazy compute jump */
- /* The jump value must be relatively prime to the table
- * length. As long as the length is prime, then any value
- * 1..length-1 will be relatively prime to it.
- */
- jump = (hashcode % (hash->length - 1)) + 1;
- }
- theIndex = (theIndex + jump) % hash->length;
- } while (theIndex != startIndex);
-
- if (firstDeleted >= 0) {
- theIndex = firstDeleted; /* reset if had deleted slot */
- } else if (tableHash != HASH_EMPTY) {
- /* We get to this point if the hashtable is full (no empty or
- * deleted slots), and we've failed to find a match. THIS
- * WILL NEVER HAPPEN as long as uhash_put() makes sure that
- * count is always < length.
- */
- U_ASSERT(FALSE);
- return NULL; /* Never happens if uhash_put() behaves */
- }
- return &(elements[theIndex]);
-}
-
-/**
- * Attempt to grow or shrink the data arrays in order to make the
- * count fit between the high and low water marks. hash_put() and
- * hash_remove() call this method when the count exceeds the high or
- * low water marks. This method may do nothing, if memory allocation
- * fails, or if the count is already in range, or if the length is
- * already at the low or high limit. In any case, upon return the
- * arrays will be valid.
- */
-static void
-_uhash_rehash(UHashtable *hash, UErrorCode *status) {
-
- UHashElement *old = hash->elements;
- int32_t oldLength = hash->length;
- int32_t newPrimeIndex = hash->primeIndex;
- int32_t i;
-
- if (hash->count > hash->highWaterMark) {
- if (++newPrimeIndex >= PRIMES_LENGTH) {
- return;
- }
- } else if (hash->count < hash->lowWaterMark) {
- if (--newPrimeIndex < 0) {
- return;
- }
- } else {
- return;
- }
-
- _uhash_allocate(hash, newPrimeIndex, status);
-
- if (U_FAILURE(*status)) {
- hash->elements = old;
- hash->length = oldLength;
- return;
- }
-
- for (i = oldLength - 1; i >= 0; --i) {
- if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
- UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
- U_ASSERT(e != NULL);
- U_ASSERT(e->hashcode == HASH_EMPTY);
- e->key = old[i].key;
- e->value = old[i].value;
- e->hashcode = old[i].hashcode;
- ++hash->count;
- }
- }
-
- uprv_free(old);
-}
-
-static UHashTok
-_uhash_remove(UHashtable *hash,
- UHashTok key) {
- /* First find the position of the key in the table. If the object
- * has not been removed already, remove it. If the user wanted
- * keys deleted, then delete it also. We have to put a special
- * hashcode in that position that means that something has been
- * deleted, since when we do a find, we have to continue PAST any
- * deleted values.
- */
- UHashTok result;
- UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
- U_ASSERT(e != NULL);
- result.pointer = NULL;
- result.integer = 0;
- if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
- result = _uhash_internalRemoveElement(hash, e);
- if (hash->count < hash->lowWaterMark) {
- UErrorCode status = U_ZERO_ERROR;
- _uhash_rehash(hash, &status);
- }
- }
- return result;
-}
-
-static UHashTok
-_uhash_put(UHashtable *hash,
- UHashTok key,
- UHashTok value,
- int8_t hint,
- UErrorCode *status) {
-
- /* Put finds the position in the table for the new value. If the
- * key is already in the table, it is deleted, if there is a
- * non-NULL keyDeleter. Then the key, the hash and the value are
- * all put at the position in their respective arrays.
- */
- int32_t hashcode;
- UHashElement* e;
- UHashTok emptytok;
-
- if (U_FAILURE(*status)) {
- goto err;
- }
- U_ASSERT(hash != NULL);
- /* Cannot always check pointer here or iSeries sees NULL every time. */
- if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
- /* Disallow storage of NULL values, since NULL is returned by
- * get() to indicate an absent key. Storing NULL == removing.
- */
- return _uhash_remove(hash, key);
- }
- if (hash->count > hash->highWaterMark) {
- _uhash_rehash(hash, status);
- if (U_FAILURE(*status)) {
- goto err;
- }
- }
-
- hashcode = (*hash->keyHasher)(key);
- e = _uhash_find(hash, key, hashcode);
- U_ASSERT(e != NULL);
-
- if (IS_EMPTY_OR_DELETED(e->hashcode)) {
- /* Important: We must never actually fill the table up. If we
- * do so, then _uhash_find() will return NULL, and we'll have
- * to check for NULL after every call to _uhash_find(). To
- * avoid this we make sure there is always at least one empty
- * or deleted slot in the table. This only is a problem if we
- * are out of memory and rehash isn't working.
- */
- ++hash->count;
- if (hash->count == hash->length) {
- /* Don't allow count to reach length */
- --hash->count;
- *status = U_MEMORY_ALLOCATION_ERROR;
- goto err;
- }
- }
-
- /* We must in all cases handle storage properly. If there was an
- * old key, then it must be deleted (if the deleter != NULL).
- * Make hashcodes stored in table positive.
- */
- return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
-
- err:
- /* If the deleters are non-NULL, this method adopts its key and/or
- * value arguments, and we must be sure to delete the key and/or
- * value in all cases, even upon failure.
- */
- HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
- emptytok.pointer = NULL; emptytok.integer = 0;
- return emptytok;
-}
-
-
-/********************************************************************
- * PUBLIC API
- ********************************************************************/
-
-U_CAPI UHashtable* U_EXPORT2
-uhash_open(UHashFunction *keyHash,
- UKeyComparator *keyComp,
- UValueComparator *valueComp,
- UErrorCode *status) {
-
- return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
-}
-
-U_CAPI UHashtable* U_EXPORT2
-uhash_openSize(UHashFunction *keyHash,
- UKeyComparator *keyComp,
- UValueComparator *valueComp,
- int32_t size,
- UErrorCode *status) {
-
- /* Find the smallest index i for which PRIMES[i] >= size. */
- int32_t i = 0;
- while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
- ++i;
- }
-
- return _uhash_create(keyHash, keyComp, valueComp, i, status);
-}
-
-U_CAPI UHashtable* U_EXPORT2
-uhash_init(UHashtable *fillinResult,
- UHashFunction *keyHash,
- UKeyComparator *keyComp,
- UValueComparator *valueComp,
- UErrorCode *status) {
-
- return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
-}
-
-U_CAPI UHashtable* U_EXPORT2
-uhash_initSize(UHashtable *fillinResult,
- UHashFunction *keyHash,
- UKeyComparator *keyComp,
- UValueComparator *valueComp,
- int32_t size,
- UErrorCode *status) {
-
- // Find the smallest index i for which PRIMES[i] >= size.
- int32_t i = 0;
- while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
- ++i;
- }
- return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
-}
-
-U_CAPI void U_EXPORT2
-uhash_close(UHashtable *hash) {
- if (hash == NULL) {
- return;
- }
- if (hash->elements != NULL) {
- if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
- int32_t pos=UHASH_FIRST;
- UHashElement *e;
- while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
- HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
- }
- }
- uprv_free(hash->elements);
- hash->elements = NULL;
- }
- if (hash->allocated) {
- uprv_free(hash);
- }
-}
-
-U_CAPI UHashFunction *U_EXPORT2
-uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
- UHashFunction *result = hash->keyHasher;
- hash->keyHasher = fn;
- return result;
-}
-
-U_CAPI UKeyComparator *U_EXPORT2
-uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
- UKeyComparator *result = hash->keyComparator;
- hash->keyComparator = fn;
- return result;
-}
-U_CAPI UValueComparator *U_EXPORT2
-uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
- UValueComparator *result = hash->valueComparator;
- hash->valueComparator = fn;
- return result;
-}
-
-U_CAPI UObjectDeleter *U_EXPORT2
-uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
- UObjectDeleter *result = hash->keyDeleter;
- hash->keyDeleter = fn;
- return result;
-}
-
-U_CAPI UObjectDeleter *U_EXPORT2
-uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
- UObjectDeleter *result = hash->valueDeleter;
- hash->valueDeleter = fn;
- return result;
-}
-
-U_CAPI void U_EXPORT2
-uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
- UErrorCode status = U_ZERO_ERROR;
- _uhash_internalSetResizePolicy(hash, policy);
- hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
- hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
- _uhash_rehash(hash, &status);
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_count(const UHashtable *hash) {
- return hash->count;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_get(const UHashtable *hash,
- const void* key) {
- UHashTok keyholder;
- keyholder.pointer = (void*) key;
- return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_iget(const UHashtable *hash,
- int32_t key) {
- UHashTok keyholder;
- keyholder.integer = key;
- return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_geti(const UHashtable *hash,
- const void* key) {
- UHashTok keyholder;
- keyholder.pointer = (void*) key;
- return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_igeti(const UHashtable *hash,
- int32_t key) {
- UHashTok keyholder;
- keyholder.integer = key;
- return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_put(UHashtable *hash,
- void* key,
- void* value,
- UErrorCode *status) {
- UHashTok keyholder, valueholder;
- keyholder.pointer = key;
- valueholder.pointer = value;
- return _uhash_put(hash, keyholder, valueholder,
- HINT_KEY_POINTER | HINT_VALUE_POINTER,
- status).pointer;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_iput(UHashtable *hash,
- int32_t key,
- void* value,
- UErrorCode *status) {
- UHashTok keyholder, valueholder;
- keyholder.integer = key;
- valueholder.pointer = value;
- return _uhash_put(hash, keyholder, valueholder,
- HINT_VALUE_POINTER,
- status).pointer;
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_puti(UHashtable *hash,
- void* key,
- int32_t value,
- UErrorCode *status) {
- UHashTok keyholder, valueholder;
- keyholder.pointer = key;
- valueholder.integer = value;
- return _uhash_put(hash, keyholder, valueholder,
- HINT_KEY_POINTER,
- status).integer;
-}
-
-
-U_CAPI int32_t U_EXPORT2
-uhash_iputi(UHashtable *hash,
- int32_t key,
- int32_t value,
- UErrorCode *status) {
- UHashTok keyholder, valueholder;
- keyholder.integer = key;
- valueholder.integer = value;
- return _uhash_put(hash, keyholder, valueholder,
- 0, /* neither is a ptr */
- status).integer;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_remove(UHashtable *hash,
- const void* key) {
- UHashTok keyholder;
- keyholder.pointer = (void*) key;
- return _uhash_remove(hash, keyholder).pointer;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_iremove(UHashtable *hash,
- int32_t key) {
- UHashTok keyholder;
- keyholder.integer = key;
- return _uhash_remove(hash, keyholder).pointer;
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_removei(UHashtable *hash,
- const void* key) {
- UHashTok keyholder;
- keyholder.pointer = (void*) key;
- return _uhash_remove(hash, keyholder).integer;
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_iremovei(UHashtable *hash,
- int32_t key) {
- UHashTok keyholder;
- keyholder.integer = key;
- return _uhash_remove(hash, keyholder).integer;
-}
-
-U_CAPI void U_EXPORT2
-uhash_removeAll(UHashtable *hash) {
- int32_t pos = UHASH_FIRST;
- const UHashElement *e;
- U_ASSERT(hash != NULL);
- if (hash->count != 0) {
- while ((e = uhash_nextElement(hash, &pos)) != NULL) {
- uhash_removeElement(hash, e);
- }
- }
- U_ASSERT(hash->count == 0);
-}
-
-U_CAPI const UHashElement* U_EXPORT2
-uhash_find(const UHashtable *hash, const void* key) {
- UHashTok keyholder;
- const UHashElement *e;
- keyholder.pointer = (void*) key;
- e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
- return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
-}
-
-U_CAPI const UHashElement* U_EXPORT2
-uhash_nextElement(const UHashtable *hash, int32_t *pos) {
- /* Walk through the array until we find an element that is not
- * EMPTY and not DELETED.
- */
- int32_t i;
- U_ASSERT(hash != NULL);
- for (i = *pos + 1; i < hash->length; ++i) {
- if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
- *pos = i;
- return &(hash->elements[i]);
- }
- }
-
- /* No more elements */
- return NULL;
-}
-
-U_CAPI void* U_EXPORT2
-uhash_removeElement(UHashtable *hash, const UHashElement* e) {
- U_ASSERT(hash != NULL);
- U_ASSERT(e != NULL);
- if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
- UHashElement *nce = (UHashElement *)e;
- return _uhash_internalRemoveElement(hash, nce).pointer;
- }
- return NULL;
-}
-
-/********************************************************************
- * UHashTok convenience
- ********************************************************************/
-
-/**
- * Return a UHashTok for an integer.
- */
-/*U_CAPI UHashTok U_EXPORT2
-uhash_toki(int32_t i) {
- UHashTok tok;
- tok.integer = i;
- return tok;
-}*/
-
-/**
- * Return a UHashTok for a pointer.
- */
-/*U_CAPI UHashTok U_EXPORT2
-uhash_tokp(void* p) {
- UHashTok tok;
- tok.pointer = p;
- return tok;
-}*/
-
-/********************************************************************
- * PUBLIC Key Hash Functions
- ********************************************************************/
-
-U_CAPI int32_t U_EXPORT2
-uhash_hashUChars(const UHashTok key) {
- const UChar *s = (const UChar *)key.pointer;
- return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_hashChars(const UHashTok key) {
- const char *s = (const char *)key.pointer;
- return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s))));
-}
-
-U_CAPI int32_t U_EXPORT2
-uhash_hashIChars(const UHashTok key) {
- const char *s = (const char *)key.pointer;
- return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s)));
-}
-
-U_CAPI UBool U_EXPORT2
-uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
- int32_t count1, count2, pos, i;
-
- if(hash1==hash2){
- return TRUE;
- }
-
- /*
- * Make sure that we are comparing 2 valid hashes of the same type
- * with valid comparison functions.
- * Without valid comparison functions, a binary comparison
- * of the hash values will yield random results on machines
- * with 64-bit pointers and 32-bit integer hashes.
- * A valueComparator is normally optional.
- */
- if (hash1==NULL || hash2==NULL ||
- hash1->keyComparator != hash2->keyComparator ||
- hash1->valueComparator != hash2->valueComparator ||
- hash1->valueComparator == NULL)
- {
- /*
- Normally we would return an error here about incompatible hash tables,
- but we return FALSE instead.
- */
- return FALSE;
- }
-
- count1 = uhash_count(hash1);
- count2 = uhash_count(hash2);
- if(count1!=count2){
- return FALSE;
- }
-
- pos=UHASH_FIRST;
- for(i=0; i<count1; i++){
- const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
- const UHashTok key1 = elem1->key;
- const UHashTok val1 = elem1->value;
- /* here the keys are not compared, instead the key form hash1 is used to fetch
- * value from hash2. If the hashes are equal then then both hashes should
- * contain equal values for the same key!
- */
- const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
- const UHashTok val2 = elem2->value;
- if(hash1->valueComparator(val1, val2)==FALSE){
- return FALSE;
- }
- }
- return TRUE;
-}
-
-/********************************************************************
- * PUBLIC Comparator Functions
- ********************************************************************/
-
-U_CAPI UBool U_EXPORT2
-uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
- const UChar *p1 = (const UChar*) key1.pointer;
- const UChar *p2 = (const UChar*) key2.pointer;
- if (p1 == p2) {
- return TRUE;
- }
- if (p1 == NULL || p2 == NULL) {
- return FALSE;
- }
- while (*p1 != 0 && *p1 == *p2) {
- ++p1;
- ++p2;
- }
- return (UBool)(*p1 == *p2);
-}
-
-U_CAPI UBool U_EXPORT2
-uhash_compareChars(const UHashTok key1, const UHashTok key2) {
- const char *p1 = (const char*) key1.pointer;
- const char *p2 = (const char*) key2.pointer;
- if (p1 == p2) {
- return TRUE;
- }
- if (p1 == NULL || p2 == NULL) {
- return FALSE;
- }
- while (*p1 != 0 && *p1 == *p2) {
- ++p1;
- ++p2;
- }
- return (UBool)(*p1 == *p2);
-}
-
-U_CAPI UBool U_EXPORT2
-uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
- const char *p1 = (const char*) key1.pointer;
- const char *p2 = (const char*) key2.pointer;
- if (p1 == p2) {
- return TRUE;
- }
- if (p1 == NULL || p2 == NULL) {
- return FALSE;
- }
- while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
- ++p1;
- ++p2;
- }
- return (UBool)(*p1 == *p2);
-}
-
-/********************************************************************
- * PUBLIC int32_t Support Functions
- ********************************************************************/
-
-U_CAPI int32_t U_EXPORT2
-uhash_hashLong(const UHashTok key) {
- return key.integer;
-}
-
-U_CAPI UBool U_EXPORT2
-uhash_compareLong(const UHashTok key1, const UHashTok key2) {
- return (UBool)(key1.integer == key2.integer);
-}